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Abstract-This  paper  proposes  a  new  evolutionary  algorithm 
called LZWCGA. LZWCGA is an algorithm that combines the 
LZW compressed chromosome encoding and compact genetic 
algorithm (cGA). The advantage of LZW encoding is to reduce 
the search space thus speed up the evolutionary search. cGA is 
one of Estimation of Distribution Algorithms. Its advantage is 
compact  representation  of  the  whole  binary-string  genetic 
algorithm population.  
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I.  INTRODUCTION

Genetic  Algorithm  (GA)  is  an  algorithm  that  solves 
problems  by  simulating  natural  evolution  [1].  To  solve  a 
problem using GA, a candidate  solution must be encoded 
into a binary string. The length of this string represents the 
size  of  the  problem.  As  the  length  of  the  binary  string 
increases,  the size of the search space also increases at an 
exponential rate.  For example, the size of search space for 
10-bit chromosome is 210.  While the size of search space for 
100-bit chromosome is 2100.

To reduce the search space, one approach is to utilize a 
compressed encoding chromosome.  Kunasol et. al. proposed 
LZWGA,  which  is  a  GA  that  uses  LZW  compressed 
chromosomes  [2].  An  LZWGA  chromosome  has  to  be 
decompressed by an LZW decompression algorithm before 
its fitness can be evaluated. LZWGA can solve very large 
problem such  as  one-million-bit  OneMax,  RoyalRoad  and 
Trap functions.  

Estimation  of  Distribution  Algorithm (EDA)  is  a  new 
approach in evolutionary computation [3][4]. EDA models 
highly-fit  individuals  in  each  generation  by  assuming  a 
particular  distribution.  After  the  model  is  created,  EDA 
generates new individuals from the model and inserts them 
to the population.  Modeling and generating can avoid the 
disruption of partial solution resulted from genetic operations 
such  as  crossover  and  mutation.   EDAs include  Compact 
Genetic  Algorithm  (cGA)  [5],  Mutual  Information 
Maximization for Input  Clustering (MIMIC) [6],  Bayesian 
Optimization Algorithm (BOA) [7], etc.

In  this paper,  we combine LZW compressed  encoding 
with  cGA.  cGA  has  an  advantage  of  a  compact 
representation. A chromosome in cGA is a probability vector 
which represents  the whole GA's  binary string population. 
cGA considers all variables independently. Each item in the 
probability  vector  represents  the  probability  that  the  gene 

will  be  0  or  1.  However,  because  the  LZW  encoded 
chromosome is an integer array, we have to modified cGA to 
handle the integer value.

The  remainder  of  this  paper  is  organized  as  follows. 
Section II presents technical  background.  Section III  gives 
details  about  LZWCGA.  Section  IV  describes  the 
experiments.  Section  V  shows  experimental  results  and 
discussion. Finally, we conclude our work and suggest future 
work in Section VI.

II. TECHNICAL BACKGROUND

A. Lempel-Ziv-Welch (LZW) Algorithm 
The LZW is a lossless data compression algorithm [8]. 

The  compression algorithm starts with a dictionary in which 
each entry contains one character. During the compression, 
the  algorithm  dynamically  expands  the  dictionary  and 
outputs  codes  that  refer  to  strings  in  the  dictionary. 
Normally, the number of  bits of the code is less than that of 
the  variable  length  string  in  the  dictionary.  Data  is 
compressed because the algorithm replaces the whole string 
with its code.

A nice property of LZW is that the dictionary does not 
have  to  be  packed  with  a  compressed  data.  LZW 
decompression  does  not  require  a  dictionary  because  the 
algorithm  can  reconstruct  the  dictionary  while 
decompressing  data.  When  using  LZW  to  decompress  an 
English  text,  the  dictionary  is  initialized  with  all  English 
characters  and  symbols.  However,  when  this  algorithm is 
used with GA, the dictionary is initialized with the number 0 
and  1 because  the output  of  the decompression  algorithm 
must be a binary string.

