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Abstract Advanced Cognitive Technologies can use cognitive 

architectures as a basis for higher level reasoning in Artificial 

Intelligence (AI). Adaptive Control of Thought – Rational 

(ACT-R) is one such cognitive architecture that attempts to 

replicate aspects of human thought and reasoning. The research 

reported in this paper has developed an enhancement to ACT-

R that will  allow greater understanding of the environment the 

AI is situated in. Former research has shown that humans 

perform simple mental simulations to predict the outcomes of 

events when faced with complex physical problems. Inspired by 

this, the research reported here has developed Predictive ACT-
R (PACT-R), based upon integrating a three dimensional (3D) 

simulation of the AI’s environment to allow it to predict, reason 

about, and then act on, what is happening, or about to happen, 

in its environment. Here, it is demonstrated by application in an 

autonomous squash player that the predictive version of ACT-

R achieves significantly improved performance compared with 

the non-predictive version.  
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I. INTRODUCTION 

What do you do if you are asked to catch a ball that has 
been thrown in the air? You make a quick estimate of its 
trajectory, predict where you need to be to intercept it, and 
then move to that location. What about if it is going to bounce 
off a surface? Although there is now a little uncertainty, if you 
don’t know the properties of the ball and surface, it is, 
nevertheless, not much more difficult to make a good enough 
prediction and correct for any errors after the bounce. What 
about if the ball has to bounce several times before you reach 
it? Now, you are more likely to start looking at the likely chain 
of events that will occur to predict the outcomes. 

How could a cognitive robot – that is, a robot endowed 
with deliberative problem-solving – track and interact with a 
fast moving ball or object in a complex environment? How 
could a robot interact or take actions in a dynamic situation? 

Artificial Intelligence (AI) in robotics commonly uses 
either an algorithmic approach, that is, a custom solution to a 
specific problem [1], or subsumption-like architectures that 
react to the world as it is perceived [2]. The algorithmic 
approach is effective for well-understood problems with little 
variation, but it is not so good at responding to the unexpected. 
Subsumption follows a ‘stimulus and response’ model. It is 
good at dealing with immediate problems, like avoiding 
obstacles, but can be lacking when it comes to a multi-stage 
mission that may require evaluation and decision-making over 
several alternative sequences of actions. Cognitive 
architectures have been proposed as an alternative that could 
be more suitable for accomplishing missions that require 
sequences of decisions, rather than more purely reactive 
associations between sensor inputs and motor outputs. 

The American Physiological Association defines 
cognition as, “Processes of knowing, including attending, 
remembering, and reasoning; also the content of the 
processes, such as concepts and memories.” Cognitive 
architectures are based on theories of how the human mind 
reasons to solve problems. They are used to create AIs based 
on, or inspired by, human cognitive processes that work 
through problems in a systematic way [3]. They are based on 
a Computational Theory of Mind, which holds that the mind 
works like a computer, using logic and symbolic information 
to work through, and solve, problems. Symbolic information 
is, in a programming context, a textual/verbal approach to 
representing knowledge in a way that is abstracted from 
sensory data, since the relationships between words and their 
referents are conventional. This abstraction supports 
potentially complex symbolic reasoning processes, but omits 
much detailed information about objects and phenomena that 
the symbols refer to in a given context. 

Hence cognitive architectures, like other approaches to AI, 
have their own limitations. For example, they are similar to 
expert systems [4][5][6] in using facts and production rules 
that require a human expert to create. They are strong at 
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symbolic reasoning with logic, but the ontological status of 
symbols within human cognition is unclear [7], and the 
biological foundations of human cognition are very different 
from the nature of expert systems and formal logics [8]. In 
particular, expert systems and formal logics are technologies, 
i.e., inventions of human cognition, rather than its basis. They 
may, nevertheless, be useful and even powerful 
representations of some human capabilities that are based 
upon much lower level biological mechanisms. 

An aspect of human cognition that is not captured in most 
cognitive architectures is simulation. Imagination, and the use 
of imagined visualisations, constitutes a conscious result of 
simulation within human cognition. An example of the use of 
simulation in an artificial cognitive system is the Intuitive 
Physics Engine (IPE), which uses simulation to understand 
scenes [7]. This method uses a fast approximate simulation to 
make a prediction of the outcome of a physical event or action, 
like the toppling of a stack of blocks.  

In synthesizing a world, simulation provides a cognitive 
system with the richness of a sensed world, with far more 
detail than that which can easily be captured in higher level 
symbolic world descriptions alone. Simulating a 3D world and 
aspects of its physics involves using mathematical models of 
world structure, kinematics, dynamics and object interactions 
in which complex behaviours can be synthesized from a 
relatively small set of structural and physical equations. The 
quantisation of space and time in a simulation can be 
represented, e.g., to double floating point precision, resulting 
in an extremely large space of possible simulated world states 
and histories. The level of abstraction involved in declarative 
or symbolic representations is usually much higher than a 
simulated world state description, since it is expressed at a 
level suitable to specific decision processes, meaning that 
many simulation states can be compatible with a single 
declarative representation. That is, a declarative statement can 
provide a succinct and abstracted representation of a large set 
of world state denotations. For example the first order 
predicate ‘is_above(A,B)’ can apply to any object in a 
simulation that is above another object. But to represent all of 
those possible individual denotations (every possible situation 
and variation of positions in which one object is above 
another) declaratively would be practically impossible. The 
declarative level of decision processing can be linked to the 
simulation state, e.g. via spatiotemporal operators linked to 
the simulation structure, such as testing for the relative 3D 
positions and sizes of objects A and B as a basis for assigning 
a truth value to the statement ‘is_above(A,B)’. Hence there is 
a useful balance between what can be represented and 
reasoned about most effectively using declarative 
representations, and the large number of potential states 
having small differences represented by a simulation. These 
are complementary modeling methods. This paper describes 
an experiment designed and implemented to further test the 
theory that simulation is a powerful component of cognition. 
The motivating research question asked was: “How can 
simulation and prediction improve decision quality in a 
cognitive architecture?” In the experiment designed to address 
this question, a predictive module was added to a cognitive 
architecture, and the performance of the predictive and non-

predictive versions of the architecture were tested for 
controlling automated players of a virtual game. The 
predictive module used a 3D physics simulation engine to 
model the environment of an embodied AI, so that it could 
function in a dynamic situation without explicit coding of 
decision rules for all possible interactions in the environment. 
The simulation engine mathematically models interactions 
with the environment so that the cognitive module can handle 
physical events and actions with a reduced and simplified rule 
set. 

An existing cognitive architecture, Adaptive Control of 
Thought – Rational (ACT-R) [10][11][12], was chosen for the 
research and extended with a novel predictive module. Two 
virtual robots were implemented to play a competitive game 
of squash (Figure 1). Squash is a racket and ball sport played 
in an enclosed room between two players. It was chosen 
because it provides both a physics challenge (tracking and 
hitting the ball), and a cognitive challenge (playing a good 
tactical game to out-manoeuver an opponent).  

 

 

Figure 1.  Squash Simulation showing AI controlled players and ball path 
(grey track). 

Squash is a racquet sport played in a closed room between 
two players. The ball is free to bounce around the walls, and a 
player is free to hit the ball against any wall as long as it 
reaches the front wall before its second bounce on the floor. 
The opponent also has to reach the ball and play a shot before 
the second bounce.  

The game has been described as physical chess, since it is 
both physically demanding and highly tactical. The physical 
challenge is a result of the continuous explosive acceleration 
needed to react to, and retrieve, an opponent’s shot. 

The tactical element of the game plays out in the shot 
selection and how this can be used to apply pressure to the 
opponent. When deciding when and where to hit the ball the 
player is faced with many choices. Do they take the ball early 
before it reaches a wall? Do they wait and give themselves 
more time to play a better shot, but also give the opponent 
more time to move to a stronger court position? Is a shot to 
the front of the court the right shot? It puts the opponent under 
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more physical pressure, but if they reach it with a bit of time 
to spare it opens up a lot of attacking shots.  

Squash is also a game of angles, much like a real-time 
game of snooker. Judging and playing the angles is an 
important part of the game. 

Using squash as the test scenario provides a known rule 
set for the game and existing tactical knowledge for 
implementing the AI models.  

Two predictive elements were added to the existing ACT-
R architecture. The predictive module always provided a 
prediction of the ball’s flight path for the purpose of 
intercepting and hitting the ball. A further predictive element 
was added that allowed the AI model to evaluate its own 
possible actions with a simulation to determine the likely 
outcome of those actions. Essentially, the model was able to 
ask very simple “what if?” questions about how its own 
actions might play out in the future. Performance change due 
to the ability to simulate and predict actions was the metric for 
answering the research question. 

The cognitive models implemented included three 
different mechanisms for choosing shots to play during a 
game of squash: 1) a pure random shot selection to act as a 
base control model; 2) a model that used rules to implement a 
shot selection heuristic; and 3) a model that used simulation 
to predict shot outcomes before selecting a shot type. 

The models were evaluated by playing them against one 
another. Data gathered from the squash play/simulation 
sessions recorded detailed information about shot selection, 
allowing analysis of the behaviour of the models and the 
effectiveness of their respective shot selection methods.  

