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Abstract—The Growing Self Organizing Map (GSOM) has 

been proposed to address the need of predefining network size 

and shape in traditional Self Organizing Maps (SOM). In the 

work described in this paper, the GSOM is used as a 

foundation for generating hierarchies of concepts in a tree 

structure which also has the ability to adapt and accumulate 

new information in an incremental learning architecture. 

GSOMs are used to capture inputs in time windows and the 

GSOM nodes are used as the base for developing the bottom 

level concepts in the tree. A new algorithm is then used to 

integrate similar information into concepts based on attribute 

similarities. As new data is introduced, new GSOMs are 

created and used to capture topological patterns which are 

integrated into the existing concept tree incrementally. The 

updated concept tree can capture multiple dimensional inputs 

with multi-parent nodes. It is proposed that this is an ideal 

building block to implement the columnar architecture in the 

human neo-cortex as an artificial model which could then be 

used as a cognitive architecture for data mining and analysis. 

The adaptive concept tree model is demonstrated with several 

benchmark data sets. 

Keywords-growing self organizing map; clustering; concept 

formation; incremental learning. 

I. INTRODUCTION 

      According to current brain theories, human intelligence 

and related factors, such as perception, language, prediction, 

all have a strong relationship to the architecture and 

structure of the neocortex. The neocortex is believed to be a 

complex biological auto-associative memory [5], where one 

of the key features is that patterns from ‘experiences’ 

(inputs) are stored in the neocortex in the form of a 

hierarchy [5]. When storing these patterns, the cortical 

region provides the group of related active cells a name, and 

this name is passed to the next higher level in the hierarchy; 

only the representation of the active cells is passed via the 

hierarchy; and when the patterns move down the hierarchy, 

the higher level concepts are broken into granular 

information [5]. The work described in this paper is based 

on this base functionality and structure of the neocortex 

resulting in a model which can capture and accumulate 

patterns from input data and also adapt to changes with 

incremental learning. In our proposed concept tree model, 

lower level represents a more detailed concept and higher 

level is about a more abstract concept. The information 

passed from a node at a lower level to a higher level of the 

tree consist of a median weight value and as such only 

abstract representative information and no detailed actual 

information is passed up the hierarchy. This ensures that 

only high level concepts are captured in the upper levels of 

the hierarchy.  

      A further key feature of the neo cortex is that patterns 

are stored in sequence and activated in sequence with 

appropriate triggering mechanisms [5]. When we recall our 

memories, we have to go through it in a sequential order. 

Although the current version of the proposed model does 

not demonstrate this functionality, the dynamic and adaptive 

architecture of the proposed model is an ideal base for 

developing such capability. This work is currently ongoing 

as the second phase of the project.  

      Mountcastle [13] believed that the structure of the 

neocortex has a columnar organization. The term column 

can be viewed as a vertical unit in which cells work 

together. And such columnar unit is the basic computation 

unit for the cortical computation. The proposed concept tree 

model is an incremental learning model, which is capable of 

continuously processing incoming data and adapting as 

required. The model has the capabilities of generating new 

columns of sub columns when the new data do not exactly 

represent past happenings.  

      The proposed model provides a basis for a larger 

artificial learning and adaptive model being planned, which 

can capture accumulate and represent data in a form suitable 

for decision making. The proposed model is inspired by the 

current research findings of the neocortex and columnar 

structure of the brain; therefore, the proposed model 

embraces some key features: hierarchical concepts 

formation, incremental learning and adaptation, columnar 

structure. The GSOM-based tree structure presented in this 

paper will form an individual column in the larger model 

with each sub child column representing sub groupings and 

concepts within each column.  

      The proposed architecture is made up of three key 

components: GSOM clustering generated input, a tree base 

hierarchy, and an incremental update mechanism to 

accommodate new inputs. Section 2 provides the 

background for the work described in the paper. The new 

model and architecture is described in detail in section 3. 

Experimental results with two benchmark data sets are 

described in Section 4. Section 5 provides concluding 

remarks. 
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II. BACKGROUND 

      Mountcastle [13] proposed that the structure and 

appearance of the neocortex is quite uniform and comprises 

columnar units that run perpendicular to the horizontal 

layers of the neocortex [13]. The term column can be 

viewed as a vertical unit in which cells work together. Such 

a columnar unit is the basic computation unit for the 

cortex’s operation. The human neocortex is described as 

being composed of several hundred millions of mini-

columns. Mountcastle [13] also suggested that a cortical 

area may belong to more than one column or sub column.  

In other words, a cortical area located in a lower hierarchical 

level may relate to more than one cortical areas in higher 

hierarchical levels. This biological feature enables us to 

relate experiences or inputs to multiple concepts. To 

accommodate such capability our proposed model enables a 

child node of a lower level to have more than one parent 

node of higher levels.  

      Hawkins [5] has also suggested some key features of the 

neocortex. For example, patterns are stored in the neocotex 

in sequence and in the form of hierarchy.  Based on his 

theory of the neocortex, Jeff Hawkins has proposed a 

Hierarchical Temporal Memory (HTM) model to capture 

such functionality based on Markov chains [10] and 

Bayesian belief propagation. These techniques are 

considered to be symbolic techniques (which deal in human 

defined abstract symbols) and it has been discussed by 

Weng [6] that emergent techniques (which can 

autonomously self-organize via past experience) are more 

suited to achieving similar functionality to the neocortex. 

Emergent models include the self-organizing techniques. 

Our proposed model is based on the GSOM [1].  

      The GSOM is an unsupervised neural network and has 

the ability to grow dynamically, the necessity for 

overcoming the major limitation of the SOM algorithm of a 

predefined map size. The GSOM algorithm facilitates 

hierarchical clustering using the Spread Factor (SF) 

parameter. With a lower SF, a more abstract map can be 

obtained whereas with a higher SF, a more detailed map can 

be obtained. In our proposed model, we use a high SF to 

obtain a very detailed map, which is the building block for 

the construction of the concept tree.  Each node produced 

from GSOM is viewed as a mini or sub column. In addition, 

each concept tree which is composed of several hierarchical 

levels generated from the proposed model, can be viewed as 

a columnar unit, and its sub trees can be viewed as sub 

columns. Earlier conceptual clustering models such as 

CLUSTER/2 [11], do not have incremental learning 

capability, in contrast, the learning of the human process of 

incremental knowledge acquisition. There are some 

incremental conceptual clustering models such as EPAM 

[3], UNIMEM [9], COBWEB [2], CLASSIT [8], which use 

different approaches to construct concept trees, however, 

they do not enable a child concept node to have more than 

one parent concept node, which means that the model 

cannot fully implement the neocortex hierarchical structure 

in which a child node in a column may have more than one 

parent node located in more than one column.  

    Lastly, incremental learning related to cognition has been 

described by Chalup [12] as the development of the brain 

functionality in three phases. Phase one is the incremental 

learning that occurs as a result of the evolutionary process 

over generations. Phase two refers to the neurodevelopment 

of the brain. This is the stage of acquiring essential abilities 

such as sensory perception and cognition. Phase three is 

about the adaptation of the neural system subject to the 

brain’s internal state and the interaction with the 

environment.  Therefore, one of the key features of the 

proposed algorithm is incremental learning. 

 

III. ADAPTIVE CONCEPT TREE MODEL 

A. GSOM 

      The GSOM algorithm has two modes, the training mode 

and testing mode. Actual growth of the network and 

smoothing out of weights occur in the training mode. In the 

testing phase final calibration of the network occurs if 

known inputs are used, and for unknown inputs the distance 

from the existing clusters in the network can be measured.    

The training mode consists of three phases. Processing in 

those three phases is as follows [1]. 

1) Initializing Phase 

a) Weight vectors for the starting nodes are initialized 

to random numbers between 0 and 1. In general, each map 

starts with four nodes.  

b) Growth Threshold (GT) is calculated for the given 

data set based on user requirements. To calculate the GT, 

the SF parameter value, which is defined prior to the 

clustering, is used. The formula is GT = -D *ln(SF);  here D 

is the dimension of the input. 

