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Abstract—Agent-based modelling has enjoyed a significant in-
crease in research effort in recent years. Particular efforts in
the combination of it with optimisation algorithms have allowed
the automatic generation of interesting system-level behaviors.
The vast majority of these efforts have focussed on parametric
optimisation, whereby the structure of a model remains user-
defined, and parameters are systematically calibrated. Fairly
little effort has been expended in investigations towards com-
binatorial optimisation in the context of agent-based modelling.
The author has previously shown that it is possible to combine
the use of a domain-specific language (DSL) and the multi-
stage programming paradigm to provide a platform suitable for
extension using an evolutionary algorithm. This combination was
important to allow run-time code generation, while using just-in-
time compiling. The entire process is extremely compute intensive,
but can be successfully mitigated using such a language. In this
article, three experiments are carried out using this language,
and the efficacy of this optimisation is discussed.

Keywords–Agent-based models; Optimisation; Domain-specific
languages; Multi-stage programming.

I. INTRODUCTION

Agent-based modelling (ABM) is significantly multi-
disciplinary. It has been used to describe many models which
are in essence intuitively reduced to local interactive behavior,
which compound over time to generate macro-level phenom-
ena, which are not necessarily specified [1], [2]. Such models
famously include Reynolds’ “Boids” [3], in which simple
interactive rules generate complex behavior reminiscent of
flocking birds and schooling fish. Some disciplines which have
successfully made use of ABM include medicine [4], [5],
political science [6], microbiology [7], and social science more
generally [8], [9], as well as extensively across ecology [10],
[11], [12].

Models of opinion [13], [14] are particularly well-suited to
being studied using ABM. Simple implementations of these
models are considered briefly in this article for aiding in
optimisation. These include a very simple voter model [15], the
Sznajd opinion model [14], and Axelrod’s model of cultural
dissemination [6]. These familiar models were used in this
work as a basis for automatically obtaining new opinion-based
models for accomplishing certain objectives given by scalar
objective functions.

Domain-specific Languages (DSLs) are making the use
of ABM much more streamlined. While no formal definition
exists, DSLs are essentially compiled or interpreted languages
made specifically for a small target application domain [16].
It is generally agreed that a DSL should be well defined
in terms of target domain, syntax, as well as formal, and
informal semantics [17]. Indeed, DSLs have already made way
into the field of ABM, such as the recent work of Franchi,
who presented a DSL built on Python for agent-based social

Figure 1. 64, 16x16 side-by-side recombined opinion-based lattice models
being evaluated.

network modelling [18], as well as the NetLogo modelling
environment [19]. Typically, ABM modelling packages rely
on more general purpose languages such as Java [20], [21].

An excellent method of creating DSLs while keeping
them extensible and fast [22], is the Multi-stage Programming
(MSP) paradigm [23]. MSP is particularly attractive for its
ability to avoid penalties for run-time code generation (RTCG)
[22]. An MSP-based language released recently in 2013 is
Terra [24], invented by DeVito et al. It was positioned as the
lower-level, high performance counterpart to Lua, a loosely-
typed general purpose scripting language [25], [26]. Terra
makes use of LuaJIT, which is a just-in-time (JIT) compiler for
the Lua language [27]. Terra’s implementation of MSP allows
the user to write a full compiler architecture in Lua to parse
a DSL and generate programs by splicing together Terra code
fragments, which are ultimately JIT-compiled before being
executed at will.

A DSL (code named MOL) was created using Terra, for
the purpose of agent-based model induction, and was presented
mid-2014 [28]. This language combines techniques from Gene
Expression Programming with the multi-stage paradigm of
Terra. It accomplishes this using several stages, involving a
parser, type checker, DSL-optimizer, and code generator all
written in Lua (and heavily inspired by examples distributed
with Terra [24]), with a run-time generator and finally a main
Lua program to execute the runtime.

Novelty arises from the combination of this language with
a combinatorial optimizer. Genetic Algorithms [29] operate
by evaluating a fitness function for a set of candidates in a
population [30], and subsequently the population is modified
by genetic operators to converge upon an optimal candidate.
Similarly here, a population of candidates is evaluated using
the runtime, and the main Lua program is then tasked with
using a Lua-based optimizer to manipulate candidate programs
and recompile them using the DSL compiler stack, and runtime
generator. The result of the simulation when compiled with
a user interface, is shown in Figure 1. This figure shows
multiple opinion-based models being evaluated, where each
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model differs from the next in subtle or extreme ways. The
best model would be found, and used to generate new models
which better suit the objective function provided by the user.
The language itself is capable of generating models which are
structurally different: in contrast to optimizers which generate
models with different parameters.

In the next section, related research and rationale for the
approach outlined in this research is presented. In Section III,
more detail on the DSL is provided, including its optimisation
algorithm. A methodology is then given for evaluating the
ability of the language to search through the space of agent-
based models for the purpose of inducing some new models.
Results of these are given in Section IV. A discussion is
provided in Section V. Finally, the article is concluded in
Section VI with some areas for future work.

II. RELATED RESEARCH

Previous research attempts to optimise the structure of
agent-based models using optimisation have not involved
DSLs. The recent work of Van Berkel [31], [32] in 2012
involved the use of Grammatical Evolution [33], in order to
generate NetLogo [19] programs from predetermined building
blocks. While a sophisticated approach, it did not involve
a dedicated DSL. A DSL would allow one to prototype
different approaches more quickly, rather than re-engineering
an existing code base for a different model. Moreover, run-
time interpretation of candidate solutions present a significant
performance overhead.

Junges and Klügl in 2010, investigated the problem using
learning classifier systems, Q-learning and Neural Networks
for generating behavior [34]. This was followed in 2011 by
their investigation with Genetic Programming [35]. No clear
winner among these algorithms was drawn out by the authors,
however, they did note in 2012 that Reinforcement Learning
and Genetic Programming proved to be more suitable, as they
generate human-readable results [36]. It seems appropriate in
these circumstances to allow the end-user of such an optimizer
a larger breadth of control over the algorithms, whilst still
ensuring that it is simple enough to use. This is precisely what
Multi-stage Programming allows one to accomplish.

Earlier in 2002, Privošnik developed an evolutionary opti-
mizer which evolved agents with customised finite state ma-
chines to solve the Ant Hill problem [37]. While sophisticated,
no indication was given concerning reuse of the system for
other models. The work of Junges and Klügl however, was
integrated with the SeSAm platform to provide a method
for use by other researchers [35]. While this is certainly
encouraging, the problem of severe performance inadequacies
is frequently overlooked. None of these works (except for Van
Berkel [31]) extensively consider performance difficulties.

Performance is a very significant issue, and if left un-
mitigated, can undermine even a sophisticated optimizer. The
approach taken in the method described in the next section
attempts to solve two problems. One of mitigating excessive
computation using parallelism, and the other of still allowing
simple interaction with a sophisticated optimizer. The method
described is the only known agent-based modelling language
with an embedded optimizer, which compiles without alter-
ation to both graphics processing units (GPUs) and single-
threaded code without modification. In addition, thanks to

Terra and LLVM (“low level virtual machine” compiler archi-
tecture) this approach does not suffer run-time interpretation
costs, due to generated code being compiled and executed at
run-time, for both GPU and CPU. The purpose of this work
is to demonstrate and evaluate how well this approach can
generate opinion models given a specific objective.

III. METHOD

The DSL compiler architecture introduced in Section I
involves several stages. A flow diagram is provided in Figure 2
which details the process in which special DSL code is
compiled. Part of this flow diagram is repeated during run-time,
allowing for run-time code generation (RTCG). The process
involves three distinct stages. The first is a custom compiler
architecture written in Lua, which compiles DSL code to
Terra code. Then, using multi-stage programming operators,
the Terra code is spliced into a simulation program, and finally
compiled using the usual internals of Terra, which involves
LLVM. The lattice on which the program operates is updated
by this final program exactly once, depending on what update
scheme is selected. For example, one may choose between a
Monte Carlo style update, or a red-black update style. Clearly
these involve different code structures, but fortunately, it is
notably easy to accomplish this using the MSP paradigm.

Parser

Type Checker

DSL-specific Compiler Architecture

Compile to LLVM IR

Code Generator

DSL Code

Terra

Terra Code 
Generator

Resolve DSL Library Usage

Resolve Variables

Build expressions

Build Terra Statements

Simulation Constructor

Generate n calls to agent function

Splice into new Terra function

Return Function

Compile Reset Function

Compile Frame Event Function

Pass function pointer through 
Lua to Host C++ program

Host calls function

Figure 2. A flow diagram indicating compile-time and some run-time flow.

The final compiled runtime is embedded in a Lua script,
which executes the compiled code up to tn timesteps at a time,
before (optionally) rendering the resulting simulations, and at
certain points, regenerate all programs by passing the programs
through the optimizer, and through the rest of the compiler
stack before re-executing the set of programs to obtain new
fitness values. The optimizer simply modifies specially marked
parts of the Terra expression trees, which are stored in a Lua
datastructure.

It has been previously shown that this language and ar-
chitecture is capable of compiling to NVIDIA PTX code and
fully exploit graphics card processing power [28], [38], [39].
The purpose of this article is to cast further light on the
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optimisation characteristics of the language, as opposed to its
ability to compile to different architectures. Here, the only
runtime used is the CPU-based runtime. The complete process
is summarised in the algorithm in Figure 3.

Figure 3. An algorithm describing a complete run of the system for an
optimisation test.

As shown in Figure 3, all code generated using the system
is generated as fragments of Terra, and spliced together in
various stages and various configurations. Once a monolithic
Terra function is fully generated, the Terra compiler is used
to compile the code at runtime to machine code, using LLVM
[40]. When run with the user interface enabled, the compiled
program is capable of requesting a re-draw of the simulators.
The function is emptied when the user interface is disabled.

The optimisation phase involves a simplified version of the
Gene Expression Programming (GEP) algorithm of Ferreira

[41], [42]. Whereas the GEP algorithm is designed with several
operators for circulating information throughout candidate pro-
grams, the recombination optimizer in this system is restricted
to a very simplistic minimal set of genetic operators: mutation,
crossover and selection. This is purely for convenience at this
stage, and will be subject of considerable future improvement.

GEP and the simplified algorithm used here both involve
the use of candidates represented as strings of symbols or
“codons”. It was necessary to be able to translate from a
program abstract syntax tree (AST) to a string of codons. The
method used to accomplish this is the Karva language, also
designed by Ferreira, for the use of GEP [42]. For brevity,
this language is not discussed here in great detail. The reader
is kindly referred to the excellent book on GEP by Ferreira
[42]. Karva expressions, or k-expressions, are composed of a
head section and tail section. The head-section may contain
any symbols, and the tail section may only contain terminal
symbols. Terminal symbols are effectively statements which
do not involve control flow. Non-terminal symbols correspond
to fragments of code which involve control blocks such as if -
statements. Two additional non-terminals were provided: P0
and P1. These simply execute their arguments sequentially.
P0 is of arity 2, and P1 is of arity 3.

Three experiments were carried out to cast light on the
efficacy of the modelling approach introduced here. Each
experiment involved a population of 64 simulations, each one
operated on a regular lattice of size 16 by 16. A single
evaluation of a model with respect to the objective functions
provided was obtained after 50 timesteps, and averaged over
20 (unless otherwise noted) independent runs. The maximum
number of evaluation runs (or “generations”) was set at 100
during all tests. This number was found to be empirically
adequate for obtaining meaningful results, though it would be
useful to know in future work how this algorithm behaves with
longer runs.

Furthermore, the head length of the k-expressions was
3. The update style of the lattices was two-phase with a
randomised order, ensuring that all lattice sites executed at
least once during a single timestep.

Figure 4. An excerpt from within the MOL program used in experiments.
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Figure 4 contains a fragment of MOL DSL code from
within the model code. For brevity, the rest of the model is
omitted. Several functions were implemented specially for this
model, using an extension framework. Function calls in this
code are resolved to functions written in Terra itself in the
same scope of the code. get random neighbour, however, is
a macro, written in Lua, which generates Terra code while
having direct access to environment variable references as
obtained by the parser.

IV. EXPERIMENTS

The experiments discussed in the next three sections in-
volve the same code shown in Figure 4, except for the first
line. The maximise keyword is used to indicate to the MOL
compiler that a score is to be maximised by the optimizer.
The expression in brackets, score, is essentially the objective
function. The score can be modified at any timestep by any
cell agent’s program using the special environment variable
timestep. The MOL compiler inserts a special statement in the
program, which will add the computed score to the current
simulation’s score. This accumulated score is then later passed
to the optimizer for processing.

Each experiment differs in objective function. The first
experiment attempts to recombine the Axelrod, Sznajd, and
Voter models in order to find a model which minimises the
prevailing opinions in the models. That is to say, to find a
model with homogeneous agents which converges to a single
opinion in 50 time steps. The maximum time steps for this test
was set to 50. The second experiment attempts to maximise
a cumulative score s =

∑n
i=0(oi)

−1 where oi is the number
of opinions at timestep i. The third and final model attempts
to maximise a more complicated objective function, which
involves computing the standard deviation of scores, where
each score represents a value indicating the distance from a
fully opinion-equalised model.

A. Experiment 1 – Fast Consensus
In this experiment, the objective was to minimise the

opinion count (ie. obtain consensus) within 50 timesteps.
Unlike experiments 2 and 3, this experiment minimises the
objective function. Here, the objective function is computed
as s(tn) = oi where oi is the number of opinions at timestep
i, and tn is the final timestep of the evaluation run. While the
compiler will be accumulating all values of s(t) from t0 to
tn, only s(tn) will be non-zero for this test. This automatic
accumulation is quite useful for quick fitness objectives.

The fitness plot of this experiment is shown in Figure 5.
Mean and minimum data are shown. Error bars on the mean
indicate the standard deviation of the fitness values in the
population. Interesting in this model is the fact that the first
generation of programs actually contained a program capable
of converging to roughly 4 opinions in 50 timesteps. After
approximately 65 generations, a model was generated which
could converge to two opinions in 50 timesteps. The results
for the run are statistically significant due to the averaging
occurring within every evaluation stage. However, it should
be noted that this is one sample run of the entire system, and
other runs may differ slightly. The purpose in providing sample
runs is to qualitatively compare different model structure
optimisation approaches particularly by means of different
objective functions.

Figure 5. Fitness results by generation for experiment 1.

As seen in Figure 5, search stagnation prevents the algo-
rithm from generating a model which converges to a single
opinion. This could also be due to the specification of the
model code in the optimisation structure. This is a significant
disadvantage of the MOL language. It is possible that a user
may provide insufficient information in the structure, and
therefore the optimizer can never reach an optimal result. It
is also possible that 50 timesteps is simply insufficient for
reaching consensus in the system.

B. Experiment 2 – Cumulative Fitness
Experiment 2 involves the maximisation of a cumulative

objective function, where the score is computed by succes-
sively adding the inverse of the number of opinions. Here, the
optimizer favors models which eliminate opinions as quickly
as possible; essentially related to experiment 1, except that it
is maximising a cumulative score.

Figure 6 presents the results for this sample run. As before,
each generation is averaged over 20 separate executions. The
optimizer is able to maintain a good diversity in population,
as is demanded of evolutionary algorithms such as these. Even
though very simplistic genetic operators were used, an increase
in fitness is observed from maximum fitness values. While
maximum fitness increases (albeit slowly), the mean fitness
remains approximately the same.

In similar fashion to experiment 1, Figure 6 indicates a
relatively quick improvement in fitness, which is met after
approximately 10 time steps with what appears to be search
stagnation. It is possible that the optimizer has simply reached
a set of candidates with higest fitness possible and is oscillating
between them (causing the variation towards the latter 80
generations). The first 20 frames is, however, convincing as
to the optimizer’s ability.

C. Experiment 3 – Turbulence
The third experiment attempts to induce some turbulence

by favoring models which have a high standard deviation for
a fitness value comprised of a distance to equilibrium among
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Figure 6. Fitness results by generation for experiment 2.

opinion counts. This equilibrium distance is computed by first
histogramming the number of opinions in the lattice, and then
summing the deviation of each opinion count from the number
expected in order to form an equilibrium where every opinion
has an equal share of lattice sites. This value is saved for every
time step, and a standard deviation is computed on the very
last time step, and added to the fitness score of the model
in question. The objective function is therefore the standard
deviation of the sequence:

si = oc(i, j)− (on/16
2) (1)

where i = 1..n, number of simulations is n = 64, j = 1..on,
the number of opinions is on = 32, and oc(i, j) is the number
of agents with opinion j in simulation (or candidate) i.

Figure 7. Fitness results by generation for experiment 3.

Figure 7 shows the result of this experiment as a fitness
plot by generation. The purpose of the experiment is to

determine the efficacy of the system as a whole, when dealing
with significantly more complex objective functions. Shown
in this figure is a sudden increase in fitness at approximately
generation 15, which is reminiscent of the problem of local
minima in metaheuristics [43].

To illustrate the effectiveness of the system, the best
individual generated by the optimizer will be examined. The
best program generated had a fitness score of 107, and
had the optimisation construct composed of the following k-
expression:

0 1 2 3 4 5 6 7 8 9 0
I0P0N1L0N1L0L0N0N0N2N2

For the purpose of the optimizer, the symbols are simply
defined by assigning a type, and incrementing a number.
Therefore, the first if -statement in Figure 4 is translated into
I0, the second if -statement is translated into I1 and so on,
similarly for different statements. The terminal statements are
identified by symbols which begin with N and L. P0 is a
manually inserted nonterminal, which simply executes its two
arguments sequentially.

Figure 8. The best candidate generated to optimise the objective function
provided for experiment 3. The k-expression for this code is

I0P0N1L0N1L0L0N0N0N2N2.

When interpreted, the k-expression translates into the code
shown in Figure 8. By inspection, this code does indeed
provide turbulence. It is composed of a single if statement,
which will replace the model code fragment in Figure 4 as
part of the model code. Should the condition be true, then
the randomly chosen neighbor shares the same opinion. If this
is the case, then firstly, the simulation will choose a different
neighbor, and propagate their opinion to that neighbor. Note
that in the second case, the simulation does not check the
opinion of the neighbor chosen. Should the condition be false,
it signifies that the neighbor chosen does not hold the same
opinion, and it would therefore propagate its opinion to that
neighbor.

Since the lattice update style relies on a randomised-
order update sequence between lattice timesteps, each cell is
guaranteed to execute their program in a timestep. However,
the final result does indeed depend on what order agents in the
lattice are updated. Therefore, the result of the optimisation run
may also depend on the update style. If it were a monte-carlo
style update, then not all cells may be executed, and some may
be executed twice.

The result shown in Figure 4 does indeed provide turbu-
lence in the model by attempting to guarantee that an agent will
propagate its opinion. It may be possible there is a program
which provides more turbulence, however the optimizer in
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this case was limited to three non-terminal statements in
a candidate. In this example, only two were used: an if -
statement, and a P0 statement. More complex solutions may
improve upon this fitness value, but do potentially require more
computation.

V. DISCUSSION

The three experiments conducted show that model pro-
grams can be optimised for different purposes. The model
strategy that was being investigated here assumed that the
modeller was attempting to use an optimizer to generate micro-
behaviors that they are interested in. The results appear to show
that it is indeed useful to obtain results which could be useful
in a modelling situation. Exactly how useful the results are,
would depend on the quality of the objective function, and
terminals and non-terminals, which are discussed below.

There are unfortunately some caveats which are associated
with Genetic Programming and general evolutionary algorithm
literature [44], [45]. Particularly, the choice of terminals and
nonterminals is a problem that is still applicable in the system
discussed in this article. The implications of this mean that
what is considered “optimal” by the optimizer, may in fact
be severely limited by a wrong choice in initial program.
The code shown in Figure 4 is very important, not in order
and exact syntax, but more in terms of abstract states, lattice
modifications, and state transitions. It is for this reason that
future work will likely involve the design of a second DSL,
which will handle finite state machines separately.

The optimizer also depends on the user for appropriate
selection of parameters. Like many optimisation algorithms,
a set of parameters is necessary. In the case of this system,
probabilities of mutation, crossover and selection are prede-
fined and hand calibrated. Clearly, some parameters would suit
better in different situations. By considering extreme values in
these parameters, it is easy to see how the algorithm would fail:
setting the mutation probability to zero will remove all chances
of injecting new material into the population of candidates,
and therefore only “genetic drift” will occur [42], and similar
problems will occur with the other parameters. Therefore, at
least sensible generic values are absolutely necessary.

In particular, a parameter which is of particular importance
here, pertains to the k-expressions of the candidate program
population. One must choose a suitable head length for candi-
dates, and then an expression length can be inferred from this
to ensure that all generated programs are valid. This problem
is loosely associated with the problem of avoiding code bloat
in genetic algorithms [44].

At this point then, with the limitations of this approach,
it may only be suitable to a small subset of models and
their development. This is made clearer by the demand for an
optimisation function, provided by the user. Such a function
is not easy to formulate, and in many cases, generates results
that appear to exploit a subtle flaw.

VI. CONCLUSION AND FUTURE WORK

This article has introduced a proof of concept language and
optimizer system presented in mid-2014, and provided some
experimental results to indicate its efficacy. A model was writ-
ten in this language, and a portion of “uncertain” code was also
written with simplistic implementations of the Sznajd, Axelrod

and Voter models. Three different optimisation functions were
used, in order to instruct an optimizer on how to recombine
the code given. The novelty in this approach lies in its use
of a multi-stage language which is capable of run-time code
generation using LLVM, and thereby avoiding costly run-time
interpretations of code as many evolutionary algorithms do.
Sample runs were made, and results presented in the form of
fitness by generation plots.

The first experiment’s optimisation function intended to
minimise the number of opinions in the model. While each
model was 16 cells by 16 cells, there were up to 32 opinions
and 64 candidate models in the population. A limited improve-
ment in minimum fitness was achieved. The second experiment
attempted maximisation of a cumulative fitness function. It
was intended that maximising this quantity would produce a
model that attempts to reach consensus (minimum number
of opinions) as quickly as possible. For brevity, a thorough
examination of the best individual was omitted.

The third experiment involved a more complex fitness
function, to determine how the system handles nontrivial
objective functions. In short, an improvement in fitness was
observed and the examination of the best individual provided
some insights into the optimizer’s behavior.

To conclude, the experiments appear to show a process
that would be useful in a modelling situation, albeit, a tradeoff
is presented in which the user must be able to provide a
candidate solution, as well as an objective function. The
quality of these directly influence the quality of the results,
and if not adequately specified, may not be useful at all.
These problems appear to stem from fundamental issues in the
Genetic Programming and Evolutionary Algorithm literature.

Future work on this system involves a thorough statistical
study by running the simulation on Graphical Processing Units
(GPUs), and providing robust indications of both large-scale
model optimisation, as well as small-scale mean performance.
Further improvements on the optimizer itself is also under
consideration.
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[10] J. Ferrer, C. Prats, and D. López, “Individual-based modelling: An
essential tool for microbiology,” J Biol Phys, vol. 34, 2008, pp. 19–
37.

[11] V. Grimm and S. F. Railsback, Individual-based Modeling and Ecology.
Princeton University Press, 2005.

[12] D. Helbing and S. Balietti, “How to do agent-based simulations in the
future: From modeling social mechanisms to emergent phenomena and
interactive systems design,” Santa Fe Institute, Tech. Rep., 2011.

[13] K. Kacperski et al., “Opinion formation model with strong leader
and external impact: a mean field approach,” Physica A: Statistical
Mechanics and its Applications, vol. 269, no. 2, 1999, pp. 511–526.

[14] K. Sznajd-Weron and J. Sznajd, “Opinion evolution in closed commu-
nity,” International Journal of Modern Physics C, vol. 11, no. 06, 2000,
pp. 1157–1165.

[15] T. M. Liggett, Stochastic interacting systems: contact, voter and exclu-
sion processes. Springer, 1999, vol. 324.

[16] D. Spinellis, “Notable design patterns for domain-specific languages,”
Journal of Systems and Software, vol. 56, 2008, pp. 91–99.

[17] W. Taha, “Domain-specific languages,” in Pro. Int. Conf. Computer
Engineering and Systems (ICCES ), 25-27 November 2008, pp. xxiii –
xxviii.

[18] E. Franchi, “A domain specific language approach for agent-based
social network modeling,” in IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 2012, pp. 607–612.

[19] S. Tisue and U. Wilensky, “NetLogo: A simple environment for mod-
eling complexity,” in International Conference on Complex Systems,
2004, pp. 16–21.

[20] N. Collier, “Repast: An extensible framework for agent simulation,”
Social Science Research Computing, University of Chicago, Tech. Rep.,
2003.

[21] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan,
“MASON: A multiagent simulation environment,” Simulation, vol. 81,
2005, pp. 517–527.

[22] W. Taha, “A gentle introduction to multi-stage programming,” in
Domain-Specific Program Generation. Springer, 2004, pp. 30–50.

[23] W. Taha and T. Sheard, “Multi-stage programming with explicit anno-
tations,” in ACM SIGPLAN Notices, vol. 32, no. 12. ACM, 1997, pp.
203–217.

[24] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek, “Terra: a
multi-stage language for high-performance computing.” in PLDI, 2013,
pp. 105–116.

[25] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The evolution
of Lua,” in Proceedings of the third ACM SIGPLAN conference on
History of programming languages. ACM, 2007, pp. 2–1–2–26.

[26] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua: An
extensible extension language,” Software: Practice and Experience,
vol. 26, 1996, pp. 635–652.

[27] M. Pall, “The luajit project,” 2008. [Online]. Available: www.luajit.org
[28] A. V. Husselmann, “Data-parallel structural optimisation in agent-based

modelling,” Ph.D. dissertation, Massey University, 2014.
[29] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor:

University of Michigan Press, 1975.
[30] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine

Learning. Addison-Wesley Publishing Company Inc, 1989.
[31] S. van Berkel, “Automatic discovery of distributed algorithms for large-

scale systems,” Master’s thesis, Delft University of Technology, 2012.
[32] S. van Berkel, D. Turi, A. Pruteanu, and S. Dulman, “Automatic

discovery of algorithms for multi-agent systems,” in Proceedings of
the fourteenth international conference on Genetic and evolutionary
computation conference companion, July 2012, pp. 337–334.

[33] C. Ryan, J. Collins, and M. O’Neill, “Grammatical evolution: Evolving
programs for an arbitrary language,” in Proceedings of the First Euro-
pean Workshop on Genetic Programming, ser. LNCS, vol. 1391. Paris:
Springer-Verlag, April 1998, pp. 83–95.
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