
VoxelNET’s Geo-Located Spatio Temporal Softbots

-including living, quiet and invisible data

Charlotte Sennersten, Craig Lindley and Ben Evans

CSIRO

Pullenvale, Australia

e-mail: charlotte.sennersten@csiro.au, craig.lindley@csiro.au, ben.evans@data61.csiro.au

Abstract— Linnaeus and Darwin understood the need to

classify ‘living things’ to determine the basis of their

relationships and interrelationships. In an Internet-of-Things

(IoT) world we need to do the same, to be able to identify and

compute with objects by type. However, the IoT does not

inherently deal with spatial or geometrical structure, and mass

phenomena (e.g. air, water, rock) are not objects per se. This

can exclude these ‘non-object’ things from the IoT, which can

be a severe disadvantage in many application domains. The

solution to this is voxelisation of mass phenomena in the world

within an overall coherent three dimensional coordinate

reference system. This allows ‘non-things’ to be coherently

situated, classified and treated computationally in the same

way as discrete things and individual objects. VoxelNET is a

distributed digital architecture that supports this voxelisation

model, providing a world of voxels containing various

information at different geo locations that can be compared in

terms of numerous and unlimited taxonomical categories, and

over time. Performing computations across this highly

distributed system of systems can greatly benefit from the use

of distributed softbots or agents without the need for

centralized computations or control. Hence the VoxelNET

distributed architecture not only parses objects and materials

into computable objects, but also includes spatially located and

volumetric computational agents that can collectively achieve

analytical outcomes in an inherently distributed way. Here this

approach is exemplified by distributed VoxelNET agents

collaborating to conduct 3D volumetric path finding through

the VoxelNET space, using a distributed Dijkstra pathfinding

algorithm. Stronger implementations of the agent concept can

include supplementing the basic Dijkstra algorithm with more

sophisticated competitive and/or collaborative behaviours on

the agents/voxels involved.

Keywords-Voxel Agents; Autonomy; Industry 4.0;

Reasoning; Computation.

I. INTRODUCTION

Internet 4.0 is the currently emerging next stage in the

evolution of the internet, expanding from client-server

intercommunications to peer-to-peer systems, combining

historical information based on where devices have been

with information from diverse nearby sensors (eg. location

sensors, smart home components) and using artificial

intelligence analytics to create new knowledge and

experiences [1]. In this evolution, the Internet will be

available in all places and at all times in the background.

Applied to industry, Internet 4.0 supports the concept of

Industry 4.0, which has been defined as “the current trend of

automation and data exchange in manufacturing

technologies. It includes cyber-physical systems, the Internet

of Things (IoT), cloud computing and cognitive computing.

Industry 4.0 is commonly referred to as “The Fourth

Industrial Revolution.” [2]. The IoT extends internet

connectivity to many kinds of devices and objects, especially

in order to gather sensor data and/or parameterize and

control the devices as part of larger scale systems and

operations.

To digitise the world and comprehend it we need to

classify knowledge in a digital system. The voxels in

VoxelNET can be the basis for this systemization [3] and

also support the use of various algorithms, such as Linear

Classifiers, Decision Trees, and Nearest Neighbour [4].

Looking back at former scientists contributing,

systematizing and taxonomising our (biological) world,

Linnaeus published a system for classifying living things [5]

and Darwin an evolutionary taxonomy (a branch of

biological classification) with evolutionary change [6]. In a

world of change we need to connect changes to understand

cause and effect. The VoxelNET system is also at its base a

taxonomical system, most fundamentally classifying things

in the world by their location, but also supporting arbitrary

further dimensions of classification. Also it is a distributed

system, which makes collective computations highly

amenable to agent-based computational processes, which

are the focus of this paper.

