
Structured Analysis of Interactions in Collaborative Environments 

 

Elena Troubitsyna  
Åbo Akademi University, Dept. of IT 

Joukhaisenkatu 3-5A, 20520, 
Turku, Finland 

e-mail: Elena.Troubitsyna@abo.fi 
 
 

Abstract— Collaborative computing environments are dynamic 
compositions of communicating components that interact with 
each other to achieve a common goals. The collaborations 
continuously reconfigure to achieve the required goals. 
Ensuring correctness of complex component interactions is 
cumbersome and requires structuring techniques that allow us 
to model and analyse component interactions in a systematic 
way. In this paper, we propose a set of modelling abstractions 
that allow us to define component interactions in dynamic 
collaborative environments. We propose a structured 
approach to analysing possible deviations in the component 
interactions based on HAZOP – Hazard and Operability Study 
-- and formally define the impact of deviations in component 
interactions on achieving the required goals.  

Keywords-dynamic collaborations; interactions; goals; deviation 
analysis; formal modelling. 

I.  INTRODUCTION  

Over the recent years, collaboration has became a one of the 
primarily engines to create new services, achieve higher 
productivity or enable creating novel applications. Increasing 
openness of software and advances in networking has led to 
a proliferation of collaborative computing environments in 
different domains.  Among the most remarkable examples of 
collaborative environments is the Internet of Things [10]. 
The term is introduced to stress the growing outreach of 
connectivity towards sensors, machines and variety of 
appliances. The wide-spreading use of the collaborative 
approach amplifies the need for novel communication 
paradigm that enables dynamic flexible collaboration 
creation and function.   

The inherently dynamic mode of collaborations requires 
novel approaches that allow the designers systematically 
analyse the dynamics of collaborative environments and in 
particular, predict how deviations in the component 
behaviour and interactions impact objectives that a 
collaborative environment should achieve.  

It has been recognized that it is convenient to formalize 
objectives that a system should achieve by a notion of goals 
[4]. The collaborations are formed to achieve certain goals. 
The components forming collaboration provide certain 
individual functionality that contributes to achieving overall 
goal. When a component fails or components communicate 
inappropriately, collaboration might fail to achieve the 
required goal. Therefore, we should analyse the possible 

deviations in the component behaviour and formally define 
the impact of these deviations on achieving overall goals.  

To systematically study possible deviations in the 
component interactions we propose to use Hazard and 
Operability Studies -- the HAZOP method [1,2]. We define 
the main types of deviations in the components interactions 
and define their impact on achieving system goals.  

We believe that the main contribution of this paper, i.e., a 
formal link between goals and possible deviations in 
component interactions, can potentially facilitate design of 
complex collaborative environments 

The paper is structured as follows. In Section II, we 
define collaborative environments in terms of the goals that 
should be achieved. In Section III, we describe generic 
scenarios of component interactions. Section IV shows how 
to systematically analyse deviations in the component 
interactions using HAZOP. Finally, in Section V, we discuss 
the proposed approach and overview the related work.   

II. GOALS IN COLLABORATIVE ENVIRONMENTS 

In this paper, we define a collaborative environment as a 
set of collaborations, i.e.,  

 
ColENV = {C1, C2, ..., CN} 

 
where Ci is an id of collaboration.  

Collaboration is a dynamic composition of components. 
The components join and leave collaboration depending on 
the current goal and the states of the components. In general, 
any collaboration is formed to fulfil a certain goal [4]. The 
set of goals, which an entire collaborative environment can 
achieve, is denoted as GOALS: 

 
GOALS  = {G1,G2, ..., GM} 

 
The set consists of the constants defining the names of the 
goals. We assume that each particular collaboration is 
formed to perform a certain goal from the set GOALS.  

A goal is an objective that collaboration should achieve. 
A goal can be decomposed into a set of subgoals, and 
furthermore, into a set of sub-subgoals that each component 
in the collaboration should perform. Each component carries 
a special attribute describing the functionality that it 
implements. Often these attributes are called roles. Usually a 
component implements a set of roles chosen according to the 
tasks that it should perform in each particular collaboration.  

94Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications



The goal that collaboration should implement defines 
how many components executing each role collaboration 
should have to achieve a goal. Therefore, a configuration can 
be defined as follows: 

 
Config ∈ CONFIG, where CONFIG : ROLES -> N 
 

where ROLES is a set of roles and N is a set of natural 
numbers.  

Often a configuration of collaboration is defined not only 
by a goal but also non-functional parameters, e.g., 
performance. We assume that goals are distinct if their non-
functional parameters are different. Therefore, we can 
unambiguously map a set of goals on the set of 
configurations.  

For each goal Gi, Gi ∈ GOALS, we can define the 
minimal sufficient configuration as a function  

 
MINCONF : GOALS -> CONFIG  
 

The function defines how many components in each role 
collaboration should have to be able to achieve a certain 
goal. The function MINCONF defines the minimal necessary 
conditions. Obviously, collaboration can have more 
components that might be inactive while achieving a certain 
goal or used as standby to implement fault tolerance in case 
some components fail.  

In practice, at each particular moment of time, a 
collaborative environment ColENV does not try to achieve 
all the goals defined by the set GOALS at once.  Therefore, 
we can distinguish between a set of the active (trigged) 
goals, i.e., the goals that a collaborative environment tries to 
achieve at a certain moment of time and the goals that are not 
trigged. This defines a partitioning of the set of goals into 
two non-intersecting subsets: 
 

GOALS = ACT_G  ∪ PAS_G,  
where ACT_G  ∩  PAS_G = Ø 

 
In our modelling, we assume that the components are not 

kept idle but rather are getting engaged in different 
collaborations (as soon as their roles match the roles required 
in the collaboration). Therefore, when a goal is trigged, it 
might be the case that the conditions defined by MINCONF 
are not satisfied because the required components are still 
engaged in some other collaboration. If the required 
configuration is established then the collaboration executes 
the required actions to achieve the goal.  We introduce a set  
 

C_STATE : {Active, Activated, Dormant} 
 
 
to designate the status of the collaboration and introduce the 
function C_STATUS that maps the id of the collaboration to 
its status:  
 

C_STATUS : CNAME -> C_STATE 
 

The function CUR_CONFIG is defined as follows: 
 

CUR_CONFIG : CNAME-> CONFIG 
 
It designates the current configuration of the collaboration.  

Next, we formally define the relationships between the 
status of the collaboration, goals and configurations.   
 
The collaboration Ci is active, i.e.,  
 

C_STATUS (Ci) = Active 
 
if  
 

Gj ∈GOALS /\  
Gj∈Act_G  /\  
MINCONF(Gi)≤CUR_CONFIG(Ci) 

 
where the ordering relation ≤ is defined over the 
configurations as follows:  
 
For Confk and Confl, such that Confk, Confl ∈CONFIG,  
Confk ≤ Confk if  
 

)()()Conf(.

)()(Conf.

k

k

nlnknn

lnnn

rConfrConfdomrr

Confdomrdomrr




 

 
When a collaboration Ci is set to achieve a certain goal but 
has not established the required configuration or an 
execution of a scenario required to achieve a goal is 
suspended due to failures, its status is Activated, i.e.,  
 

C_STATUS (Ci) = Activated  
 
if  
 

Gj ∈GOALS /\  
Gj∈Act_G  /\  
 (MINCONF(Gi)≤CUR_CONFIG(Ci)) 

 
Finally, collaboration can be inactive, i.e., 
 
 C_STATUS (Ci) = Activated  
 
if  
 

Gj ∈GOALS /\  
Gj∈Pas_G   

 
We assume that components are involved in the 

collaboration with the status ACTIVE communicate with 
each other by exchanging messages. To achieve a certain 
goal, collaboration should perform a predefined scenario. In 
the next section, we define generic scenarios performed by 
the components in collaboration.  

95Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications



III. MODELLING COMPONENT INTERACTION 

We can describe a scenario by a UML [5] use case model 
and define the details of the communication by the sequence 
diagram. A high-level generic scenario is defined as follows: 
 

Description of use case  
Collaboration Ci achieves goal Gj 
 

Precondition Goal is eligible for execution and trigged 
                       Gj ∈GOALS /\  
                      Gj∈Act_G  /\  
                     

 
Postcondition Collaboration achieves goal or  
                         Collaboration reports failure 
 
Includes: Recover_Scenario_Ci_Gj 
 
Normal sequence of events: 
1. The coordinator of Ci receives a notification that a 

goal is activated and changes the status of the 
collaboration, i.e., 
 
    C_STATUS (Ci) := Activated  

 
2. The coordinator broadcasts an invitation to join a 

collaboration to the components of ColENV and 
monitors that the required configuration is 
established 

3. When a configuration is established, i.e.,  
 
    MINCONF(Gi)≤CUR_CONFIG(Ci)  
 
it broadcasts the message engaged to the involved 
components and changes the status of the 
collaboration, i.e.,  
 
    C_STATUS (Ci) := Active  
 

4. Components communicate to each other to perform 
the tasks required to achieve goal and the 
coordinator monitors the status of the components.  
If it discovers a component failure then go to step 8.  

5. When goal is achieved the components report to the 
coordinator about completion of scenario. 

6. Coordinator hands over the control to the 
collaborative environment manager and changes the 
status of the collaboration, i.e.,  

 
    C_STATUS (Ci) := Dormant 

 
7. The coordinator broadcasts disengage message to 

all components. 
8. The collaboration coordinator re-evaluates the 

status of the collaboration. If the condition of the 
sufficient configuration is not satisfied then it 
changes the status of the collaboration to Activated  
and activates timer.  

9. If the components recover within the timeout then 
the status is changed to Active and the normal 
execution is resumed.  

If the components fail to recover within timeout then 
switch to executing failure recovery scenario 
Recover_Scenario_Ci_Gj. 

 
Description of use case Recover_Scenario_Ci_Gj 
 
Precondition  

Normal execution of scenario to achieve  
goal Gj by collaboration Ci failed.  
Status of Ci is Activated 
 

Postcondition Reconfiguration and resuming normal 
execution or permanent failure  
   
Extends:       Collaboration Ci achieves goal Gj 
 
Sequence of events: 
1. The coordination of Ci broadcasts a new invitation to 

join a collaboration and activates a timer 
 

2. If within the timeout the coordinator receives a 
respond from components whose roles match the 
roles of failed components then continue.  Otherwise 
the scenario terminates, i.e., go to 4. 
 

3. The coordinator sends engagement message to the 
newly joining components and changes the status of 
the collaboration to Active. Normal execution 
resumes, i.e., the use case Collaboration Ci achieves 
goal Gj resumes. 
 

4. The collaboration sends the failure message to the 
collaborative environment manager and changes the 
status of the collaboration Ci to Dormant.   
 

5. The coordinator broadcasts disengage message to all 
components. 
 

Let us now depict the described scenario as a sequence 
diagram.  An excerpt from the sequence diagram is shown in 
Fig. 1.  We use the sequence diagram as an input for 
conducting analysis of deviations in the component 
interactions. Next, we present our analysis method, HAZOP, 
adapted for analysis of dynamic behaviour.  

IV. GOALS IN COLLABORATIVE ENVIRONMENTS 

HAZOP was originally developed in chemical industry [1,2].  
Essentially, HAZOP provides a structured basis for 
brainstorming by a group of experts about possible 
deviations in the behaviour of the system. As a result of 
conducting HAZOP, experts indentify hazards and propose 
means to mitigate them.  

HAZOP is conducted by applying the list of guidewords 
to certain system parameters. The list of the guidewords is 
presented in Table I. 