A pseudo code for LZW decompression used in LZWGA 
is shown next page.

B. LZWGA
The main difference between LZWGA and GA is that an 

LZWGA chromosome is in a compressed format. Therefore, 
the LZWGA chromosome has to be decompressed before its 
fitness can be evaluated.  In [2],  LZWGA is compared with 
the  simple GA using the same parameters except the length 
of individuals (compressed vs no compression). For OneMax 
problem,  by  using  the  same  amount  of  time,  the  best 
chromosome that simple GA can find is a little more than 
half  of  solution  fitness  (LZWGA  can  find  a  solution). 
LZWGA requires less memory and time to transfer data from 
one generation to the next generation. For example, to solve 
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one-million-bit problem, each chromosome in LZWGA have 
40,000 genes or 640,000 bits (40,000  16) but GA used 106 

bits per each chromosome. LZWGA spends less time than 
GA during genetic operations (e.g., crossover, mutation, and 
reproduction). The pseudo code of LZWGA is shown below.

Algorithm LZWGA 
Z       create_first_generation()
repeat

P      decompress(Z) 
evaluate(P) 
Z      create_next_generation(Z)

until is_terminate()

The variable Z is the population of compressed 
chromosome. 

The variable P is the population of uncompressed binary 
chromosomes.

The algorithm begins by creating the first generation of 
compressed chromosomes. Before evaluating the fitness of a 
chromosome, the compressed chromosome is decompressed 
using LZW Decompression algorithm. The fitness evaluation 
is performed on the uncompressed chromosome.

After that, the new population is created to replace the 
old  population.  The  algorithm  repeats  the  process  of 
decompression,  fitness  evaluation,  and  creating  a  new 
population  until  the  termination  criterion  is  met.  The 
algorithm terminates when a solution is found or a maximum 
generation is reached.

Algorithm LZW Decompress
  add entries 0 and 1 to the dictionary 

read one code from input to c 
output str(c)

           p = c
while input are still left

read one code from input to c
if the code c is not in the dictionary

add str(p)+fc(str(p)) to the dictionary
output str(p)+fc(str(p))

else
add str(p)+fc(str(c)) to the dictionary
output str(p)

         end if
         p = c 
end while

The variable c is used to store a code read from input. 
The variable p is the previous value of c. 
The function str(code) returns a string associated with 

code. 
The function fc(string) returns the first character in 

string.

1) Creating the First Generation
Unlike a  canonical  GA,  a chromosome in LZWGA is 

encoded as  integers. The chromosome in LZWGA is in a 
compressed  format.  LZWGA  chromosome  is  an  array  of 
integer. Each integer is a code for an index of an entry in the 
dictionary. Chromosomes in the first generation are created 

as a  random integer  strings with the constraint  that  the  ith 

integer of a chromosome must not have value greater than 
i+2. 

For  example,  an  LZWGA  chromosome  that  can  be 
successfully  decompressed  is  (1,2,3).  The  decompression 
algorithm  will  output  a  binary  string  111111.  After 
decompression,  a  dictionary  has  the  entries  (0,0),  (1,1), 
(2,11),  and  (3,111).  Another  valid  chromosome is  (0,1,2). 
The  decompression  algorithm  will  output  a  binary  string 
0101. 

If the  ith integer in an LZWGA chromosome is invalid, 
the dictionary look up in will be failed after the (i+l)th integer 
is  read.  An example of an invalid chromosome is (1,3,3). 
Before entering the loop, the input "1" (the 0th integer in the 
chromosome) is read and the algorithm output 1. In the first 
iteration,  the algorithm reads "3"  (the 1st integer),  adds to 
dictionary the string 11 at the entry 2, and outputs 11. In the 
second iteration, the algorithm reads "3" (the 2nd integer), and 
fail when trying to execute str("3"). 