Systems based upon Industry 4.0 technologies and

methods constitute what Cardin [7] calls Cyber-Physical

Production Systems (CPPSs), defined as systems of systems

of autonomous and cooperative elements connecting with

each other in situation dependent ways, on and across all

levels of production, from processes through machines up to

production and logistics networks, enhancing decision-

making processes in real-time, responding to unforeseen

conditions and evolving over time. Cyber-physical systems

in general monitor physical processes, using sensor data

from the IoT layer to create and update a virtual copy of the

physical world (a “digital twin”), and use the virtual twin

together with analytical techniques to optimize operational

decisions in real-time across the value chain. A digital twin

can include site, object and agent spatial locations and

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

structure, operations and process models, assets, plant,

equipment, vehicle and staff representations, times and

locations, etc.. Since CPPSs are systems of autonomous and

cooperative elements, it is natural to look to artificial

computational agents as a basis for computing within and

across these systems.

This paper describes the VoxelNET [3] Industry 4.0 and

CPPS platform and the way in which computational agents

can be created and function using this platform, especially

agents that are founded upon its inherent 4D structure (three

dimensions of space plus time). Demonstrated VoxelNET

applications include mine operations and Unmanned aerial

vehicle Traffic Management (UTM), both of which have

strong requirements for computational modelling and

analysis of 3D space. A distributed, agent-based approach to

path planning is presented, which addresses requirements

within both of these application domains.

First in Section II ‘The VoxelNET System’ is introduced

and its ‘Functionality’ and ‘Architecture’ are described.

Section III describes ‘The VoxelNET Agent Model’ and

how agents use the platform, and in Section IV ‘The Voxel

Agent Example’, a distributed agent-based planning system

is described to exemplify the system.

II. THE VOXELNET SYSTEM

The 4D VoxelNET system is so-called because it deals

with locations, objects, and materials within an integrated 4D

spatiotemporal framework of voxels, where a voxel is a

volume element. The voxelisation of locations is made in the

form of a 3D geodetic spatial coordinate reference system

having default unit voxels of approximately one cubic meter

over the surface of the Earth to any depth or altitude. One

cubic meter location voxels can be dynamically aggregated

or decomposed to create a location voxel coordinate system

having one or more location voxels of any required size and

with variable geodetic dimensions along each coordinate

axis. The system also supports the definition of Euclidean

local coordinate systems that have an origin within the

geodetic spatial reference systems and rotations around

geodetic axes. The voxelisation of object representations can

amount to tessellated 3D models of whole objects or object

parts having naturalistic shapes, which allows arbitrary

models to have voxel properties and functions. The

voxelisation of materials that are not already divided into

objects spatially quantises the spatial extension of material

otherwise typically described in mass terms (such as air,

water, rock) into collections of discrete 3D spatial units. In

this way VoxelNET can represent all ‘open space’ entities

such as air, soil, rock, space and water that otherwise would

not conform to typical IoT concepts into units that allow

them to be integrated into the IoT. Hence both extended

natural phenomena, objects and artefacts and their associated

sensor data can be integrated within one architecture.

A. VoxelNET Functionality

VoxelNET spatial structure provides several generic

functions that specific applications can be built upon, many

of which are derived from OGC spatial standards for simple

geometry types (see OGC: 06-103r4 Part 1 and Part 2, [8]).

These include:

 Search by spatial criteria, such as object enclosure,

proximity, intersection

 Synthesis of new shapes using mathematical

operations defined upon input shapes, e.g.

intersections, differences, unions

 Derivation of spatial relationships between shapes,

such as distance, overlap, encapsulation

VoxelNET extends these geometrical operators and

functions with functions built upon an underlying

conceptual model including:

 Complex spatial object definitions expressed in

terms of a variety of structures and relationships

among simple geometry types

 Associations of shapes with material types and

properties

 Association of complex shapes and associated

materials with models for operations definitions,

capabilities, performance and schedules, personnel,

assets, processes and process segments, resources

and resource relationships, equipment, workflow

specifications, work definitions, job lists and

schedules, test specifications and results

 Classes, types, instances and both class and

instance properties

 Material transforms

 Modalities potentially associated with any numeric

values, such as probabilities and

ontological/epistemic status

 Aggregation of these elements as types and

instances with higher level (or meta-level)

conceptual constructs, such as domain

paradigms/interpretative frameworks,

data/information/knowledge bases,

ontologies/taxonomies, knowledge bases and/or

expert systems, agents, agent

societies/communities, and computational

ecosystems

The latter higher level (or meta-level) conceptual

constructs may include specialised computational models in

addition to the data, information and knowledge included

within the underlying conceptual models. VoxelNET

computing is achieved via several programming paradigms,

of which agents are a high-level example. These paradigms

include:

 Scripted programs that sit outside of the voxel

structure and traverse it to achieve outcomes such

as: i) finding voxels that meet some criteria (i.e.