2) Growing Phase 

a) Input is presented to the network. 

b) The weight vector closest to the input vector is 

selected using a similarity measuring function. The closest 

node is considered to be the winner node. The weight vector 

adaptation takes place for the winner node and the 

neighbourhood nodes.  The amount of adaptation is based 

on the Learning rate (LR) parameter which is decreased 

exponentially over the iterations.  

c) The error value of the winner node is accumulated 

by the difference between the winner node’s weight vector 

and the weight vector of the input node.  

d) If 𝑇𝐸𝑖 > 𝐺𝑇, where 𝑇𝐸𝑖 is the total error value of 

node 𝑖 and GT is the Growth Threshold, then new nodes are 

inserted into the map if node 𝑖 is a boundary node. If node 𝑖  
is a non-boundary node, the error value is distributed to the 

neighbourhood nodes. 

e) If new nodes are added, weight vectors are 

initialized to match the neighbouring node weights and 

initialize the learning rate to the starting value. 
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f) Repeat the above steps until all inputs are 

presented to the network and the node growth is set to a 

minimum level.   

3) Smoothing Phase 

a) Reduce  the learning rate and define a small 

starting neighbourhood. 

b) Present input weight vectors then find winners and 

adapt their weight vectors and the weight vectors of the 

neighbourhood nodes in a similar way to the growing 

phase. 

      The GSOM algorithm facilitates hierarchical clustering 

using the SF parameter. SF parameter value is used for the 

GT calculation and when the SF value is low the GT 

becomes high, making new node insertion more difficult. In 

contrast, when the SF value is high the GT becomes low, 

making new node insertion easier. Because of the above 

relationship the SF parameter value controls the growth of 

the output map. Using a lower SF value a more abstract map 

can be obtained whereas using a higher SF value, a more 

detailed map can be obtained. This functionality can be used 

for hierarchical clustering of a given dataset by obtaining an 

abstract map for the first level of the hierarchy and then 

further explore the map using a higher SF value.  

Figure 1.  Overall Architecture 

B. Overall architecture  

      The proposed architecture is made of three layers, 

namely, the input layer, the GSOM layer, and the concept 

tree layer. This is illustrated in Figure 1. The input layer is 

where the input data is located. The input dataset can be 

randomly broken down into several sub datasets. If the input 

dataset contains temporal features, the input dataset can be 

broken down by temporality, such that, sub datasets can be 

organized in a sequential order to represent such 

temporality. The number of sub datasets should be at least 

two. When the input dataset has been broken down, the sub 

datasets will be processed by the model in a sequential 

order. Furthermore, the number of GSOMs located in the 

GSOM layer is the same as the number of sub datasets in 

the input layer. Each GSOM in the GSOM layer is 

responsible for processing only one sub input dataset.  

When the first sub input dataset is presented to the first 

GSOM in the GSOM layer, the output of the GSOM will be 

presented to the Concept Tree Layer to form the initial 

concept tree group. After that, the second sub input dataset 

is presented to the second GSOM in GSOM layer, and then 

the outcome of the GSOM is presented to the previous 

established initial concept tree group to form the 

incremental concept tree group. Similarly, once the sub 

input dataset has been processed by its corresponding 

GSOM, the outcome of the GSOM will be presented to 

previous established concept tree group to generate the next 

incremental concept tree group. 

C. GSOM Layer and Concept Tree Layer Architecture 

Details  

      After each GSOM is processed, it presents the clustering 

results to the bottom level of the previous existing concept 

tree group, which is illustrated in Figure 2.  The concept tree 

group is composed of three level concept trees (noted as 

Tree 1 in Figure 2), two level concept trees (noted as Tree2 

in Figure 2), and standalone nodes. A standalone node is a 

level 3 node that does not have any parent nodes at higher 

levels. Once the bottom level of the concept tree group has 

processed the input, the information will move up to higher 

levels. A higher level of the hierarchy means a more abstract 

concept than a lower level. We set the maximum number of 

the tree hierarchy to be three; however, the number of 

hierarchical levels can be set to be more than three by 

reapplying the same proposed methodology.  

