
An Estimation of Distribution Algorithm using the LZW Compression Algorithm

Orawan Watchanupaporn and Worasait Suwannik
Department of Computer Science

Kasetsart University
Bangkok, Thailand

orawan.liu@gmail.com, worasait.suwannik@gmail.com

Abstract-This paper proposes a new evolutionary algorithm
called LZWCGA. LZWCGA is an algorithm that combines the
LZW compressed chromosome encoding and compact genetic
algorithm (cGA). The advantage of LZW encoding is to reduce
the search space thus speed up the evolutionary search. cGA is
one of Estimation of Distribution Algorithms. Its advantage is
compact representation of the whole binary-string genetic
algorithm population.

Keywords-Estimation of Distribution Algorithms; Lempel-
Ziv-Welch Algorithm; Compression Algorithm; Compact Genetic
Algorithm

I. INTRODUCTION

Genetic Algorithm (GA) is an algorithm that solves
problems by simulating natural evolution [1]. To solve a
problem using GA, a candidate solution must be encoded
into a binary string. The length of this string represents the
size of the problem. As the length of the binary string
increases, the size of the search space also increases at an
exponential rate. For example, the size of search space for
10-bit chromosome is 210. While the size of search space for
100-bit chromosome is 2100.

To reduce the search space, one approach is to utilize a
compressed encoding chromosome. Kunasol et. al. proposed
LZWGA, which is a GA that uses LZW compressed
chromosomes [2]. An LZWGA chromosome has to be
decompressed by an LZW decompression algorithm before
its fitness can be evaluated. LZWGA can solve very large
problem such as one-million-bit OneMax, RoyalRoad and
Trap functions.

Estimation of Distribution Algorithm (EDA) is a new
approach in evolutionary computation [3][4]. EDA models
highly-fit individuals in each generation by assuming a
particular distribution. After the model is created, EDA
generates new individuals from the model and inserts them
to the population. Modeling and generating can avoid the
disruption of partial solution resulted from genetic operations
such as crossover and mutation. EDAs include Compact
Genetic Algorithm (cGA) [5], Mutual Information
Maximization for Input Clustering (MIMIC) [6], Bayesian
Optimization Algorithm (BOA) [7], etc.

In this paper, we combine LZW compressed encoding
with cGA. cGA has an advantage of a compact
representation. A chromosome in cGA is a probability vector
which represents the whole GA's binary string population.
cGA considers all variables independently. Each item in the
probability vector represents the probability that the gene

will be 0 or 1. However, because the LZW encoded
chromosome is an integer array, we have to modified cGA to
handle the integer value.

The remainder of this paper is organized as follows.
Section II presents technical background. Section III gives
details about LZWCGA. Section IV describes the
experiments. Section V shows experimental results and
discussion. Finally, we conclude our work and suggest future
work in Section VI.

II. TECHNICAL BACKGROUND

A. Lempel-Ziv-Welch (LZW) Algorithm
The LZW is a lossless data compression algorithm [8].

The compression algorithm starts with a dictionary in which
each entry contains one character. During the compression,
the algorithm dynamically expands the dictionary and
outputs codes that refer to strings in the dictionary.
Normally, the number of bits of the code is less than that of
the variable length string in the dictionary. Data is
compressed because the algorithm replaces the whole string
with its code.

A nice property of LZW is that the dictionary does not
have to be packed with a compressed data. LZW
decompression does not require a dictionary because the
algorithm can reconstruct the dictionary while
decompressing data. When using LZW to decompress an
English text, the dictionary is initialized with all English
characters and symbols. However, when this algorithm is
used with GA, the dictionary is initialized with the number 0
and 1 because the output of the decompression algorithm
must be a binary string.

A pseudo code for LZW decompression used in LZWGA
is shown next page.