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

data base querying, data filtering), ii) analysing

voxel collections, iii) parsing and editing subsets of

voxel space.

 Triggers associated with specific voxels (that are

logically or conceptually within) a voxel, such that

if their associated data changes, one or more

defined computations are carried out. An example

is, if a location voxel is mined, this can trigger the

spawning of a material voxel. Since the voxel

structure is hierarchical, and voxels can be members

of a larger scale voxel or association, triggers can

be inherited (potentially upwards or downwards).

 Processes associated with specific voxels (that are

logically or conceptually within a voxel/structure),

may run continuously, carrying out one or more

defined computations. An example is, a voxel

process interrogates a defined neighbourhood of

voxels to check if any have been mined, and to

derive a cost/value hypothesis from the mined states

of its neighbours, their rock harness, grades, etc.

 Finite state machines (FSMs) are state transition

engines that move a sequence of voxels from one

state to another in response to changes in one or

more of the voxels (i.e. inputs, or internally driven

state changes). They fall between triggers and

processes, since they are complex sequences, but

driven by trigger events, rather than running

continuously.

 Agents are more complex computational processes

based upon any of a range of computational

cognitive models. The most critical features include

declarative knowledge modelling and goal-directed

decision processing. Social agents are a

specialisation of computational agents that can

engage in collaborative or competitive behaviour

(for example). A voxel or voxel association can be

an agent if some part of its behaviour is controlled

by a cognitive model, e.g. [9].

B. VoxelNET Architecture

The total vision for the VoxelNET system described

above presents a highly complex computational environment

that unpacks the concept of Industry 4.0 and intelligent

cyberphysical production systems into the full range of high

level elements and components needed for their realisation in

the case of systems of significant size and complexity (e.g. a

flexible manufacturing factory). Smaller scale systems may

require a much more limited subset of these features. This

leads to the following broad and overlapping classes of

system architecture:

 Stand-alone systems that encapsulate modelling,

monitoring, analytics and decision processes

without the need to interact with other systems.

Examples of this that have been demonstrated so

far in the VoxelNET case include: a system for

real time control of a UAV operating in

underground mines, based upon a digital twin

and third person view of the vehicle and its

environment (see [10]); and a system for the

analysis, feature detection and visualisation of

heterogeneity in mineral deposits.

 A cloud-based client/server/repository

architecture that has been demonstrated for real-

time multi-user interaction with mineral resource

drill hole, blast hole and block model data. In this

case, the client/server messaging interface and

underlying repository schema provide

foundations for interoperability among client

systems that may include third party software

using proprietary data formats, provided that

those formats can be translated into canonical

VoxelNET schema constructs.

 A fully distributed architecture, with many

application clients interacting with distributed

servers/repositories via a mediating VoxelNET

distribution server network. While not yet

implemented, the standardised message syntax,

semantics and underlying conceptual models

required extend those used for client/server

interaction in the cloud-based architecture.

Challenges in meeting this Industry 4.0 vision at a large

scale include:

 Avoiding over-engineering. The system should try

to focus on representations and functions that

provide the most critical inputs to system

understanding and decision processes, or else it

may be difficult to place bounds upon how much

needs to be sensed and represented (e.g. the

context of a system is essentially endless).

 Consistent syntactic and semantic mapping of

data, information and knowledge from

multiple diverse sources to a uniform underlying

conceptual model.

 The need to accommodate changes in the

structure and functionality of physical and

operational systems over time.

 Achievement of trust and reliability in the

system.

 The need for standardized terminology, types and

classes that may be expressed in ontologies

and/or taxonomies. For example, object types or

classes should not be open, but documented,

where new types/classes can extend the

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

documentation. A particular range of phenomena

may have more than one ontology/taxonomy

associated with it, reflecting different

perspectives, uses, etc.