Figure 2.  Concept Tree Group 

D. Incremental Concept Tree Algorithm 

1)  Constructing the Initial Concept Tree 

      Inputs are first presented to the GSOM algorithm. If the 

value difference of a specific attribute for a pair of nodes 

agrees to within a predefined value, we say that they have 

similar attribute values. We set this predefined value to be 

0.2, which is reasonable because the attribute values are 

between 0 and 1.  Speak of which, attributes’ values should 

be normalized before being presented to the algorithm. In 

addition, we say that two nodes share the same concept if a 
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predefined percentage of their attribute values are similar. In 

this paper we use a value of 80% as the predefined 

percentage. For example, if there are two GSOM nodes (N1 

and N2) with m attribute values. N1’s attribute values are 

noted as (A1,A2,…,Am), N2’s attributes values are noted as 

(B1,B2,….,Bm). If the absolute value of (Ai-Bi) is less than 

0.2 (here i = 0,1,...,m), we say that N1 and N2 share similar 

attribute values  for  the ith attribute of the input data. If N1 

and N2 share similar attribute values of more than m*20% 

attributes, we say N1 and N2 share the same concept. 

Information from the GSOM is first refined then transferred 

from the GSOM to level 3 (bottom) of the initial concept 

tree by successively merging the closest node pairs if they 

share the same concept. 

a) Genertating Parent concepts at level 2 for similar 

nodes at level 3 of the initial concept tree group  

      For developing concepts from level 3 into level 2 

(higher level), two level 3 nodes are defined to be similar if 

the Euclidean distance between the nodes is less than a 

predefined distance threshold. We set the threshold as 0.2 * 

square root of the number of attributes in the input data, 

which represents the maximum overall distance for all 

attributes.  A parent node of these nodes will be generated at 

level 2. If a node cannot find any similar node to generate a 

concept at a higher level, this node will be a standalone 

node at this level. 

  

b) Generating parent concepts at level 1 for similar 

nodes at level 2 of the initial concept tree 

      Similarity between nodes at level 2 is defined in the 

same way as at level 3. However, because level 1 parent 

nodes represent more abstract concepts than level 2 nodes, it 

is appropriate to use a wider distance threshold. We set the 

distance threshold as 0.4 * square root of the number of 

attributes of the input data. Parent nodes are created at level 

1 for groups of similar nodes at level 2. If a node at level 2 

cannot find any similar nodes to form a parent concept at 

level 1, this node will be without any parent nodes at level 

1.  

2) Incremental Learning Stage 

When the next subset of the input data being presented to its 

corresponding GSOM, GSOM output nodes are further 

refined by grouping any closet nodes with similar concepts. 

Those nodes will be treated as a series of incoming input 

nodes to level 3 of the already existing concept tree group. 

If there is no node similar to the input node at level 3 of the 

existing tree group, the input node will be placed as a 

standalone node at level 3, which is illustrated in Figure 3. 

      If the Input node can find similar nodes at level 3, if 

there is no existing parent node at level 2 able to hold all the 

child nodes, a new parent node will be created at level 2, 

which is illustrated in Figure 4. What is more, this enables a 

child node to have more than one parent node in our 

proposed model. This new node at level 2 will be treated as 

an input node to the existing level 2. A similar mechanism 

of creating a parent node for level 3’s nodes is applied to 

level 2 as well. If the most recently created node at level 2 

cannot find any similar nodes at level 2, the node will be 

added to level 2 as another node. This update will continue 

up to level 1. Details are illustrated in Figure 5, which is the 

pseudo code of the incrementally adaptive concept tree 

algorithm. 

 

 
Figure 3.   An example of a standalone node  at level 3 

 
Figure 4.  An example of generating a new parent node at level 2 

IV. EXPERIMENTAL RESULTS 

      Experiments were run on two datasets (zoo dataset [7] 

and heart disease dataset [4]) from UCI data. The zoo 

dataset is composed of 17 attributes and 101 instances, a 

majority of attributes are of Boolean type. The Heart disease 

dataset‘s attributes are either continuous or Boolean type 

with 303 instances. The two data sets were chosen to 

demonstrate the functionality of the new algorithm. The zoo 

data has been widely used to demonstrate clusters and 

hierarchical clustering due to the availability of main animal 

groups and sub groups within. It is also interesting to have 

animals such as platypus and turtle etc. and see what the 

algorithm will do with such animals. The key advantage of 

using this data set is that we can understand why certain 

animals are grouped together from general knowledge. Also 

the animal data set has been used to demonstrate the 

clustering and hierarchical clustering ability of the GSOM 

and it was the ideal data to show how such clusters are used 

as a base for concept building and also the incremental 

update of such concepts. The heart disease data was selected 

as a more realistic data set, but with attributes which also 
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has meaning to a general reader. As such it must be 

emphasized 

Figure 5.  Incremental Concept Tree Algorithm 

that the purpose at this stage is not to evaluate the accuracy 

of classification of the algorithm, but to demonstrate how 

GSOM based clusters are used as a base for multi-level 

concept building with incremental update. At this stage the 

‘meaningfulness’ and ‘explain ability’ of the concepts are 

used to evaluate the algorithm. The GSOM has been fully 

evaluated for cluster accuracy, topology preservation 

capability and processing advantages. In the following 

experiments we demonstrate that such GSOM clusters can 

then be used to develop the concepts which could then be 

updated as new data changes without losing past learning.  

      For each node of different hierarchical levels, we 

calculate the nodes’ weighted values and standard 

deviations for each attribute. These are used to identify the 

concepts in different hierarchical levels. With the zoo 

dataset, 16 attributes were used except the last attribute that 

indicates the animal’s category. With the heart disease 

dataset, null values were removed. Fourteen attributes were 

used in the experiment, including age, sex and chest pain 

type, excluding “the diagnosis of the heart disease” 

attribute. Distinct values of the excluded attribute are 0,1,2,3 

and 4, which indicate the probability of having heart 

disease. The value 0 means absence of heart disease (with 

less than 50% diameter narrowing), and the value 1,2,3 and 

4 stands for different degrees of presence of heart disease 

(with more than 50% of diameter narrowing). We used a SF 

of 0.9 to run the GSOM for any subsets of dataset to obtain 

more detailed maps.  

 

A. Zoo dataset Results 

The dataset was divided into two subsets and input to two 
GSOMs separately. Five concept trees with three levels, six 
concept trees with two levels, and six standalone nodes were 
generated from the algorithm. 

1) Three level hierachical Concept Tree 
      The input animals for each concept tree are shown in 
Figure 6. Tree 0 represent birds, tree 1 is a concept tree for 
mammals, and tree 2 represents fish. Trees 3, 4 and 5, they 
all represent reptiles and share some grandchildren (toad, 
slowworm, and newt). 
      Top level information provides a general idea about the 

most abstract concepts. The concept of a node is determined 

by each attribute’s standard deviation and weight values. 

When an attribute’s deviation value is 0, we say that all 

input instances attached to this node share the same concept, 

and such concept’s name is the attribute’s name and the 

actual value of the concept is determined by the weight 

values of the attribute. If a node has more than one attribute 

with zero standard deviation, the concept of a node is the 

collection of all these attribute’s concept.  For example, 

Figure 7 shows Tree 0’s top node’s attributes’ weight values 

and standard deviations at level 1. The highlighted attributes 

with 0 standard deviations in Figure 7 stand for the 

concepts. Animals belonging to Tree 0 share the following 

concept at level 1: they do not have hair, have feathers, can 

produce eggs, do not have teeth, have backbones, can 

breathe, do not have fins, are not venomous, have tails, have 

two legs – as such birds. 

 

 
Figure 6.  Three level Concept Tree’s input animals  
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      Child nodes inherit their parent nodes’ concepts. This is 

shown in Figure 8. Input instances belonging to Node 3 at 

level 2 not only share concepts with their parent node at 

level 1, but also share the concept that animals are not 

domestic. Similarly, node 9 at level 3 inherits its parents’ 

concepts, and input instances attached to this node also 

share two more concepts: being predator and not catsize 

(not the same size as a cat). Therefore, crow, gull, hawk and 

kiwi are predators and they are not the same size as a cat, 

they also have the concepts from parent nodes at level 1 and 

2. Some nodes at level 3 have more than one parent at level 

2 such as Node 7 at level 3. Node 7 and 13 at level 3 inherit 

the same concepts from their parent (Node 7 at level 2), but 

they differ in the concept of being domestic or not. Node 7 

and Node 8 at level 3 have the same concept inherited from 

their parent node (Node 2 at level 2), but they differ in the 

concept of being aquatic or not. 