B. LZWGA
The main difference between LZWGA and GA is that an

LZWGA chromosome is in a compressed format. Therefore,
the LZWGA chromosome has to be decompressed before its
fitness can be evaluated. In [2], LZWGA is compared with
the simple GA using the same parameters except the length
of individuals (compressed vs no compression). For OneMax
problem, by using the same amount of time, the best
chromosome that simple GA can find is a little more than
half of solution fitness (LZWGA can find a solution).
LZWGA requires less memory and time to transfer data from
one generation to the next generation. For example, to solve

97

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

one-million-bit problem, each chromosome in LZWGA have
40,000 genes or 640,000 bits (40,000  16) but GA used 106

bits per each chromosome. LZWGA spends less time than
GA during genetic operations (e.g., crossover, mutation, and
reproduction). The pseudo code of LZWGA is shown below.

Algorithm LZWGA
Z create_first_generation()
repeat

P decompress(Z)
evaluate(P)
Z create_next_generation(Z)

until is_terminate()

The variable Z is the population of compressed
chromosome.

The variable P is the population of uncompressed binary
chromosomes.

The algorithm begins by creating the first generation of
compressed chromosomes. Before evaluating the fitness of a
chromosome, the compressed chromosome is decompressed
using LZW Decompression algorithm. The fitness evaluation
is performed on the uncompressed chromosome.

After that, the new population is created to replace the
old population. The algorithm repeats the process of
decompression, fitness evaluation, and creating a new
population until the termination criterion is met. The
algorithm terminates when a solution is found or a maximum
generation is reached.

Algorithm LZW Decompress
 add entries 0 and 1 to the dictionary

read one code from input to c
output str(c)

 p = c
while input are still left

read one code from input to c
if the code c is not in the dictionary

add str(p)+fc(str(p)) to the dictionary
output str(p)+fc(str(p))

else
add str(p)+fc(str(c)) to the dictionary
output str(p)

 end if
 p = c
end while

The variable c is used to store a code read from input.
The variable p is the previous value of c.
The function str(code) returns a string associated with

code.
The function fc(string) returns the first character in

string.

1) Creating the First Generation
Unlike a canonical GA, a chromosome in LZWGA is

encoded as integers. The chromosome in LZWGA is in a
compressed format. LZWGA chromosome is an array of
integer. Each integer is a code for an index of an entry in the
dictionary. Chromosomes in the first generation are created

as a random integer strings with the constraint that the ith

integer of a chromosome must not have value greater than
i+2.

For example, an LZWGA chromosome that can be
successfully decompressed is (1,2,3). The decompression
algorithm will output a binary string 111111. After
decompression, a dictionary has the entries (0,0), (1,1),
(2,11), and (3,111). Another valid chromosome is (0,1,2).
The decompression algorithm will output a binary string
0101.

If the ith integer in an LZWGA chromosome is invalid,
the dictionary look up in will be failed after the (i+l)th integer
is read. An example of an invalid chromosome is (1,3,3).
Before entering the loop, the input "1" (the 0th integer in the
chromosome) is read and the algorithm output 1. In the first
iteration, the algorithm reads "3" (the 1st integer), adds to
dictionary the string 11 at the entry 2, and outputs 11. In the
second iteration, the algorithm reads "3" (the 2nd integer), and
fail when trying to execute str("3").

In order to generate the value of the ith integer, a random
non-negative integer is modulo with i+2.

2) Decompression
Because the chromosome in LZWGA is compressed, it

has to be decompressed before its fitness evaluation. A
compressed chromosome is decompressed using LZW
decompression algorithm. The result is a binary
chromosome.

The length of the decompressed chromosome is varied. If
the length is more than the size of the problem size, the
excess bits are discarded. If the length is less than the
problem size, LZWCGA will evaluate the fitness of available
bits. After decompression, the decompressed binary string is
evaluated. A fitness of a compressed chromosome is equals
to the fitness of the decompressed chromosome.

3) Creating the Next Generation
LZWGA creates the population of the next generation by

selecting, recombining, and mutating compressed
chromosomes. A highly fit chromosome is likely to be
selected using any selection method such as tournament or
roulette-wheel selection. Compressed chromosomes can be
recombined using single-point, two-point, or uniform
crossover. Because each of these crossover methods does not
change the position of each integer, it automatically creates
valid chromosomes that each integer satisfies the constraint.
Therefore, the offspring can be decompressed. Mutation
changes an integer in uncompressed chromosome to a
random value that satisfies the constraint.