The following sections of this paper describe the agent-

based functions of the VoxelNET system, especially those

based upon the 3D voxelisation of spatial structure.

III. THE VOXELNET AGENT MODEL

A. Artificial Computational Agents

VoxelNET is a highly distributed system concept,

including the virtual and physical distribution in 3D space of

artificial intelligence (AI) and autonomous decision making

functions. This means that autonomous decision making that

uses data, information and/or knowledge, or has output

implications, beyond the bounds of individual

server/repository nodes will need to interact with AI

functions resident on other nodes. This lends itself to an

agent-based AI model, where a software agent can also be

referred to as a softbot, meaning a software robot [11]. This

does not exclude softbots that constitute elements of the

control architecture of physical robots.

There are many definitions and variants of agents in the

research literature that are distinguished along numerous

dimensions of variation (e.g. see [12], [13]). Some of these

variations include: reactive versus deliberative/goal-driven,

stand-alone versus collaborative, distributed versus

centralised, mobile versus immobile, situated versus

disembodied, hardware versus software, adaptive/learning

versus un-adaptive, etc. Many architectures are hybrids of

the distinctions made along these various dimensions.

VoxelNET is compatible with any of these models, since

they can exist as computational components in the server

ecosystem or interfacing with generic VoxelNET functions

accessible via the VoxelNET messaging layer.

It is a requirement of VoxelNET agents that they can be

intelligent, although what constitutes intelligence in synthetic

or natural agents can be greatly debated. Teahan [14]

characterises an agent as acting intelligently when “what it

does is appropriate for its circumstances and its goals, taking

into account the short-term and long-term consequences of

its actions, is flexible to changing environments and

changing goal, learns from experience and it makes

appropriate choices given its perceptual and computational

limitations”.

A benefit of this definition is that it is expressed in terms

of functionality rather than mechanisms. Definitions based

upon mechanisms are in general undesirable, since specific

mechanisms do not necessarily guarantee intelligent

outcomes, while a given level of intelligent functionality

might be implemented by a different set of mechanisms.

B. The VoxelNET Agent Model

The VoxelNET system constitutes a data, information
and knowledge ecology that is compatible with numerous
computational, agent and intelligence paradigms, interacting
via a foundational conceptual model and standardised
message formats and protocols. It nevertheless has a more
inherent agent paradigm based upon voxel structures, which
is described in more detail in this section.

A voxel itself is able to function in the system as a self-
contained inter-netted agent that can virtually perceive,
receive and issue messages, compute, change its state and
generate outputs. As noted above, any specific voxel may
have associated triggers, processes, finite state machines, or
agent models non-exclusively associated with it (i.e. one
voxel may be associated with several computational
components). This means that all voxels in VoxelNET can
function as agents within the interlinked voxel world.

VoxelNET users are presented with a default
navigational voxel structure for the Earth of approximately 1
m3 voxels that extends over the mean surface and to altitudes
from 20 km to a depth of minus 10 km (this range is dynamic
and can be extended as required). This results in 1019 voxels,
any or all of which can be an agent. Voxels can be
aggregated or decomposed, and the resulting larger and
smaller scale voxels can also be agents. The question then is,
what can an individual voxel agent do and process? In
principle, this could include a broad range of intelligent
behaviours, including:

 perceiving, including recognize patterns

 learning (form correlations)

 learning (form concepts, i.e. abstractions)

 understanding (form predictive models)

 apply logic and reason

 comprehend ideas (use abstractions)

 plan

 solve problems

 make decisions

 retain data, information and knowledge

 use language to communicate (using the syntax and

semantics of the VoxelNET messaging system)

VoxelNET agents may belong to one or more classes,

although this is not elaborated in this paper. Instead, some
general agent functions are presented, as well as a specific
example of how voxel agents can interact to create a
collective function.

General voxel-agent-functions include the capacity to
send and receive messages addressed by specific voxel ID,
by geodetic or local volume, or broadcast across the
VoxelNET, with each voxel selecting to respond to messages
by type or according to one or more specific criteria
specified in the message. Message inputs can be sent to
voxel triggers, finite state machines, processes and agents,
according to message metadata and rules for processing each
computation type held within the voxel. Specialised
messages may carry programs, including implementations of

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

agent decision processes, so that generic functions are
primarily concerned with agent program input and
management, rather than having extensive built-in
behaviours.

It might be asked why a specific voxel should be an

agent, rather than have external processes perform
computations upon voxels? The reasons for this are:

i) That these two options are logically, and may be
implementationally, equivalent. A
computational agent in a closed computational
environment (such as the single
server/repository cloud-based version of the
VoxelNET architecture) may be processed
within a computational context that is external
to the agent, but not external to the system. This
may, for example, be an algorithmic loop that
triggers or polls each agent to accept inputs,
update its status, and generate outputs with each
iteration of the loop. The more central question
here is whether algorithms implementing agent
state transitions are represented within the
program structure of each agent, or exist as
elements of an algorithm library that can be
applied by the external process to a data
structure that encapsulates the agent state. For a
purely virtual agent system, the difference is one
of packaging from the perspective of design and
maintenance (analogous to the issue of
procedural/structural versus object-oriented
programming).

ii) An open computational environment (such as a
fully distributed version of the VoxelNET
architecture) is one in which agents may be
created by different parties, using different
languages, algorithms, etc. In this case,
algorithms need to be implemented within agent
components that can intercommunicate via
standardised messaging formats, protocols and
semantics, irrespectively of the languages and
specific form of data structures and algorithms
created by different parties that conform to
standardised messages.

iii) Systems that include physical agents, such as
robots, may include agents having widely
varying internal implementation requirements
and computational capacity and will generally
require real time internal control, with
potentially asynchronous and/or near-real time
interaction with other agents as required within
the ecosystem. This case is similar to case ii),
but with additional requirements for
encapsulating computational agents within
physical bodies or structures arising from the
needs of timeliness and the ability to operate in
real time independently of external
communication links.

Task types and performance details in different
implementations may nevertheless be incorporated into task
libraries, which can be accessed and downloaded into agents
anywhere in VoxelNET, if a situation or message type arises
for which a given agent does not already have an appropriate
task definition.

IV. THE VOXEL AGENT EXAMPLE

An example of how voxels can function as agents is

provided by considering an agent-based approach to path

planning, based upon the Dijkstra algorithm [15].

VoxelNET can include physical robots and has been

demonstrated as a platform for individual unmanned aerial

vehicle (UAV) control in underground mines [10] and for

control of systems of many UAVs in an urban environment.

The voxel structure can be used to implement occupancy

grids for autonomous vehicle navigation, and for the storage

and representation of 3D mapping data [16], [17].
The path planning task has been demonstrated in two

application scenarios for VoxelNET: i) UAV inspection and
mapping in underground mines, and ii) UAV traffic
management in urban environments. These were both single-
point demonstrators of the path planning solution, while here
we present a distributed approach to solve the same task. The
high-level process is described by:

1. UAV sends StartPath message to starting voxel,

using geo-located address and including flight start

time, end time, priority, vehicle type, mission type,

vehicle id, service class, etc.. The voxel state is

changed to indicate that the voxel is part of this

path planning process.

2. UAV sends End of Path message to geo-located

address of end voxel, including flight start time,

end time, priority, vehicle type, mission type,

vehicle id, service class, etc. Voxel state is changed

to indicate that the voxel is part of this path

planning process.

3. Start and End voxel agents send the same message

to each adjacent voxel not already involved in this

path planning process, plus the path in progress,

which path it is, the count of iterations and the

count of path voxels.

4. If an adjacent voxel is available and is not already

involved in this path planning process, steps 1 or 2

are repeated by this voxel, respectively, for the

developing start and end path options from the

perspective of the path developed so far. If an

adjacent voxel is not available, its voxel state is

changed to indicate that the voxel is part of this

path planning process, but steps 1 and 2 are not

iterated by this voxel for its adjacent voxels.

5. If a voxel in the starting path meets a voxel in an

ending path, it will append the end path to the

starting path and notify the originating voxel that a

path has been found, with its parameters, including

length.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

6. The starting voxel agent can choose to accept the

first path created, or wait to see if a shorter or more

valued (optimal) path occurs.