In order to generate the value of the ith integer, a random 
non-negative integer is modulo with i+2.

2) Decompression
Because the chromosome in LZWGA is compressed, it 

has  to  be  decompressed  before  its  fitness  evaluation.  A 
compressed  chromosome  is  decompressed  using  LZW 
decompression  algorithm.  The  result  is  a  binary 
chromosome.

The length of the decompressed chromosome is varied. If 
the  length  is  more  than  the  size of  the  problem size,  the 
excess  bits  are  discarded.  If  the  length  is  less  than  the 
problem size, LZWCGA will evaluate the fitness of available 
bits. After decompression, the decompressed binary string is 
evaluated. A fitness of a compressed chromosome is equals 
to the fitness of the decompressed chromosome.

3) Creating the Next Generation
LZWGA creates the population of the next generation by 

selecting,  recombining,  and  mutating  compressed 
chromosomes.  A  highly  fit  chromosome  is  likely  to  be 
selected using any selection method such as tournament or 
roulette-wheel selection. Compressed chromosomes can be 
recombined  using  single-point,  two-point,  or  uniform 
crossover. Because each of these crossover methods does not 
change the position of each integer, it automatically creates 
valid chromosomes that each integer satisfies the constraint. 
Therefore,  the  offspring  can  be  decompressed.  Mutation 
changes  an  integer  in  uncompressed  chromosome  to  a 
random value that satisfies the constraint.

C. Compact Genetic Algorithm (cGA)

Harik et al. [5] introduced a compact genetic algorithm 
(cGA). The performance of cGA is comparable to GA with 
uniform crossover. cGA is a graphical representation of the 
probability  model  of  EDAs  without  independencies.  This 
algorithm uses  a  single  probability vector  to represent  the 
whole  GA  population.  Therefore  cGA  consumes  less 
memory than traditional GA.
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III. LZWCGA
LZWCGA  combines  LZWGA with  cGA.  cGA uses  a 

probability vector to represent the whole GA population. In 
contrast,  LZWCGA uses a  probability matrix  instead of  a 
single probability vector because LZWGA's chromosome is 
an array of integer. Each column of the probability matrix is 
a probability that a particular value will occurs for each gene. 
An example of a probability matrix is shown in Fig. 1.

The main  difference  between  LZWCGA and cGA are 
initializing and updating the probability matrix process. The 
sequence of LZWCGA process is shown below.

Step 1. Initialize the probability matrix   
Step 2. Generate two individuals
Step 3. Decompress both individuals
Step 4. Evaluate both individuals
Step 5. Update the probability matrix
Step 6. Check if the probability matrix has converged or the solution is
            found, if not return to Step 2  

The first step in LZWCGA is to initialize the probability 
matrix. The pseudo code is shown below. The sum of the 
probability in one column of the matrix is 1.

Algorithm Initialize Probability Matrix
          for i = 1 to l do
                    for j = 1 to i + 1 do
                              p[i][j] = 1 / (i + 1)
                    end for
          end for

The variable l is length of an individual.

Then,  we  randomly generate  two individuals  a and  b 
from the probability matrix  using the pseudo code shown 
below.

Algorithm Generate Individuals
          for i = 1 to l do
                    r = random()
                    interval = 0
                    for j = 1 to  i+1 do
                              interval += p[i][j]
                              if (r ≤  interval) 
                                        lzwChromosome[i] = j
                                        break
                              end if
                    end for
          end for 

Next, we decompress both individuals using LZW. Then, 
we evaluate their fitness. The individual with higher fitness 
score is called the  winner,  whereas  the other is called the 
loser. The probability matrix is updated according to values 
from  winner and  loser. The  main  idea  is  to  increase  the 
probability value at the winner's position by 1/n (the variable 
n is the population size) and decrease value in loser positions 
by 1/n. The pseudo code for updating the probability matrix 
is shown in the right column of this page.

