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Abstract—An algorithm is presented for filtering and classification
of electroencephalographic (EEG) signals, based on extended
Kalman filters and dynamic neural networks. The EEG signals
acquisition process is complicated since they have a lot of
white noise and because the amplitude and frequency of the
different rhythms are in a very small range. The astronaut’s
brain, when subjected to a microgravity environment, changes
its physiology. It is important to analyze these changes because
we can analyze: biomechanics, psychological issues, intracranial
pressure and using a brain machine interface, among others. The
filtering and sorting algorithm are designed based on extended
Kalman filters and neural networks. These algorithms are used
primarily because of their ease to remove white noise and detect
small changes of the different types of rhythms present in EEG
signals. Since the presence of EEG rhythms is unknown, an
estimator and an observer are designed based on neural networks
for the appropriate classification of signals. The neural network
algorithm can be adapted to the extended Kalman filter and get
one feedback system. The algorithm is used to make more robust
the Kalman filter. This algorithm has been able to effectively
classify EEG rhythms and which are of interest for biomechanical
analysis, and brain machine interface. This algorithm is tested
using a database. However, the same proposed algorithm can be
used on astronauts in microgravity environments.
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I. INTRODUCTION

Our brains are changing all the time. Nerves are rearranging
themselves and the connections between the nerve cells are
reforming as the brain memorizes new information, stores
the old and continuously adapts to new situations [1]. New
experiences, learning, physiological changes, sleep disturbance
and fatigue are among the most influential factors. Sometimes,
especially after an accident or a cerebral stroke, the recover
power of brain tissue is simply mind-boggling: the remaining
healthy tissue can take over the functions of damaged areas.
The weightlessness in orbit is also a big change for brains. Not
only are there changes in blood circulation and other physical
conditions, but the way that cognitive functions of daily life
are managed also alter the brain dramatically. Adapting to the
multitudinous effects that gravity has on the human body and
the way the brain deals with them is perhaps the greatest
demand that the nervous system has to face in outer-space.
The increased load on the cognitive capacity is accompanied
by a multitude of stresses on the brain [2].

A. Extended Filter Kalman

The Kalman filter is an algorithm that is based on the
model state space of a system to estimate the future state and
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future output filtering optimally the output signal, depending
on the delay of the samples to be introduced, the filter of
the parameter estimator can be used or the filter can be used
in the function. In both cases the noise can be eliminated,
these equations are widely used because they include statistical
probabilities since it takes into account the randomness of both
the signal and the noise. Unlike other types of filters that do
not require a specific cutting frequency Kalman is based on
the characteristic of the noise filter thus allowing across the
frequency spectrum [3].

B. Brain Computer Interface (BCI)

BCI systems today are considered a tool with enormous
potential for establishing communication alternatives to restore
motor functions. There are different types of EEG potentials,
which can be classified according to different factors. Brain
rhythms can be classified depending on frequency bandwidth
and have been designated a Greek letter. [4].

e  Delta Rhythm (§): They are typically between 0.5 and
3.5 Hz and has amplitudes of 20 to 200 uV'.

e  Theta Rhythm (6): It occurs in the band of 4 to 7 Hz
with amplitudes ranging from 20 to 100 pV'.

e  Alpha rhythm («): The alpha rhythm is mainly man-
ifested in the frequency band from 8 to 13 Hz with
amplitudes ranging from 20 to 60 pV.

e  Mu Rhythm (p): It manifests in the range of 8-13 Hz
and its amplitude is less than 50 pV.

e Beta Rhythm (f5): It is an irregular rhythm, with
frequencies between 13 and 30 Hz. Its approximate
amplitude is between 2 and 20 pV.

e  Gamma Rhythm (): This rhythm at higher frequen-
cies to 30 Hz and amplitudes manifests between 5 and
10 pV [S].

II. METHODOLOGY

The first step is to obtain EEG signals from different
database to show the proposed algorithm. The databases we
used were: a database of a group of researchers from different
institutions of the European Union [6], Ecole Polytechnique
Federale de Lausanne [7] and Graz University of Technology

[8].
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A. Equation numbers

The electroencephalography study is complicated to per-
form because the patient must be at rest, the study has a lot of
noise and can be confused with any noise rhythm of the EEG
signal. For that reason apply extended Kalman filters as they
are appropriate filters to eliminate noise caused by the system.
Consider the equation of state and output of a non-stationary
system with noise form:

A4 1) S AW F BB @0l g
) =C(k)z (k) +w(z),
Where matrices A(k), B(k) and C( ) are deterministic

and are generally variants variables in linear systems with
time, v (k) and w(x) are stochastic processes and noise
measurement system respectively, which are considered white
noise average.

For the classification of signals, we use dynamic neural
networks, unaware of how it will end EEG signal acquired have
to estimate and observe the different rhythms, dynamic neural
networks are suitable for this procedure. The neural network
algorithm can be adapted to the extended Kalman filter and
get one feedback system, the algorithm with 2 hidden layers
is used to make more robust the Kalman filter. This algorithm
has been able to effectively classify rhythm signals and which
are the rates of interest.

The design idea can be illustrated observers to invariant
systems in the time:

T = Az + Bu

y=Cuz, )

A linear observer is designed in the same way as the
original system with an additional pending input from the
difference between the actual values and the estimated values
of the output vector:

&= AZ+Bu+L(Ci—vy), 3)

Where ; is an estimate of the state vector of the system
L € R and is an input matrix. Of course, the vector state

observer % is available to generate the control action using
auxiliary system dynamics.

dn = Az + Wi 0 (ﬂﬁt) + Wao o () us + Kreq + Koey
Uy = C Ty
4

Where 2, is the state vector representing the neuronal
observer estimates brain signals; g is the output of the neural
network corresponding to the differential value of the estimated
rate of rhythm signals: p and S rhythm; A, K; y Ko are
the constants appropriate matrices which fit during training, to
enhance the process of approximation of the neural network
dimensions; o() and ¢() are vector fields are compounds with
standard sigmoid functions; C' is assumed that the matrix
output previously known; parameters W, and Wy, are the
weights are adjusted to ensure a good approximation of the
neural network to the uncertain nonlinear function. The first
is that the adjustment of feedback and the second is related to
the effect of the entry in the state estimation process whose
time evolution is determined by a special procedure of learning
online. The data set available are the rhythms acquired from
the BCI, i.e., y = x. In this way and in this particular case
C =(1,0,,0).
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III. RESULTS

In this section, we present the EEG signals obtained from
each of the databases. These images also reflect the different
rates. In Figure 1, we show for the database Europe Union
in Figure 2. The database Ecole Polytechnique Federale de
Lausanne in Figure 3. the Graz University of Technology.
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Figure 1. Database of EEG signal, database of the European Union.
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Figure 2. Database of EEG signal, database of the Ecole Polytechnique
Federale de Lausanne.

After obtaining signals from the database, we applied the
extended Kalman filter to the signal to filter and obtain the
rhythm wish, Figure 4 and Figure 5 shows the output of the
Kalman filter for rhythms . and § of first database respectively.

Figure 6 and Figure 7 shows the output of the Kalman filter
for rhythms p and 3 second database respectively.