C. Compact Genetic Algorithm (cGA)

Harik et al. [5] introduced a compact genetic algorithm
(cGA). The performance of cGA is comparable to GA with
uniform crossover. cGA is a graphical representation of the
probability model of EDAs without independencies. This
algorithm uses a single probability vector to represent the
whole GA population. Therefore cGA consumes less
memory than traditional GA.

98

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

III. LZWCGA
LZWCGA combines LZWGA with cGA. cGA uses a

probability vector to represent the whole GA population. In
contrast, LZWCGA uses a probability matrix instead of a
single probability vector because LZWGA's chromosome is
an array of integer. Each column of the probability matrix is
a probability that a particular value will occurs for each gene.
An example of a probability matrix is shown in Fig. 1.

The main difference between LZWCGA and cGA are
initializing and updating the probability matrix process. The
sequence of LZWCGA process is shown below.

Step 1. Initialize the probability matrix
Step 2. Generate two individuals
Step 3. Decompress both individuals
Step 4. Evaluate both individuals
Step 5. Update the probability matrix
Step 6. Check if the probability matrix has converged or the solution is
 found, if not return to Step 2

The first step in LZWCGA is to initialize the probability
matrix. The pseudo code is shown below. The sum of the
probability in one column of the matrix is 1.

Algorithm Initialize Probability Matrix
 for i = 1 to l do
 for j = 1 to i + 1 do
 p[i][j] = 1 / (i + 1)
 end for
 end for

The variable l is length of an individual.

Then, we randomly generate two individuals a and b
from the probability matrix using the pseudo code shown
below.

Algorithm Generate Individuals
 for i = 1 to l do
 r = random()
 interval = 0
 for j = 1 to i+1 do
 interval += p[i][j]
 if (r ≤ interval)
 lzwChromosome[i] = j
 break
 end if
 end for
 end for

Next, we decompress both individuals using LZW. Then,
we evaluate their fitness. The individual with higher fitness
score is called the winner, whereas the other is called the
loser. The probability matrix is updated according to values
from winner and loser. The main idea is to increase the
probability value at the winner's position by 1/n (the variable
n is the population size) and decrease value in loser positions
by 1/n. The pseudo code for updating the probability matrix
is shown in the right column of this page.

By way of illustration, the initial probability matrix is
shown in Fig. 1. The probability matrix after updating using
values from winner and loser is shown in Fig. 2.

0.50 0.33 0.25 0.20 0.17

0.50 0.33 0.25 0.20 0.17

0.33 0.25 0.20 0.17

0.25 0.20 0.17

0.20 0.17

0.17

Figure 1. The initial probability matrix of LZWCGA
population when the length of each individual is 5

winner 0 1 2 3 5

 loser 1 0 1 0 2

0.60 0.23 0.25 0.10 0.17

0.40 0.43 0.15 0.20 0.17

0.33 0.35 0.20 0.07

0.25 0.30 0.17

0.20 0.17

0.27

Figure 2. The probability matrix after updating (population
size n is 10)

Algorithm Update Probability Matrix
 for i = 1 to l do
 indexW = winner[i]
 indexL = loser[i]
 if (indexW ≠ indexL)
 if (p[i][indexW] + (1/n) ≥ 1.0)
 p[i][indexW] = 1.0
 for j = 1 to i+1 do
 if (j ≠ indexW)
 p[i][j] = 0.0
 end if
 end for
 else
 if (p[i][indexL] - (1/n) ≤ 0.0)
 p[i][indexW] += p[i][indexL]
 p[i][indexL] = 0.0;
 else
 p[i][indexW] += (1/n)
 p[i][indexL] -= (1/n)
 end if
 end if
 end if
 end for

The last step of LZWCGA is to check whether the
probability matrix has been converged or the solution is
found. If not, the evolution process is repeated starting from
step 2.

99

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

IV. EXPERIMENTS

We conducted experiments to compare the performance
of LZWCGA and LZWGA on OneMax and Trap problems.

A. OneMax Problem
The OneMax problem [9] (or bit counting) is a widely

used problem for testing the performance of various genetic
algorithms. Formally, this problem can be described as
finding a string x={x1 , x2 , ... , x k } , where xi∈{0,1} , that
maximizes the following equation:

F x =∑
i=1

k

xi (1)

B. Trap Problem
The general k-bit trap functions [9] are defined as:

F x={ f high ;if u=k
f low−u× f low/ k−1 ; otherwise (2)

where x={0,1} , u=∑
i=1

k

xi and f high f low . Usually,

 f high is set at k and f low is set at k-1. The Trap problem

denoted by F m×k are defined as:

F m×k K1 ... K m=∑
i=1

m

F k K i  , K i∈{0,1}k (3)

The m and k are varied to produce a number of test
functions. The Trap functions fool the gradient-based
optimizers to favor zeros, but the optimal solution is
composed of all ones. The Trap function is a fundamental
unit for designing test functions that resist hill-climbing
algorithms.

C. Parameters
The parameters for both algorithms are shown in Table I

and II. The Table I shows parameters for OneMax problem.
Table II shows parameters for Trap problem. The size of
compressed chromosome is set to 4, 5 and 6 times on
OneMax and 4 times smaller than the size of a decompressed
chromosome on Trap problem. We call the ratio the
chromosome compression ratio. We compare the
performance of LZWCGA and LZWGA for various
compression ratios. LZWGA uses tournament selection
(tournament size = 4). It uses uniform crossover and does not
use mutation.

All experimental results are the average performance
obtained from 30 runs.

TABLE I. PARAMETERS OF LZWGA AND LZWCGA FOR ONEMAX
PROBLEM

Parameter Value

Population size 128, 512, 1024

Problem size (bits) 1000, 10000, 100000

Chromosome compression ratio 1/4, 1/5, 1/6 of problem size

Max generation (for LZWGA) 500

Max round (for LZWCGA) 500 x population size

Crossover rate (for LZWGA) 1

Mutation rate (for LZWGA) 0

TABLE II. PARAMETERS OF LZWGA AND LZWCGA FOR TRAP PROBLEM

Parameter Value

Population size 128, 512, 1024

Trap size 5

Total trap 100, 1000, 10000

Problem size (bits) Trap size x Total trap

Chromosome compression ratio 1/4 of problem size

Max generation (for LZWGA) 500

Max round (for LZWCGA) 500 x population size

Crossover rate (for LZWGA) 1

Mutation rate (for LZWGA) 0

V. RESULTS AND DISCUSSION

The experimental results show that LZWCGA
outperforms LZWGA on both OneMax and Trap problems
(see Fig. 3 and Fig. 4). We found that the bigger problem
size needs more fitness evaluations. Moreover, higher
compression ratio requires more fitness evaluations.

LZWGA's memory requirement depends on chromosome
length and population size while LZWCGA depends only on
chromosome length. For equal chromosome length, LZWGA
will use approximately the same amount of memory as
LZWCGA when the population size is equal to the length of
the chromosome. For example, when compressed
chromosome length is 1000, LZWGA with 1003 individuals
uses the same amount of memory as LZWCGA. (Note that
each item in an LZWGA individual is 16-bit unsigned
integer and each item in an LZWCGA matrix is 32-bit float.)

A visual representation for an LZWCGA probability
matrix is shown in Fig. 5. The X-axis represents positions in
a chromosome and the Y-axis represents probability that a
value can occur in that position. The darker area indicates
higher probability. The initial probability matrix is shown in
the first sub figure. Each column in the first sub figure has
the same shade of gray because the initial probability that
each value in each gene will occur is equal. However, during
the evolution, the probability is changed. The second, third,
fourth sub figure is a probability matrix at 10000, 20000,
30000 fitness evaluations and so on. In the last sub figure,
the probability matrix converges. Normally, LZWGA finds a

100

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

solution before the probability matrix converges. In one
experiment, LZWCGA found a solution around 35000
fitness evaluations while the probability matrix converges
around 45000 fitness evaluations.

(a) Population size is 128. The compression ratio is 1/4.

(b) Population size is 512. The compression ratio is 1/5.

(c) Population size is 1024. The compression ratio is 1/6.

Figure 3. The number of fitness evaluations of LZWCGA and
LZWGA when solving various sizes of OneMax problem.

Figure 4. The number of fitness evaluations when using
LZWCGA and LZWGA to solve Trap problem. The compression ratio is

1/4.