By way of  illustration,  the initial  probability matrix  is 
shown in Fig. 1. The probability matrix after updating using 
values from winner and loser is shown in Fig. 2.

0.50 0.33 0.25 0.20 0.17

0.50 0.33 0.25 0.20 0.17

0.33 0.25 0.20 0.17

0.25 0.20 0.17

0.20 0.17

0.17

Figure 1. The initial probability matrix of LZWCGA 
population when the length of each individual is 5

winner 0 1 2 3 5

  loser 1 0 1 0 2

0.60 0.23 0.25 0.10 0.17

0.40 0.43 0.15 0.20 0.17

0.33 0.35 0.20 0.07

0.25 0.30 0.17

0.20 0.17

0.27

Figure 2. The probability matrix after updating (population 
size n is 10)

Algorithm Update Probability Matrix
          for i = 1 to l do
                    indexW = winner[i]
                    indexL = loser[i]
                    if (indexW ≠ indexL) 
                              if (p[i][indexW] + (1/n) ≥ 1.0) 
                                        p[i][indexW] = 1.0
                                        for j = 1 to i+1 do
                                                  if (j ≠ indexW) 
                                                            p[i][j] = 0.0
                                                  end if
                                       end for    
                              else 
                                        if (p[i][indexL] - (1/n) ≤ 0.0) 
                                                  p[i][indexW] += p[i][indexL]
                                                  p[i][indexL] = 0.0;
                                        else 
                                                  p[i][indexW] += (1/n)
                                                  p[i][indexL] -= (1/n)
                                        end if
                              end if
                    end if
          end for 

The  last  step  of  LZWCGA  is  to  check  whether  the 
probability  matrix  has  been  converged  or  the  solution  is 
found. If not, the evolution process is repeated starting from 
step 2.
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IV. EXPERIMENTS

We conducted experiments to compare the performance 
of LZWCGA and LZWGA on OneMax and Trap problems.

 

A. OneMax Problem
The OneMax problem [9] (or bit counting) is a widely 

used problem for testing the performance of various genetic 
algorithms.  Formally,  this  problem  can  be  described  as 
finding  a  string x={x1 , x2 , ... , x k } ,  where  xi∈{0,1} ,  that 
maximizes the following equation:

F x =∑
i=1

k

xi (1)

B. Trap Problem
The general k-bit trap functions [9] are defined as:

F x={ f high ;if u=k
f low−u× f low/ k−1 ; otherwise (2)

where x={0,1} , u=∑
i=1

k

xi and f high f low . Usually,

 f high is set at k and f low is set at k-1. The Trap problem

denoted by F m×k are defined as:

F m×k K1 ... K m=∑
i=1

m

F k K i  , K i∈{0,1}k (3)

The  m and  k are  varied  to  produce  a  number  of  test 
functions.  The  Trap  functions  fool  the  gradient-based 
optimizers  to  favor  zeros,  but  the  optimal  solution  is 
composed of all ones. The Trap function is a fundamental 
unit  for  designing  test  functions  that  resist  hill-climbing 
algorithms.

C. Parameters
The parameters for both algorithms are shown in Table I 

and II. The Table I shows parameters for OneMax problem. 
Table  II  shows parameters  for  Trap problem. The size  of 
compressed  chromosome  is  set  to  4,  5  and  6  times  on 
OneMax and 4 times smaller than the size of a decompressed 
chromosome  on  Trap  problem.  We  call  the  ratio  the 
chromosome  compression  ratio. We  compare  the 
performance  of  LZWCGA  and  LZWGA  for  various 
compression  ratios.  LZWGA  uses  tournament  selection 
(tournament size = 4). It uses uniform crossover and does not 
use mutation.

All  experimental  results  are  the  average  performance 
obtained from 30 runs.