This algorithm is potentially very inefficient, since, if not

stopped at the first path found, it searches for all paths
through a connected network. However, it lends itself to
distributed computation and there is no need for any
centralised representation of the total network – connected
voxels are readily determined from the position of a given
voxel and the structure of the coordinate system. This
algorithm requires very simple agents, but more
sophisticated agent capabilities could be built upon it, such
as cooperative behaviours, in which voxels work together to
negotiate which path a given request will have allocated to it,
or competitive behaviours, such as pre-empting path
calculations to effectively reserve paths or shorten
pathfinding time.

Figure 1. 2D Path planning problem.

A. Implementation –Voxel Path Planning

A path planning algorithm searching for the shortest

path(s) [18] is often a top down 2 dimensional problem (see

Figure 1), but here we are including the third dimension so

the search space is volumetric.
Path length differences are illustrated in Figure 2; there

can be many other paths adjacent to the shortest path, but
they all involve at least 5 + 2 = 7 steps.

Figure 2. Example of path length calculation.

Here we adapt the well-known Dijkstra algorithm for
finding paths between nodes in a graph, which may
represent, for example, road or travel path networks. In this
case the graph structure is the interconnected graph structure
of a 3D, orthogonal voxel matrix. The algorithm exists in
many variants. Dijkstra's original algorithm found the
shortest path between two nodes. A more common variant
fixes a single node as the "source" node and finds shortest
paths from the source to all other nodes in the graph,
producing a shortest-path tree.

The path finding solution shown in Figures 3 and 4 was

implemented in C#. For the path finder to operate, a start

voxel and an end voxel must be selected, and the pathfinding

process begins simultaneously at these two voxels. Each

voxel has a flag to identify whether it was approached from

the start or end (referred to as the direction flag), whether it

has been processed, and whether it is available.

Figure 3. Voxel Path Planning implementation in 2D (white is an obstacle, blue is traversed and green is the final path).

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Shortest-path_tree

Figure 4. Voxel path planning implementation in 3D (white is an obstacle, blue is traversed and green is the final path).

Every adjacent voxel is evaluated and if it was not

already evaluated and is available (meaning it is not

obstructed), the voxel it was approached from is stored in its

state and the evaluated flag is updated, as well as the

direction flag, to identify whether it is in a path travelling

from or to the end voxel. This voxel will propagate the

evaluation to adjacent voxels and so on (implementing

simple agent-agent interaction). If a voxel is already

evaluated/processed and it has a different direction flag, it

means that a path has been found connecting the start and

end points. The voxel chain is traversed in a similar fashion

to a linked list and each voxel is placed into a collection to

make up the path, which is stored in an external object

passed in at the start of the path finding process so that it can

be retrieved externally or dealt with asynchronously (which

was the case in the source code and should apply to a

physically distributed system). The implementation finds the

quickest path to compute (the path requiring the least number

of iterations) but does not attempt to find the shortest or most

optimal path. This functionality could be added with some

small modifications.

V. CONCLUSION

This paper has described the VoxelNET distributed
spatial data system and how the concept of agents can be
applied within this system. A simple example of agent
interaction has been implemented and described. Achieving
path finding by the distributed agent approach allows voxels
as agents to intercommunicate via voxel addresses as part of
a logically connected voxel network, even though the
information stored for specific voxels may be held on
different computational and storage systems. Hence the
voxel network is a single logical structure, implemented on
potentially distributed processing architectures. The simple
example presented does not do justice to the full, and even
endless, range of sophistication possible in an agent-based
system, but serves to illustrate the principals involved. The
sophistication of agents within the overall VoxelNET can
vary widely, by position, the types of data, information and
knowledge that they can process, and in the complexity and
adaptability of the agent cognitive architectures that they use.
A more complex pathfinding example could involve agents
that can compete to lure or drive away traffic, e.g. by

including cost or payment data in addition to pure path data
for traversable voxels. Pathfinding can then become an
iterative Pareto optimisation process, where agents in
potential paths can seek to increase their charges or
payments to modify the optimal solution to meet their local
goals of participation (e.g. to encourage more use of sparsely
used path steps) or avoidance (e.g. to reduce demand and
congestion on popular paths). Future work will include
further investigation of these and related concepts.