Figure 5. A visual representation for a probability matrix at 0,
10000, 20000, 30000, 40000, and 50000 fitness evaluations

1000 10000 100000
0

500

1000

1500

2000

2500

3000 LZWCGA 1/5
LZWGA 1/5

Problem size (bits)

N
um

be
r o

f
fit

ne
ss

 e
va

lu
at

io
ns

1000 10000 100000
0

500

1000

1500

2000

2500

3000 LZWGA 1/4
LZWCGA 1/4

Problem size (bits)

N
um

be
r o

f
fit

ne
ss

 e
va

lu
at

io
ns

1000 10000 100000
0

500

1000

1500

2000

2500

3000

3500 LZWCGA 1/6
LZWGA 1/6

Problem size (bits)

N
um

be
r

of
 fi

tn
es

s
ev

al
ua

ti
on

s

500 5000 50000
0

500
1000
1500
2000
2500
3000
3500 LZWCGA

LZWGA

Problem size (bits)

N
um

be
r

of
 fi

tn
es

s
ev

al
ua

ti
on

s

101

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

VI. CONCLUSION AND FUTURE WORK

We proposed the algorithm LZWCGA which combines
the compress encoding and probabilistic model building.
The main feature of LZWCGA is an ability to reduce the
search space which makes the algorithm find the solution
more effectively. We found that the LZWCGA's
performance is comparable to LZWGA on OneMax and
Trap problem. This result is promising because we think that
if LZW encoding is integrated with more advanced EDAs,
the performance of the new algorithm might be better than
the original LZWGA. In the future, we will improve the
update process for probability matrix and apply LZW with
more advanced EDAs such as MIMIC (Mutual Information
Maximization for Input Clustering), which can solve
combinatorial optimization problems with bivariate
dependencies.

ACKNOWLEDGEMENTS

This work was supported by Faculty of Science's Budget
for Overseas Academic Conferences (BOAC) and also
supported by Department of Computer Science, Kasetsart
University.

REFERENCES

[1] David E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Jan. 1989.

[2] Naris Kunasol, Worasait Suwannik, and Prabhas Chongstitvatana,
“Solving One-Million-Bit Problems Using LZWGA,” Proc.
International Symposium on Communications and Information
Technologies (ISCIT), Oct. 2006, pp. 32-36.

[3] Pedro Larrañaga and Jose A. Lozano, Estimation of Distribution
Algorithms A New Tool for Evolutionary Computation, Ed., Kluwer
academic publishers, Boston, 2002.

[4] Topon K. Paul and Hitoshi Iba, “Linear and Combinatorial
Optimizations by Estimation of Distribution Algorithms,” Proc. 9th

MPS Symposium on Evolutionary Computation, IPSJ, 2002.
[5] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg, “The

Compact Genetic Algorithm,” IEEE Transaction on Evolutionary
Computation, vol. 3, no. 4, Nov. 1999, pp. 287-297.

[6] Jeremy S. De Bonet, Charles L. Isbell, Jr., and, Paul Viola, “MIMIC:
Finding Optima by Estimating Probability Densities,” Advances in
Neural Information Processing Systems, vol. 9, MIT Press,
Cambridge, 1997, pp. 424-430.

[7] Martin Pelikan, David E. Goldberg, and Erick Cantù-Paz, “BOA: The
Bayesian Optimization Algorithm,” Proc. The Genetic and
Evolutionary Computation Conference (GECCO), 1999, pp. 525-532.

[8] Terry A. Welch, “A Technique for High-Performance Data
Compression,” IEEE Computer, vol. 17, no. 6, Jun. 1984, pp. 8-19.

[9] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press,
1998.

102

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

	I. Introduction
	II. Technical Background
	A. Lempel-Ziv-Welch (LZW) Algorithm
	B. LZWGA
	1) Creating the First Generation
	2) Decompression
	3) Creating the Next Generation

	C. Compact Genetic Algorithm (cGA)

	III. LZWCGA
	IV. Experiments
	A. OneMax Problem
	B. Trap Problem
	C. Parameters

	V. Results and Discussion
	VI. Conclusion and Future Work