TABLE I. PARAMETERS OF LZWGA AND LZWCGA FOR ONEMAX 
PROBLEM

Parameter Value

Population size 128, 512, 1024

Problem size (bits) 1000, 10000, 100000

Chromosome compression ratio 1/4, 1/5, 1/6  of problem size

Max generation (for LZWGA) 500

Max round (for LZWCGA) 500 x population size

Crossover rate (for LZWGA) 1

Mutation rate (for LZWGA) 0

TABLE II. PARAMETERS OF LZWGA AND LZWCGA FOR TRAP PROBLEM

Parameter Value

Population size 128, 512, 1024

Trap size 5

Total trap 100, 1000, 10000

Problem size (bits) Trap size x Total trap

Chromosome compression ratio 1/4 of problem size

Max generation (for LZWGA) 500

Max round (for LZWCGA) 500 x population size

Crossover rate (for LZWGA) 1

Mutation rate (for LZWGA) 0

V. RESULTS AND DISCUSSION

The  experimental  results  show  that  LZWCGA 
outperforms LZWGA on both OneMax and Trap problems 
(see Fig.  3 and Fig. 4). We found that the bigger problem 
size  needs  more  fitness  evaluations.  Moreover,  higher 
compression ratio requires more fitness evaluations.

LZWGA's memory requirement depends on chromosome 
length and population size while LZWCGA depends only on 
chromosome length. For equal chromosome length, LZWGA 
will  use  approximately  the  same  amount  of  memory  as 
LZWCGA when the population size is equal to the length of 
the  chromosome.  For  example,  when  compressed 
chromosome length is 1000, LZWGA with 1003 individuals 
uses the same amount of memory as LZWCGA.  (Note that 
each  item  in  an  LZWGA  individual  is  16-bit  unsigned 
integer and each item in an LZWCGA matrix is 32-bit float.)

A  visual  representation  for  an  LZWCGA  probability 
matrix is shown in Fig. 5. The X-axis represents positions in 
a chromosome and the Y-axis represents probability that a 
value can occur in that position. The darker area indicates 
higher probability. The initial probability matrix is shown in 
the first sub figure. Each column in the first sub figure has 
the same shade of gray because the initial probability that 
each value in each gene will occur is equal. However, during 
the evolution, the probability is changed. The second, third, 
fourth sub figure is  a probability matrix at  10000, 20000, 
30000 fitness evaluations and so on. In the last sub figure, 
the probability matrix converges. Normally, LZWGA finds a 

100

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-108-3



solution  before  the  probability  matrix  converges.  In  one 
experiment,  LZWCGA  found  a  solution  around  35000 
fitness  evaluations  while  the  probability  matrix  converges 
around 45000 fitness evaluations.

(a) Population size is 128. The compression ratio is 1/4.

(b) Population size is 512. The compression ratio is 1/5.

(c) Population size is 1024. The compression ratio is 1/6.

Figure 3. The number of fitness evaluations of LZWCGA and 
LZWGA when solving various sizes of OneMax problem. 

Figure 4. The number of fitness evaluations when using 
LZWCGA and LZWGA to solve Trap problem. The compression ratio is 

1/4. 

Figure 5. A visual representation for a probability matrix at 0, 
10000, 20000, 30000, 40000, and 50000 fitness evaluations
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VI. CONCLUSION AND FUTURE WORK

We proposed the algorithm LZWCGA which combines 
the  compress  encoding  and  probabilistic  model  building. 
The main feature of LZWCGA is an ability to reduce the 
search  space which makes the algorithm find the solution 
more  effectively.  We  found  that  the  LZWCGA's 
performance  is  comparable  to   LZWGA on OneMax  and 
Trap problem.  This result is promising because we think that 
if LZW encoding is integrated with more advanced EDAs, 
the performance of the new algorithm might be better than 
the original  LZWGA.  In  the future,  we will  improve the 
update process for probability matrix and apply LZW with 
more advanced EDAs such as MIMIC (Mutual Information 
Maximization  for  Input  Clustering),  which  can  solve 
combinatorial  optimization  problems  with  bivariate 
dependencies.
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