 

96Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications



TABLE I. LIST OF GENERIC HAZOP GUIDE WORDS 
 

Guideword Interpretation 
No/None Complete negation of the design 

intention. No part of the intention is 
achieved and nothing else happens

More Quantitative increase 
Less Qualitative increase 
As Well As  All the design intentions is achieved 

together with additions 
Part of  Only some of the design intention is 

achieved 
Reverse The logical opposite to design 

intention is achieved but something 
quite different happens 

Early Something happens earlier than 
expected relative to clock time 

Late  Something happens later than 
expected relative to clock time

Before Something happens before it is 
expected, relating to order of 
sequence 

After Something happens after it is 
expected, relating to order or 
sequence 

 
In Table I, we present the generic guideword list from the 
Defence Standard 00-58 [1] and IEC-61882 [2].  The 
HAZOP methods has been adapted to various domains and 
received several interpretations that allows the designers to 
focus on a wide spectrum of aspects – from human errors to 
software.   

For models of dynamic system behaviour, e.g., such as 
sequence diagrams, many guidewords interpretations can be 
used for exploring deviations during the component 
interactions. In this paper, we adopt the reinterpretation of 
the guidewords for HAZOP proposed in [3] for the UML 
sequence diagrams. The adopted interpretation of the 
HAZOP guidewords [3] to sequence diagram is given in 
Table II. 

Let us now demonstrate an application of the guidewords 
to the basic scenario of component interactions. We consider 
only a few examples that have resulted in identifying 
deviations that hinder achieving the required goal.  
 
Messages outgoing from the coordinator: 
 
Invite message:  
No:   Execution of scenario is not trigged  
Before:   Message sent when the goal is not trigged  
Earlier:   Message sent before the goal is trigged 
Later:   Message sent with the delay   
 
Messages from the components: 
Confirm participation 
No: Message might block execution of the goal if no other 
component confirm 
After: Message delays execution of scenario 

 
Inter-component Communication Message:  
No: No message is sent after completing execution: 
Deadlocks goal execution 
More than: several messages sent after completing 
execution: scenario is executed in wrong order 
Before /Early: message is sent before task completes and 
trigs earlier than required execution of tasks in another 
components  
Later: execution of the goal is delayed. 
 

TABLE II. INTERPRETATION OF HAZOP GUIDE WORDS 
 

Attribute Guideword Interpretation

 
 
 
Predecessor/ 
successors 
during 
interactions 

No Message is not sent
Other than  Unexpected 

message sent
As well as Message is sent as 

well as another 
message 

More than Message sent more 
often than intended

Less than Message sent is 
often as intended

Before Message sent before 
intended 

After Message sent after
intended 

Part of Only a part of a set 
of messages is sent

Reverse  Reverse order of 
expected messages

 
 
Message timing 

As well as Message sent at 
correct time and 
also incorrect time

Early Message sent earlier 
than intended time

Later Message sent later 
than intended time

 
 
 
 
Sender/ receiver 
objects 

No Message sent but 
never received by 
intended object

Other than Message sent to 
wrong object

As well as Message sent to 
correct object and 
also an incorrect 
object 

Reverse Source and 
destination objects 
are reversed

More Message sent to 
more objects than 
intended 

Less Message sent to 
fewer objects than 
intended 

No/none The conditions is 

97Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications



 
 
Message guard 
conditions 

not evaluated and 
can have any value 
(omission) 

Other than The condition is 
evaluated true 
whereas it is false, 
or vice versa 
(commission)

As well as The condition is 
well evaluated but 
other unexpected 
conditions are true

Part of  Only a part of 
conditions is 
correctly evaluated

 
 
Message guard 
conditions 
(cont.) 

 
 
 
Late 

The conditions is 
evaluated later than 
required (other 
dependant 
conditions have 
been tested before)
The conditions is 
evaluated later than 
correct 
synchronisation 
with environment

 
 
 
 
Message 
parameters/ 
return 
parameters 

No/None Expected 
parameters are 
never set/returned

More Parameters values 
are higher than 
intended 

Less Parameter values 
are lower than 
intended 

As Well As Parameters are also 
transmitted with 
unexpected ones

Part of  Only some 
parameters are 
transmitted 
Some parameters 
are missing

Other than Parameter 
type/number are 
different from those 
expected by 
receiver 

  
Our analysis allows us to derive recommendation how to 

mitigate the impact of deviations. For instance, it clearly 
demonstrates that a message omission leads to the system 
deadlock. Therefore, a time out mechanism should be 
implemented to ensure that the goal execution progresses 
despite possible message omissions. 