Section II, of this paper, gives some background to 
cognitive and non-cognitive architectures. In Section III a 
description of the research undertaken and methodology used 
is given. Section IV describes the AI modelling and how 
prediction was incorporated. Section V discusses the results 
obtained. 

II. COGNITIVE AND NON-COGNITIVE ARCHITECTURES 

Cognitive architectures are based on theories of how the 
human mind reasons to solve problems. These are AI systems 
based on human cognitive processes that work through 
problems in a systematic way [3]. They are based on the 
Computational Theory of Mind [13], that proposes that the 
mind works like a computer running a program, using logic 
and symbolic information, to work through, and solve, 
problems.  

The cognitivist approach follows a rule-based 
manipulation of symbols, and uses patterns of symbols, as 
designed by humans, to represent the world [14]. A key 
characteristic is that the mapping of perceived objects to their 
associated symbols is either defined by humans, or learned in 
a way that can be viewed and interpreted by humans. 
Decisions about which actions to perform are derived by 
processing of the internal symbolic representations of the 
world. 

The ACT-R cognitive architecture is described in detail 

below. Laird et al. describe the adaptation of the SOAR 
cognitive architecture to robot control [15]. For the robotic 
control task, SOAR was extended to include mental imagery, 

episodic and semantic memory, reinforcement learning, and 
continuous model learning; it also incorporates a 

simultaneous localisation and mapping (SLAM) module. 
SOAR includes procedural memory encoded as production 
rules, and semantic memory implemented as declarative 

associations. It uses both symbolic and non-symbolic 
representations. A number of architectures similar to SOAR 

and ACT-R are reviewed in [16]. [17] take an alternative 
approach to cognitive architecture for robotics, proposing a 
content-based approach that overcomes the symbol 

grounding problem by matching perception and sensor data 
to extensive cloud-based and annotated repositories of 
images, video, 3D models, etc.. 

Most operational robots do not use cognitive architectures. 
Instead, traditional robotic research and control has focused 
on software solutions that solve problems  having well 
formulated solutions; this can be referred to as the algorithmic 
approach [1]. These systems are particularly suited to well-
defined tasks and domains, and form a foundation for robotic 
capabilities. However, there is a need for higher level 
cognitive abilities to deal with less well defined problem 
solving and uncertain situations where the scope for 
variability is not sufficiently understood or is too complex, for 
the development of algorithmic solutions. It is in these 
situations that cognitive architectures might provide an 
effective solution. 

The subsumption architecture is another alternative to 
cognitive architectures for robot control. The subsumption 
architecture approaches intelligence from a different 
perspective. Rather than rules that lay out a series of steps to 
accomplish a task, it uses a very sparse rule set that responds 
to sensor values to generate control outputs [18][19][20]. 
Brooks describes subsumption as a layered finite state 
machine where low-level functions, like “avoid obstacles”, 
are subsumed into higher-level functions, like “wander” and 
“explore”. Each successive layer gives increasing levels of 
competences. Lower levels pre-empt the higher levels, such 
that a robot can explore, but will avoid obstacles when 
necessary. 

Key aspects of subsumption are: that it contains no high 
level declarative representations of knowledge; no declarative 
symbolic processing; no expert systems or rule matching; and 
it does not contain a problem-solving or learning module [2]. 
It responds to the world by reacting directly to sensor inputs, 
in order to generate corresponding control outputs. So in a 
canonical subsumption architecture, there is no inherent 
mechanism for problem-solving in an algorithmic way. 

Subsumption can be very powerful. It is based on the 
concept that the environment stands for itself, i.e., the 
architecture reacts directly to environmental features, without 
a mediating representation. It is a functional architecture 
without being, or using, a declarative model of the external 
world. However, without additional features, like memory and 
goals, it is not as straight forward to implement a mission-
orientated task as it would be in a production rule based 
architecture. Hence these different approaches are 
complementary: the concepts behind subsumption –a layered 
set of rules implemented as a finite state machine– are not 
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difficult to implement, and could be easily incorporated into 
other cognitive architectures. 

Society of Mind proposes a theory that intelligence arises 
from the interactions of large numbers of simple functions 
[21][22]. This is not an actual architecture, but rather a theory 
[23] that argues against the idea that a single unified 
architecture or solution can account for intelligent behaviour. 

A robotic AI can be created completely within a single 
architecture, using rules that control every aspect of the 
decision making process, but those architectures are not 
always ideal for every style of decision-making.  Society of 
Mind theory argues for a modular approach to implementing 
an intelligence. Implementing simulation as an extension to a 
cognitive architecture, but using an external 3D engine to 
model the environment, follows this concept. The simulation 
is a separate, specialised function for solving problems in 
dynamic physical situations. 

ACT-R is a hybrid cognitive architecture consisting of 
both symbolic and sub-symbolic components [24][25]. It is a 
goal-orientated architecture. The symbolic data consists of 
facts and production rules. The sub-symbolic data is metadata 
about facts and production rules that control which facts are 
recalled and which production rules are chosen to fire when 
multiple facts and rules are available. 

ACT-R consists of a number of modules that interact 
through a production system that selects rules to execute, 
(Figure 2). Each module has a buffer, which can hold a chunk 
of data (a key/value pair structure) representing the current 
state of that module.  

The matching system looks for patterns in the buffers that 
it can use to select a production rule to potentially fire from 
amongst those available. Each production rule includes a 
pattern that gives the conditions under which it can fire. 
Production rules can make requests of the modules, so they 
can change their own internal state. 

 

 
Figure 2.  ACT-R structure – modules, buffers and production system. 

III. METHODOLOGY 

This section describes the research design, and the 
implementation of the prediction and simulation extensions to 
ACT-R to constitute the Predictive-ACT-R (PACT-R) 
architecture.  

A. Research Design 

The research consisted of developing and implementing a 
virtual environment for testing; developing a cognitive 
module that implemented the simulation-based cognition 
system; and developing AI models to test the system. 

An ACT-R cognitive module was developed that mapped 
a symbolic representation of a simulated environment into the 
ACT-R framework. This module gave the required PACT-R 
functionality for interpreting and acting within the 
environment, as well as providing simple predictive 
capabilities using simulation. 

The use of prediction and simulation in ACT-R was 
evaluated by comparing the performance of several models 
that each implemented different levels of prediction. The aim 
was to compare not only their performance, but also how 
easy/simple it was to model and use a predictive AI. 

B. Implementation 

The system implementation consisted of three 
components. The first was the design and implementation of 
a cognitive module within ACT-R. This predictive module 
gave models access to predictions about physical events, as 
well as a mechanism to take actions. 

The second element was a simulation of the game of 
squash implemented in the Unity™ game engine.  Parts of the 
PACT-R module were also implemented with Unity™, and 
communicated with the prediction module in PACT-R. The 
Unity™ components of ACT-R were the physics simulation 
and prediction engine. 

The final element was modelling squash-playing AIs. 
Three evaluation models were developed for testing and 
cross-comparison. 

C. Using Simulation and Prediction within a Cognitive 
Architecture  

The research investigated the use of a physics engine to 
provide prediction for a cognitive architecture. The concept 
requires a physics engine that can model and simulate the 
environment of a robot controlled by a cognitive AI. The 
simulation provides a symbolic representation of the 
environment to a cognitive architecture. This gives the 
cognitive model (the production rules) the information it 
needs to understand and act within its  environment. 

One way of using this information is to explicitly encode 
rules that check for certain conditions, for example, whether 
an object is in a certain position, or is moving in a particular 
direction; or for the relationships between objects in the 
environment, for example, whether an object is to the left of 
another object [17][26]. From this, the rules can encode 
appropriate actions for the robot to take. 

This research explored an alternative approach. Rather 
than using explicit rules to interpret and decide actions, a 
simulation of the environment was used to test actions. Figure 
3 shows a high-level diagram of this approach. An 
environment was modelled in the physics engine that provided 
a squash environment and state information to a cognitive 
model. From the information available, the cognitive model 
can determine what actions might be appropriate. Rather than 
determining the best, with rules, it passes the choices back to 
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the physics engine to be simulated, which then generates a 
prediction of the outcome of that action. The results of each 
prediction are passed back to the cognitive model, which then 
decides which one is the most appropriate, and will therefore 
be used.  
 

 
Figure 3.  Overview of PACT-R concept, environment is modelled and 

simulated actions are tested under the control of a cognitive model. 

D. PACT-R Module Implementation in ACT-R 

The prediction system is implemented as an ACT-R 
module that both controls a robot and does a simulation of the 
robot’s environment, for the purpose of interpreting what is 
happening in that environment. The module is, logically, a 
single system, but in the implementation it is broken into two 
functional parts: one residing in the ACT-R framework, and 
the other inside the Unity™ game engine, which includes a 
physics engine and also hosts the virtual world the robots exist 
in (Figure 4).  
 

 
Figure 4.  PACT-R (in red) within the ACT-R and Unity. 

The ACT-R component of the system maintains the 
current simulation and prediction state for use by the AI 
models, while the Unity™ component of the system contains 
a customised physics engine that can simulate both the squash 

ball’s path, and the outcome of shots played by the robot. The 
two components of the module connect via a Universal 
Datagram Protocol (UDP), a standard part of the Internet 
Protocol (IP).  

For PACT-R, the cognitive module represents implicit 
knowledge of the sort that a squash player learns over many 
years. Part of this implicit knowledge is the muscle memory 
that allows a player to move correctly and hit a ball properly. 
Another part is an implicit understanding of the tactical 
situation. Coding this implicit knowledge into an AI model 
would be difficult and counterproductive. A squash player 
does not think about this, but rather uses it as a base to decide 
what they should do next. Essentially, the difference resides 
between ‘how do you do something?’ and ‘what you should 
do?’. Implicit knowledge encodes the ‘how’, while the 
simulation provides a basis for deciding ‘what’. 

The PACT-R module has to work through ACT-R 
modules and buffers. The extended prediction module is, 
therefore, implemented as an additional cognitive module that 
provides two buffers, one that commands are sent to, and the 
other that gives the model access to a simplified view of the 
environment. The prediction module communicates with the 
simulation engine to both receive predictions and to request 
predictions based on possible actions of the AI model. Figure 
4 shows the modified ACT-R framework with the additional 
prediction module. 

IV. AI MODELLING AND PREDICTION 

This section presents the outline of the AI models at a 
conceptual level, rather than dealing with the details of 
modelling them in ACT-R. Then, the implementation of the 
prediction module in ACT-R is presented, together with its 
interactions with the AI models, followed, by a description of 
the evaluation and analysis framework for these models. 

A. Prediction Models 

The simulated task, playing squash, that the AI has to 
perform is dynamic; the ball is in continuous motion, and can 
follow complex paths as it interacts with the walls and floor. 

Likewise, the AI’s robotic avatar is moving, as is the 
opponent.  

ACT-R is designed to look for, and respond to, patterns in 
information in its buffers. The buffers hold information 
representing both the external world, and the AI model’s 
internal state. ACT-R can work with values and do simple 
comparisons, but doing complex calculations and 
relationships is not its  forte (although it is possible to call Lisp 
functions if required). Ideally, the modules should do the hard 
work of breaking a situation into a simple symbolic 
representation that the AI model can reason about, by 
searching for patterns and relationships. 

For a complex dynamic situation this may present a 
problem, since an AI model requires deliberation (i.e., 
“thinking”) time. That is, it needs time to recognise a pattern 
and fire a production for the situation the pattern represents. 
For a dynamic situation, by the time a pattern has been 
recognised and acted upon, the situation may have already 
changed to something different. 
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The simulation-based module described here abstracts 
away the details of the environment into a simple set of 
relationships and events representing the elements in the 
scene. This abstraction is highly domain specific; in the 
implemented PACT-R, the abstraction focuses on the 
specifics of the game of squash. 

For squash, PACT-R identifies three actors: self, opponent 
and ball. The module provides the AI model with information 
about the approximate locations of these actors within the 
squash court and information about what is happening, is 
about to happen, or what might happen. Conspicuously absent 
from the information is real coordinates and vectors of motion. 
While ACT-R can work with this sort of information, it would 
lead to a set of rules with a lot of spatial relationship 
calculations and conditions that might not be processed 
rapidly enough for real-time performance.  

For this research, a baseline capability of the prediction 
module included a prediction about the immediate known ball 
flight path that the AI model could use to intercept the ball, at 
an appropriate court position, in order to play a shot. This 
prediction was made following the opponents shot when the 
ball’s position and velocity could be determined. The ball’s 
path was simulated in the physics engine, which tracked 
where the ball would travel as it bounced against the walls and 
floor. The path was calculated until it was determined that the 
ball would have bounced on the floor for a second time. This 
projected ball path was then used in the prediction module to 
determine locations where the player could intercept and hit 
the ball, based on their own movement ability. 

The intercept positions were placed in the prediction 
module buffer used by the AI model, which allowed the 
models to intercept the ball without any further processing. 
The intercept position could have been under AI control, but 
this would have introduced more complexity to the modelling 
and introduced more independent variables to the test, making 
it difficult to determine cause and effect. For this reason, AI 
control and reasoning was limited only to the shot selection 
strategy. 

To know where the ball and the player were within the 
squash court, the squash court was broken into strategic zones 
and all positions were given zone numbers. The squash 
strategy implemented in the models was also based on zones, 
with a limited selection of shots available for each zone. The 
AI models selected a shot from those available in the zone 
where the ball was intercepted. The zones and shots are based 
on squash training drills commonly used to teach players basic 
strategy. 

B. Evaluation and Analysis 

Three models were developed and evaluated. The first 
model was a basic random shot selection model that 
functioned as the base line to determine whether shot selection 
by the other models was better than random chance. 

The second model was a heuristic model that had an 
explicit shot selection rule-set derived from the human 
developer’s experience of playing squash. This model’s 
purpose was to provide an alternative method to the prediction 
model. 

The third model used the predictive features of PACT-R 
to test shots for their likely outcome.  

In order to evaluate the performance of the three models, 
a large amount of automatic data gathering and logging was 
conducted from the virtual environment. This data gave both 
comparative performance of the models, and an insight into 
how they won or lost. 

The data collected from the experiment was the result of 
player to player rallies between two competing AI models. 
The models were tested over a large number of rallies to 
produce data for a statistical analysis of the relative 
performance of the models. 

For each test session the only variables were the shot 
selection strategies of the two competing AI models. 

Test sessions consisted of two AI models (out of three) 
loaded into the ACT-R environment, playing against each 
other over a series of rallies. A rally is where the two players 
alternate shots until one is unable to retrieve or return the shot, 
and therefore loses. Data recorded included shot selection and 
state during the rally, and the final results of each rally. This 
was repeated for a fixed time (from three to eight hours) to 
generate a large sample set of data. 

Squash starts with a serve from one player to another. For 
a test run, the serve was alternated so there was no bias or 
advantage to either model. Player 1 always s tarted on the 
forehand side (right), and player 2 on the backhand. The 
players were ambidextrous with no advantage to either side 
(unlike human squash players). 

V. RESULTS AND DISCUSSION 

The three models discussed here all follow the same base 
strategy. They have to choose from three or four shots 
available for the zone where the ball is to be hit. The basic 
model did not use any additional logic to choose a shot. The 
other two models tried to choose a shot that would force the 
opponent to have to travel the furthest to reach the ball in order 
to play their next shot. 

A. Basic Random Shot Selection Model 

The first AI model developed was a random shot selection 
model. This created a setup with three or four equally possible 
shots for each court zone for ACT-R to choose with its 
production rules. With no additional conditions in the rules, 
other than the court zone, a shot would be chosen at random 
from those available. 

This model acted as a baseline control. It was also the only 
model used during development and balancing of the 
simulation and physics engine. 

B. Heuristic Selection Model 

The second model was a heuristic model that used ACT-
R production rules that implemented a simple squash strategy, 
which tried to choose shots that would be directed to an area 
of the court where the opponent was not present. For example, 
if the opponent was deep in the court (i.e. close to the front 
wall of the court), it would favour a short shot; and if the 
opponent was on the forehand side, it would favour a 
backhand shot. Shot selection rules for each zone were 
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implemented using this simple strategy. In real squash, this 
approach is a good starting point for any human player. 

Figure 5 is a flow chart representation of part of the 
heuristic model, although it only shows one shot selection 
choice, rather than the many that were required to model shots 
for all court zones. It should be noted that for ACT-R 
production rules, matching and firing does not proceed in a 
step-by-step fashion like a flow chart. The flow chart 
representation is used to show the logic, rather than the 
functioning of the models. 
 

 
 
(p take-shot-z22-z23-StHi-OpSh 
    =goal> 
      ISA playing-mode 
      state    2      ; play mode 
    ?command> 
      state free 
    =predictive> ; PACT-R module 
      ISA predictive-state ; correct chunk type 
      special 5 ; shot selection mode 
      > intercept-zone-width 1 ; position wide 
      intercept-zone-depth 2 ; position mide 
      > op-zone-depth 2  ; op at front of court 
    ==> 
    +command> 
      ISA command-packet 
      req-cmd     4       ; Set Shot to play 
      :req-param  51      ; Long High Straight 
  ) 

Figure 5.  Heuristic AI shot selection model flow chart and an example 
rule showing a single zone selection. 

Each diamond and rectangle pair in Figure 5 corresponds 
to a production rule. The heuristic model consisted of 45 
production rules for shot selection, plus another 5 to 
implement the functionality required for starting and ending a 
rally, and for returning to a central court position when not 
returning a shot. 

C. Predictive Selection Model 

The third AI model was the predictive model. The random 
and heuristic models both had access to a prediction of the 
balls’ path that they could use to determine where to go to hit 
the ball, and, consequently, what shots they should be playing, 
based on where the shot was to be taken.  

The predictive model went a step further in predicting the 
outcome of shots the AI model might take. This was done by 

allowing the AI model to choose a possible shot before 
passing that information to the prediction module for 
simulating and predicting its consequences. The module 
would simulate how the shot would play out to predict where 
the opponent would be when the shot was played, and how 
much difficulty they would have in then retrieving it and 
playing a counter shot. The prediction was based on the same 
strategy as the heuristic model, trying to find a shot that was 
as far from the opponent as possible. 

The prediction system has one advantage over the 
heuristic: as it is calculating the path of the shot under test, it 
sometimes found situations it could not solve for the opponent 
to intercept with the ball. In essence, it had found winning 
shots that the opponent could not return. This result was 
passed back to the AI, which allowed the predictive model to 
find, and choose, these occasional winning shots. 

Figure 6 shows the prediction model as a flowchart, and a 
sample rule. Unlike the heuristic model’s 45 rules, this model 
only requires 26 rules for shot selection. Each rule defines a 
shot to be tested for a particular zone of the court.  
 

 
(p take-shot-z22-z23-StHi 
    =goal> 
      ISA playing-mode 
      state    2       ; in play mode 
    ?command> 
      state free 
    =predictive>  ; PACT-R module 
      ISA predictive-state ; correct chuck type 
      special 5  ; in prediction mode 
      < prediction-count 4 ; more testing allowed 
      - registered-shot 51 ; not already tested 
      > intercept-zone-width 1 ; court pos wide 
      intercept-zone-depth 2   ; and mid depth  
    ==> 
    +command> 
      ISA command-packet 
      req-cmd     5       ; Test Shot (predict) 
      :req-param  51      ; Long High Straight 
  ) 

Figure 6.  Predictive AI shot selection flow chart and sample rule.  

The predictive system works by allowing the AI model to 
test shots that are available to play. This allowed the prediction 
system to usually come up with the best shot available within 
the limits of the prediction resolution. Figure 7 shows the 
progression of the shot testing as the cyan player moves to 
intercept the shot. The grey track shows the ball’s current path 
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in the top right frame. In subsequent frames blue tracks appear 
which represent possible shots. In the final frame the cyan 
player has played the best shot found which, is another straight 
shot down the left hand side (shown in grey again). 

 

 

Figure 7.  Time lapse of predictive shot selection showing test predictions 
(blue tracks) for cyan robot. 

This sequence of shots takes place over a period 800ms, 
Figure 8 shows an abbreviated trace of the ACT-R rules firing 
for the sequence in Figure 7. Prediction tests are 150 ms apart, 
which corresponds to ACT-R’s default cycle time for rule 
firing. The first shot tested scored the highest and is selected 
as the shot to play in the FINAL-SHOT-SELECTION rule 
fired at the end of the trace. 

 
9.050 PRODUCTION-FIRED TEST-SHOT-Z22-Z23-STHI 

Testing shot 51 0 
better predicted value 2 for 51 

9.200 SET-BUFFER-CHUNK SPATIAL SPATIAL-STATE45 
9.200 SET-BUFFER-CHUNK SITUATIONAL-STATE45 
9.250 PRODUCTION-FIRED TEST-SHOT-Z22-Z23-BODF 

Testing shot 23 1 
predicted value 1 for 23 

9.400 SET-BUFFER-CHUNK SPATIAL SPATIAL-STATE46 
9.400 SET-BUFFER-CHUNK SITUATIONAL-STATE46 
9.450 PRODUCTION-FIRED TEST-SHOT-Z22-Z23-CRHI 

Testing shot 52 2 
predicted value 1 for 52 

9.600 SET-BUFFER-CHUNK SPATIAL SPATIAL-STATE47 
9.600 SET-BUFFER-CHUNK SITUATIONAL-STATE47 

… 
9.850 PRODUCTION-FIRED FINAL-SHOT-SELECTION 

Figure 8.  ACT-R trace of a test and prediction sequence of rules being 
fired 

D. Performance 

Figure 9 shows the player to player performance of all 
three models. When playing identical models against each 
other the results are even, as would be expected. Both heuristic 
and predictive models win over the basic random selection 
model. The predictive model also wins over the heuristic 
model, with a score of 312 to 228. The binomial test p-value 
for this is 0.0003, showing that this is unlikely to be due to 
random chance. 

 

 
Figure 9.  Head to head scores for all models over six hour duration 

games. 

When developing the models, there was a clear advantage 
to the basic and predictive models over the heuristic model in 
the reduced number of rules required to implement the shot 
selection strategy. The basic and predictive models required 
25 and 26 rules, respectively. The heuristic model required 45 
rules to implement a simple shot selection strategy. The 
predictive system did have a disadvantage in the time it took 
to select a shot; it was not always able to complete its shot 
selection, and in that case it reverted to a random choice. 

The three models that were developed could all play 
squash. The heuristic and predictive models both 
outperformed the basic model.  The predictive system also 
outperformed the heuristic model, despite some limitations in 
its implementation. 

VI. CONCLUSION 

The research question asked “How can simulation and 
prediction improve decision quality in a cognitive 
architecture?”. The results show that, within the limitations of 
the experiment, a predictive model – with an ability to use 
simulation to test its own actions to determine and evaluate 
their possible outcome – held a clear advantage over a model 
that used heuristics to test relationships between objects in a 
simulated scenario.  

It is not, perhaps, surprising that an approach that glimpses 
at the future, however imperfect, would have an advantage 
over reasoning about a situation based only on where objects 
are, how they were moving, etc., in the moment. The results 
of the investigation indicated that prediction provided a more 
effective appraisal of the value of an action, without requiring 
detailed rules.  

There is a caveat here though: the evaluation of the 
heuristic model was an evaluation of its specific rule set, and 
it could have been developed further. Its rule set was not very 
complicated, and it is entirely possible that with a larger rule 
set, and more detailed situational knowledge, it could have 
out-performed the predictive model. Indeed, both the heuristic 
and predictive models could have been developed further, to 
leapfrog each other in a virtual arms race. 

However, there was another aspect to the modelling. The 
predictive model only required 26 rules versus the 45 rules of 
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the heuristic model. Not only were there less rules, they were 
simpler. Each rule simply stated a possible shot to test, and 
required no expert knowledge of how, or when, that shot 
might be used. In comparison, the heuristic rules required an 
understanding of squash strategy, and each rule had to be 
carefully considered as to how it would play out. 

While both models could have been extended, the effort 
required to do so would have been considerably different. The 
heuristic model would require a lot of expert knowledge. The 
predictive model would have required only fixing some 
design issues and, perhaps, increasing the fidelity of the 
predictions. Of course, the predictive model does require a 
simulation engine that can predict outcomes of actions, 
however imperfectly. Developing the simulation does not 
require expert knowledge of squash either, but it does require 
being able to model the physics of the scenario. This is not an 
inconsiderable task and, even in the simple scenario used in 
this research, more time was spent developing the simulation 
than was required for the creation of the AI rule set. 

VII. FUTURE WORK 

The research described above only looked at a highly 
discrete problem, and the solution was very domain specific. 
The PACT-R cognitive model gave a scene description and 
predictions in a very squash-centric way. Continuing this 
methodology of creating a custom model and simulation for 
every scenario is time consuming, and it would be desirable to 
accelerate the process by finding a more generic way of 
describing physical relationships and actions within an 
environment. 

It is unlikely that any solution could be truly generic. Such 
a solution would have to be able to model and simulate a large 
and arbitrary amount of the real world. Rather, a practical 
improved implementation of PACT-R would provide a 
generic framework that could be extended and adapted for 
specific scenarios. 

Another area of ongoing research is to use PACT-R in 
physical robotics. PACT-R is intended for robotics and 
embodied AI. Taking this system into the real world presents 
the considerable challenge of perceiving and simulating at 
least a small part of the real world. For constrained situations 
this might not be so difficult. For example, in real-world 
squash, if you can detect and track the ball, it is then relatively 
easy to predict where it will go in the rectangular room that 
squash is played in. The bigger challenge would be predicting 
the outcome of shots, since this is not as clear-cut in the real 
world as it was in the simulation, since the simulated shots 
were simplified, and the virtual robots were able to play them 
more accurately than any real robot would be able to. 

The research also highlighted some issues when working 
with ACT-R that could be an interesting topic of future work. 
ACT-R’s reinforcement learning mechanism did not work for 
this task. What alternative learning mechanisms could have 
been used? Could some form of tagging (marking key rules in 
the decision process) be used so that rewards and penalties are 
given to the correct rules? How would the modelling need to 
change to make use of learning? 

In modelling within ACT-R values, rules are tested with a 
basic set of comparative operators (>, <, =, etc.) While this is 

suitable for a lot of modelling, when implementing the squash 
strategy it would have been convenient to have been able to 
model in fuzzy logic, where instead of yes /no answers, 
cold/cool/warm/hot answers were possible. The matching 
would bias the rule selection, rather than simply excluding or 
including specific rules. Giving ACT-R a fuzzy logic 
matching system would allow it to work better in situations 
where there is not a simple black or white answer. 

ACT-R also has a declarative memory system (long term 
memory). This was not used in this research, since it supports 
a different learning mechanism that did not fit with modelling 
squash. The mechanism is based on a principle of spreading 
activation, where recently used memories are more likely to 
be recalled, and memories that share similar content are also 
more likely to be recalled (this is the spreading activation). 
Recently recalled, or similar, memories do not apply to 
squash, since all shots and outcomes need to be considered 
equally. However, without the learning, declarative memory 
could have played a role in the rules in encoding combinations 
of zones and shots. It was not done this way, since when the 
decision was made to implement the models as explicit rules, 
reinforcement learning was still in consideration as a 
mechanism for improving shot selection. 

If declarative memory had been used, how could it have 
been used, and what sort of learning mechanisms could have 
been applied? Could reinforcement learning be used with 
memories? Could there be negative and positive memories, a 
sort of ‘positive memories’ that are easily recalled, and 
‘negative memories’ that are suppressed? These 
considerations may be crucial for applying simulation-based 
prediction in different robotic applications. 
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