ACKNOWLEDGMENT

We thank CSIRO Mineral Resources and Mining3 for

supporting our VoxelNET research. VoxelNET™ is a

patented technology.

REFERENCES

[1] http://www.tnl.net/blog/2017/02/11/internet-4-0/ [retrieved: 15
January 2019].

[2] https://en.wikipedia.org/wiki/Industry_4.0 [retrieved: 15 January
2019].

[3] C. Sennersten, A. Davie and C. Lindley, "Voxelnet - An Agent
Based System for Spatial Data Analytics", short paper, Eighth
International Conference on Advanced Cognitive Technologies and
Applications (COGNITIVE 2016), March 20 - 24, Rome, Italy, 2016.

[4] https://medium.com/@sifium/machine-learning-types-of-
classification-9497bd4f2e14 [retrieved: 15 January 2019].

[5] https://www.sciencelearn.org.nz/resources/1438-classification-
system [retrieved: 15 January 2019].

[6] K. Padian, “Charles Darwin’s Views of Classification in Theory and
Practice”, Syst. Biol. 48(2):352-364, 1999.

[7] O. Cardin, “Classification of cyber-physical production systems
applications: Proposition of an analysis framework”, Computers in
Industry 104 (2019) 11–21, 2018.

[8] OGC: 06-103r4 Part 1 “Simple Feature Access - Part 1: Common
Architecture” (https://www.iso.org/standard/40114.html, last
accessed on 14 January 2019), 2004, and Part 2 “Simple Feature
Access - Part 2: SQL Option”
(https://www.iso.org/standard/40115.html, last accessed on 14
January 2019), 2004.

[9] D. Pentecost, C. Sennersten, C. A. Lindley, R. Ollington and B.
Kang, "Predictive ACT-R (PACT-R): Using A Physics Engine and
Simulation for Physical Prediction in a Cognitive Architecture",
Eighth International Conference on Advanced Cognitive
Technologies and Applications (COGNITIVE 2016), March 20 - 24,
Rome, Italy, 2016.

[10] C. Sennersten, C. Lindley, R. Lyu, A. Grace, B. Evans, D. L. Taylor,
A. Davie, L. De Macedo Camargo, J. Craig, A. Hellicar, D. Biggins,

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

G. Timms, M. Coombe, S. Shariar Md, G. Smith, A. Morshed, A.
Rahman, G. N. Salomão, 2015, “Unmanned Aerial Robots for
Remotely Operated and Autonomous Surveying in Inaccessible
Underground Mine Voids” Third International Future Mining
Conference, Sydney, Australia, pp. 101-08, 4-6 November 2015.

[11] http://www.engyes.com/en/dic-content/softbot [retrieved: 15 January
2019].

[12] J. P. Müller. “Architectures and applications of intelligent agents: A
survey.” Knowl. Eng. Rev. 13, 4 (February 1999), 353-380.
DOI=http://dx.doi.org/10.1017/S0269888998004020), 1999.

[13] D. L. Poole. and A. K. Machworth, “Artificial Intelligence:
Foundations of Computational Agents”, 2dn edn., CUP, isbn:
9781107195394, 2017.

[14] W. J. Teahan, “Artifical Intelligence –Agent Behaviour”, bookboon,
ISBN 978-87-7681-559-2, 2014.

[15] Dijkstra, E. W. (1959). "A note on two problems in connexion with
graphs", Numerische Mathematik. 1: 269–271.
doi:10.1007/BF01386390, 1959.

[16] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition”, Conference Paper,
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 922-928, September, USA, 2015.

[17] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection”, USA, arXiv:1711.06396v1, 17
November 2017 (submitted).

[18] K. Mehlhorn and P. Sanders, "Chapter 10. Shortest Paths" (PDF).
Algorithms and Data Structures: The Basic Toolbox. Springer.
doi:10.1007/978-3-540-77978-0. ISBN 978-3-540-77977-3, 2008.

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

http://people.mpi-inf.mpg.de/~mehlhorn/ftp/Toolbox/ShortestPaths.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-3-540-77978-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-77977-3