 

 

Figure 7.  Tree 0’s Standard Deviation and Weight Values 

 
Figure 8.  Three Level Concept tree 

2) Two level concept trees 

      These are concept trees which could not be grouped with 

other nodes to form a more abstract concept at level 1. 

Figures 9 and 10 illustrate such trees related to aquatic 

creatures. When compared with the existing three level 

concept tree, Tree 2 in Figure 6, whose level 1 concept is no 

hair, no feathers, produce eggs, no milk, not airborne, 

aquatic, toothed, backbone, do not breathe, not venomous, 

fins, tails, no legs.   In Figure 9, octopus, seawasp are not 

toothed, and some animals in Figure 9 have legs; therefore, 

this is different from the concept of Tree 2 (no legs and 

toothed). Similarly, two concepts (milk and catsize) in 

Figure 10 are different from the concepts in Tree 2; 

therefore, trees in Figure 9 and 10 cannot be grouped with 

Tree 2. Figure 11 shows another category different from any 

concepts in Figure 6. Figure 12’s tree shows two animals, 

cavy and hamster that do not produce milk, however, 

animals in Tree 1 do produce milk; therefore, they are under 

different concept trees. 

 

 
Figure 9.  Two Level Concept trees with sea creature 1 

 

Figure 10.  Two Level Concept trees with sea creature 2 

3) Standalone nodes at level 3 
      Figure 13 shows standalone nodes at level.3, which are 
very different from other animals. Platypus has hair, which is 
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different from any aquatic animals having parent nodes at 

level 2 or 3.  The seasnake does not produce milk or lay 
eggs, so it is a sea creature. The fruitbat is an airborne 
mammal, so it is differs from birds. The ostrich, penguin, 
rhea and vulture are all big birds. The slug, termite, and 
worm are not predators, not toothed, and do not have a 
backbone, therefore, reptiles shown in Figure 6 are different 
from them. 

 

Figure 11.  Two Level Concept trees with insects 

 

Figure 12.  Two Level Concept Tree for cavy and hamster 

 
Figure 13.  Level 3 standalone nodes  

B. Heart Disease dataset Results 

1) Three level hierarchical trees 

      Ten concept trees with three hierarchical levels were 

created. Figure 14 shows the first level concept in each tree 

and the percentage of instances belonging to each tree that 

do not have heart disease. When people do not have anginal 

pain, more than 80 % of instances under each tree do not 

have heart disease; when people suffer from anginal pain, it 

is very likely  have heart disease (refer to  18.9% in Tree 0 

and 10.4% in Tree 2). Therefore, anginal pain is a very 

important feature in the diagnosis of heart disease. When a 

person has anginal pain and “reversable defect”, the 

probability of absence of heart disease increases if they do 

not have “graphic left hypertrophy”. When we analyse 

concepts from Tree 4 and 5, we can conclude that if people 

have anginal pain but are “asymptomatic” and “normal (no 

defect)”, their probability of having heart disease decreases 

compared with instances in Tree 0 and Tree 2. Tree 6, 7 and 

8 have 100% of absence of heart disease, showing that when 

females do not have certain symptoms (indicated in each 

Tree), they will not have heart disease. From concepts 

indicated in Tree 6, 7 and 8, we notice that they share some 

common concepts, such as female, non-anginal pain. 

 

Figure 14.   Content from the three level concept tree  

      Figure 15 shows that Tree 6, 7 and 8 share some child 

nodes at level 2. Tree 9’s level 1 concept indicates that 

people with the properties indicated in Figure 14 are more 

likely not to have heart disease, however, only about 35% of 

them do not have heart disease. The reason for this is 

explained by the concept tree as follows. Figure 16 

illustrates details of concept tree 9, in which, ‘No of Prob_0: 

1’ means the number of the instances with probability type 

(the degree of having heart disease) of 0 is one. Similarly, 

‘No of Prob_1:2’ means the number of instances with the 
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probability type of 1 is 2. Node 45 at level 3 has only one 

instance. Because of this, we only show concepts that are 

comparable to sibling nodes’ concepts. Node 45 and 64 

share the same concepts: zero fasting sugar and zero major 

vessel, but one group is male, the other group is female. Due 

to different gender, node 45 and 64 could not be grouped 

together. Instances in node 45 and 64 are all without heart 

disease, from which, we can conclude that sex is not 

significant in determining the presence of heart disease. 

However, when people do not show any symptoms of chest 

pain, normal ( no defect), zero fasting blood sugar, but have 

left hypertrophy, they are very likely to not to have heart 

disease. When we compare nodes 45 and 1, they are all 

male, but when we compare weight values of the exercise 

induced angina attribute, instances under node 1 are more 

likely to have exercise induced angina other than node 45. A 

majority of people in node 45 have a greater risk of having 

heart disease, therefore, exercise induced angina is 

significant in determining the presence of heart disease. This 

conclusion is further indicated by comparing Node 63 and 1, 

where instances are all presented with heart disease in Node 

64 when they have exercise induced angina, even with zero 

fasting blood sugar. Another conclusion that can be derived 

from Node 64 is that fasting blood sugar is not a 

deterministic feature in determining the presence of heart 

disease.  

2) Two level hierarchical tree 

      There are six trees with two hierarchical levels. One of 

the trees is illustrated in Figure 17 where instances have 

atypical angina, which differs from all level 1 concepts 

presented in the previous section; therefore, it is reasonable 

for this tree to not to be grouped with other  three 

hierarchical levels trees. As we can see from the diagram, 

when people have atypical angina, have zero fasting blood 

sugar, do not have exercise induced angina and do not have 

any defects, they are diagnosed with not having heart 

disease. 

 

Figure 15.  Trees with shared child nodes 

3) Standalone nodes at level 3  

      There are 8 standalone nodes at level 3. For example, 

Node 4 at level 3, whose concept is “graphic normal”, “non-

angina pain”, “zero fasting sugar”, and “reversible defect”. 7 

out of 8 instances have the value 1 of the attribute 

“diagnosis of heart disease”. When comparing this node 

with concepts from three level trees, Tree 1’s concept (non 

angina pain, normal graphic and no defect) is quite similar 

to Node 4. All instances in Tree 1 do not have any defect, 

which is different from the concept reversible defect in 

Node 4. That is the reason why Node 4 is not grouped with 

nodes from Tree 1.  

 

 
Figure 16.  Three Level Concept Tree For Node 9 

 
Figure 17.  Two level concept tree example 

V. CONCLUSION 

      A new model of information capture, accumulation and 

adaptation is described in this paper. The model is inspired 

by the columnar architecture of the neocortex and built 

using their key concepts and components, Growing SOMs, 

hierarchical tree structures and incremental learning. The 

paper describes initial results using two benchmarks data 

sets from the UCI repository. Although these are not time 

based data, the input data was divided into subsets and 

presented in a manner to simulate temporal inputs. The 

results demonstrate that the model is capable of capturing 

and representing multi-level concepts from the data and also 

has the ability to represent sub concepts with multiple 

parents. This provides the ability of representing a particular 

situation with multiple ‘view points’. The purpose of the 

presented experiments was not to ascertain the accuracy of 

classification of the data by the new method. The GSOM 
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has been utilized with many data sets in the past and has 

shown to be a useful data clustering and hierarchical cluster 

generation technique. In the described experiments we use 

intuitive analysis of the concepts formed by the proposed 

technique but also have validated these outcomes using past 

applications of these data sets. But the main focus was the 

concept formation and incremental update within an 

architecture based on the columnar formation of the human 

brain. Such an architecture was essential for the next stage 

of our research. The described architecture is now being 

used as the base for implementing cross columnar links and 

prediction generation. In the current proposed model (which 

is a key component of the data accumulation and integration 

model being planned), all the data attributes are processed 

by the GSOM in GSOM layer, while in the larger complete 

model, each GSOM component will process a group of 

relevant attributes, which is the subset of the whole attribute 

set of the input data. Each GSOM component at GSOM 

layer will be located in one column. Cross columnar links 

will be generated to link all columns to demonstrate the 

inner relationships between columns, which is the 

foundation for the implementation of the prediction 

functionality in future complete model. The work is ongoing 

and the base model described in the paper has provided a 

good foundation for a dynamic cognitive architecture which 

could capture sequences in data and also cross columnar 

relationships in data. 
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