Figure 8 and Figure 9 shows the output of the Kalman filter
for rthythms p and 3 of the third database respectively. Since
we have the output of the extended Kalman filter, apply the
neural network. The neural network learns from the original
network. Specifically, the network learns this is the right pace,
we resubmitted another signal type of neural network will

79



COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications

Original EEG
zm : , , ! , , , : Kalman Output
ERtY 7680 T T T T T T T T T
E o b
< % 2 1 B 8 10 12 14 [
Time(s)
8 Rhythm -FF00 - B
2 m . ; ; ; ; ; ; .
ER
£ 1] 1 L Il Il L L 1
] 2 [ 6 8 0 2 14 5 SFE20 B
Time(s)
& Rhythm
g @ , , : ‘ ‘ ‘ ; .
El 7740 h
E 1 L L L L L Il 1
< By 4 B [ 12 14 [ 2
Time(s) E
o Rhythm E=
B . ; ; ; ; ; ; . 5 7780
2 oLl |l‘ " P el | £
5 \ sl sl | af
£ L I | I I I I L
0 2 1 B 8 12 1 3 7780
Time(s)
B Rhythm
R PR bttt b |
R . i R bbbt
P i il e LGl L A ke i A A ol L | -7800 -
£ 1 L Il Il L L L 1
o 2 1 B ] 0 2 1 [
Time(s)
1. Rhythm -Fa20 - 7
£ %0 T T T T T T T T
]
Ea | | | | | | | |
0 4 B 0 12 14 [ 7340 | | | | | | | | |
Time(e) i} A0 100 150 200 250 300 350 400 450 500

F H
Figure 3. Database of EEG signal, database of the Graz University of reuency ()

Technology. Figure 6. Output extended Kalman filter for p rhythm, database of the Ecole

Polytechnique Federale de Lausanne.
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Figure 4. Output extended Kalman filter for p rhythm, database of the
European Union. Figure 7. Output extended Kalman filter for 8 rhythm, database of the Ecole
Polytechnique Federale de Lausanne.
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Figure 5. Output extended Kalman filter for 5 rhythm, database of the

. Figure 8. Output extended Kalman filter for p rhythm, database of the Graz
European Union.

University of Technology.
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Figure 9. Output extended Kalman filter for 8 rhythm, database of the Graz
University of Technology.

take it as another EEG signal. This is the behaviour that we
expect as a first test for our classification signals. Because the
implementation of the neural network is in matlab takes a long
time for the amount of data. In Figure 10 and Figure 11, we
show the application of the neural network p rate signal and
[ respectively.
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Figure 10. Output neural network for p rhythm, database of the European
Union.

Figure 12 and Figure 13 shows the output of the neural
network for the rhythm p and g of second database respec-
tively. Figure 14 and Figure 15 shows the output of the neural
network for the rhythm p and § of third database respectively.

IV. DISCUSSION.

When we obtain the signal from Extended Kalman Fil-
ter, enters the EEG signal to the system Dynamic Neural
Networks. The application of dynamic neural network to p
rhythm. In the figures of the neural network estimation signal
(red) is shown, the estimate is appropriate and that would
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Figure 11. Output neural network for 8 rhythm, database of the European
Union.
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Figure 12. Output neural network for p rhythm, database of the Ecole
Polytechnique Federale de Lausanne.

classify the correct signal for the movement of the limbs. The
same applies to the 8 rhythm

The algorithm applied model helped us to estimate the
parameters of the neural network, by means of the error
matrix K provides us with the estimate of the neural network.
The lower the K matrix best estimate of the neural network.
Another important parameter is to calculate the matrix of the
weights W. The weights are given us the speed with which
estimates the network, this data is important because it also
indicates the computational cost of the algorithm.

V. CONCLUSION

The proposed algorithm is able to identify EEG signals
in the first instance removing noise that provides acquisition
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Figure 13. Output neural network for 5 rhythm, database of the Ecole
Polytechnique Federale de Lausanne.
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Figure 14. Output neural network for p rhythm, database of the Graz
University of Technology.
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Figure 15. Output neural network for 8 rhythm, database of the Graz
University of Technology.
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system which guarantees that we can get the rhythm we
want. The other part of the algorithm is the observer of the
neural network, which showed us that it is able to learn the
correct signal (required rhythm). This system could be used
in microgravity environments for astronauts and who wish to
acquire EEG signals where system noise is more common.
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