If a component sends a confirmation of a task completion 
then the consequent task might start in an incorrect state. To 

mitigate this hazard, a coordinator might additionally send a 
check to ensure that the required task was indeed completed.  
 

V. CONCLUSION AND RELATED WORK 

Our analysis is based on formal definition of relations 
between the goals that collaboration should achieve and 
states of the components. A formalization of a goal-oriented 
development was proposed in [6]. In this paper, the focus 
was not only on formal representation of relationships 
between the agents and goals but also on the systematic 
analysis of deviations. An approach to integration with other 
techniques for safety analysis was proposed in [8]. This 
work is relevant to a high-level analysis of collaboration. An 
approach to analysis of collaborative behaviour in the 
context of mode-rich systems was proposed in [9]. The 
focus of this work was on reasoning about modes of 
collaborating components. 

A formalization of agent collaboration has been 
performed in [7]. The focus of this work was on tolerating 
temporal agent failures, while in our work we focused on 
systematic analysis of deviations in component interactions. 

HAZOP analysis has been adapted to analyse human 
computer-interactions as well as process deviations. Our use 
of HAZOP is similar to the former and allows us to reason 
about interactions of components participating in 
collaboration. 

In this paper, we proposed a systematic approach to 
analyse component interactions in collaborative 
environments. We formally defined relationships between 
the state of components and ability of collaboration to 
achieve the required goals. We have demonstrated that the 
HAZOP method allows us systematically study deviations 
in the component interactions and establish a link between 
errors in interactions and goal achieving.  

As a future work, it would be interesting to apply the 
proposed approach to complex collaborative environment 
from the Internet of Things domain.  
 

REFERENCES 
[1] DefStan00-58. HAZOP studies on systems containing programmable 
electronics. Defence Standard, Ministry of Defence, UK, 2007. 

[2] IEC61882. Hazard and operability studies (HAZOP studies). 
Application guide. International Electrotechnical Comission, 2001.  

[3] J. Guiochet, D. Martin-Guillerez, and D. Powell. “Experience with 
Model-Based User-Centered Risk Assessment for Service Robots”. HASE 
2010: pp. 104-113. 

[4] A. van Lamsweerde “Goal-Oriented Requirements Engineering: A 
Roundtrip from Research to Practice”. Proceedings of RE’04, 12th IEEE 
Joint International Requirements Engineering Conference, Kyoto, Sept. 
2004, pp. 4-8. 

[5] OMG-UML2.OMG unified modeling language (UML). Superstructure, 
v2.1.2. Onject Management Group. 

[6] I. Pereverzeva, E. Troubitsyna, and L. Laibinis. “Formal Goal-Oriented 
Development of Resilient MAS in Event-B”. In Proc. of Ada-Europe 2012 
--17th International Conference on Reliable Software Technologies. 
Lecture Notes in Computer Science 7308, pp. 147–161, Springer, June 
2012.  

98Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications



[7] L. Laibinis, E. Troubitsyna, A. Iliasov, and A. Romanovsky. “Rigorous 
Development of Fault-Tolerant Agent Systems”. In M. Butler, C. Jones, A. 
Romanovsky and E. Troubitsyna (Eds.), Rigorous Development of Complex 
Fault-Tolerant Systems. Lecture Notes in Computer Science, vol. 4157, pp. 
241-260, Springer, Berlin, November 2006. 

[8] K. Sere and E. Troubitsyna. “Safety Analysis in Formal Specification”. 
In J.M. Wing, J. Woodcock, J. Davies (Eds.) Proc. of  FM'99 - Formal 
Methods: World Congress on Formal Methods in the Development of 

Computing Systems, Lecture Notes in Computer Science 1709, pp. 1564 – 
1583, Springer, France, September 1999. 

[9] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. 
Varpaaniemi, D. Ilic, and T. Latvala. “Developing Mode-Rich Satellite 
Software by Refinement in Event-B”. Science of Computer Programming, 
78(7), pp. 884-905, 2013. 

[10] Internet of Thigs. www.internet-of-things.eu/ . Accessed July, 2013. 

 

99Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications


