
Ensuring Correctness of Agent Interactions in Collaborative Environments

Elena Troubitsyna
Åbo Akademi University, Faculty of Science and Engineering

Domkyrkotorget 3, 20500,
Turku, Finland

e-mail: Elena.Troubitsyna@abo.fi

Abstract— Ensuring correctness of agent interactions in
complex systems constitutes a significant research challenge.
The highly dynamic nature of the system makes it hard to
predict all possible collaborations that the agents form during
the system functioning. Therefore, it is desirable to create a
generic abstract model that can facilitate reasoning about
correctness of agent interactions in the complex dynamic
collaborative environments. In this paper, we adopt a goal-
oriented approach to reasoning about agent collaboration and
define the basic abstractions underlying the behaviour of
complex collaborative systems. Each agent has individual
capabilities that are complemented and enhanced via
cooperation to allow the system to achieve the desired goals.
We define an abstract model of a system whose behaviour can
be structured as a set of dynamic coalitions. We propose a
structured approach to analysing possible deviations in the
component interactions based on Hazard and Operability
Study (HAZOP) and formally define the impact of deviations
in agent interactions on achieving the required goals.

Keywords -dynamic coalitions; interactions; goals; deviation
analysis; formal modelling.

I. INTRODUCTION
Over the recent years, creating new services and

applications via collaboration has gained a significant
popularity. Dynamic collaborations and compositions of
agent components allow the designers to achieve agility and
high productivity in the development of new features and
functions. Dynamic collaboration is in the heart of such
major trends as the Internet of Things [10], industrial internet
and Internet of Everything. These concepts are built on the
pervasive connectivity and openness towards sensors,
machines and devices. The opportunities offered by
dynamically composed collaborative environments offer rich
technical and business opportunities that can be efficiently
utilised to dynamically create novel flexible architectures.

The highly dynamic nature of collaborations requires
novel approaches that allow the designers to systematically
analyse the dynamics of collaborative environments and in
particular, predict how deviations in the agent behaviour and
interactions impact the functions that a collaborative
environment should implement.

Currently, it has been commonly accepted that the notion
of goals provides us with a suitable basis for formalising the
objectives that a system should achieve [4]. The agents form
coalitions to interactively work on achieving certain goals.

The agents forming collaboration provide certain individual
functionality that contributes to achieving a common goal.
When an agent or a communication infrastructure fails, a
coalition might fail to achieve the desired goal. Therefore,
we should systematically explore the possible deviations in
the agent and communication infrastructure behaviour and
study the impact of these deviations on the possibility of
achieving the required goals.

In this paper, we demonstrate how to use the HAZOP
method [1][2] to systematically study possible deviations in
the agent interactions. We propose a classification of the
types of deviations in the agent interactions and define their
impact on achieving system goals.

We define a generic model that formalises the
relationships between the system goals and possible
deviations in agent behaviour and interactions. Since the
proposed model explicitly links the system goals with the
behaviour of the individual agents in a coalition, it can
facilitate design of complex collaborative systems.

The paper is structured as follows. In Section II, we
define collaborative environments in terms of the goals that
should be achieved by agent coalitions. In Section III, we
describe generic scenarios of agent interactions. Section IV
shows how to systematically analyse deviations in the
component interactions using HAZOP. Finally, in Section V,
we discuss the proposed approach and overview the related
work.

II. TOWARDS FORMAL MODELLING OF COLLABORATIVE
ENVIRONMENTS

In this paper, we define a collaborative environment as a
set of coalitions, i.e.,

ColENV = {C1, C2, ..., CN}

where Ci is an id of a coalition.

A coalition is a dynamic composition of the agents. The
agents join and leave a coalition depending on their states
and the current goal. As soon as an agent joins a coalition, it
can communicate and collaborate with all the agents
involved into it. In general, any coalition is formed to fulfil a
certain goal [4]. The set of goals, which an entire
collaborative environment can achieve, is denoted as
GOALS:

GOALS = {G1,G2, ..., GM}

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-575-3

COLLA 2017 : The Seventh International Conference on Advanced Collaborative Networks, Systems and Applications

The set consists of the constants defining the names of

the goals. We assume that each particular coalition is formed
to perform a certain goal from the set GOALS.

A goal is an objective that a coalition should achieve. A
goal can be decomposed into a set of subgoals, and
furthermore, into a set of sub-subgoals that each component
in the collaboration should perform. Each agent carries a
special attribute describing the functionality that it
implements. Often these attributes are called roles. Usually,
an agent implements a set of roles chosen according to the
tasks that it should perform in each particular coalition.

For each coalition, we can define a configuration
function that indicates how many agents in certain roles a
coalition should have for a goal to be achievable. Hence, a
configuration can be defined as follows:

Config ∈ CONFIG, where CONFIG : P(ROLES -> N)

where ROLES is a set of roles, P denotes a powerset and N
is a set of natural numbers.

Often a configuration of a coalition is defined not only by
a goal but also non-functional parameters, e.g., performance.
We assume that goals are distinct if their non-functional
parameters are different. Therefore, we can unambiguously
map a set of goals onto the set of configurations.

For each goal Gi, Gi ∈ GOALS, we can define the
minimal sufficient configuration as a function

MINCONF : GOALS -> CONFIG

The function defines how many agents in each role a

coalition should have to be able to achieve a certain goal.
The function MINCONF defines the minimal necessary
conditions. Obviously, a coalition can have more agents than
required by MINCONF. The additional agents can remain
inactive while achieving a certain goal and become activated
to replace failed agents in case some of initially involved
agents fail.

In practice, at each particular moment of time, a
collaborative environment ColENV does not try to achieve
all the goals defined by the set GOALS at once. Therefore,
we can distinguish between a set of the active (triggered)
goals Act_G, i.e., the goals that a collaborative environment
tries to achieve at a certain moment of time and the goals that
are not triggered, i.e., passive goals Pas_G,. This defines a
partitioning of the set of goals into two non-intersecting
subsets:

GOALS = Act_G ∪ Pas_G,
where Act_G ∩ Pas_G = Ø

In our modelling, we assume that the agents are not

dormant and hence, they are getting engaged in the different
coalitions (as soon as their roles match the roles required in
the coalition. Therefore, when a goal is activated, it might
take some time to fulfil the conditions defined by MINCONF
because some of the required agents are still engaged in
another coalitions. If the required configuration is

established, then, the coalition executes the required actions
to achieve the goal. We introduce a set

C_STATE : {Active, Activated, Dormant}

to designate the status of the coalition. The constant Active
means that the coalition has the required configuration and is
assigned a goal to achieve. The constant Activated means
that the coalition is assigned a goal but it has not established
the required configuration. Correspondingly, the constant
Dormant means that the configuration is currently not
involved into an execution of any goal. We introduce the
function C_STATUS that maps the id of the collaboration to
its status:

C_STATUS : CNAME -> C_STATE

The function CUR_CONFIG is defined as follows:

CUR_CONFIG : CNAME-> CONFIG

It designates the current configuration of the coalition.

Next, we formally define the relationships between the
status of a coalition, goals and configurations.

The coalition Ci is active, i.e.,

 C_STATUS (Ci) = Active
if

Gj ∈GOALS /\
Gj∈Act_G /\
MINCONF(Gi)≤CUR_CONFIG(Ci)

where the ordering relation ≤ is defined over the
configurations as follows:

For Confk and Confl, such that Confk, Confl ∈CONFIG,
Confk ≤ Confl if

)()()Conf(.
)()(Conf.

k

k

nlnknn

lnnn

rConfrConfdomrr
Confdomrdomrr
≤⇔∈∀

∈⇔∈∀

where dom denotes the domain of function or relation.
 When a coalition Ci is set to achieve a certain goal but
has not established the required configuration or an
execution of a scenario required to achieve a goal is
suspended due to failures, its status is Activated, i.e.,

 C_STATUS (Ci) = Activated

if
 Gj ∈GOALS /\
 Gj∈Act_G /\
 ¬ (MINCONF(Gi)≤CUR_CONFIG(Ci))

Finally, a coalition can be inactive, i.e.,

 C_STATUS (Ci) = Activated

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-575-3

COLLA 2017 : The Seventh International Conference on Advanced Collaborative Networks, Systems and Applications

if

 Gj ∈GOALS /\
 Gj∈Pas_G

We assume that agents are involved in the coalition with

the status ACTIVE communicate with each other by
exchanging messages. To achieve a certain goal, a coalition
should perform a predefined scenario. In the next section, we
define generic scenarios performed by the components in a
coalition.

III. MODELLING SYSTEM ARCHITECTURE AND AGENT
INTERACTIONS

 A goal defines a set of states that a collaborative
environment should achieve. While working of achieving a
certain goal, a coalition executes a certain scenario. An
execution of a scenario is triggered by a coordinator of the
coalition. It is an agent with the specific rights to initiate and
finalise the scenario execution. We can describe a scenario
by a UML [5] use case model and supplement it by a
description of the flow of events associated with it. The
actors of the use case model are the agent roles and the use
cases are the coalitions achieving the corresponding goals.
Due to the generic nature of our model, we omit its graphical
representation. A description of typical and abnormal flows
of events in a generic use case associated with our system
can be defined as shown below:

Description of use case
Coalition Ci achieves goal Gj

Precondition Goal is eligible for execution and triggered

Gj ∈GOALS /\
Gj∈Act_G /\

Postcondition Collaboration achieves goal or
 Collaboration reports failure

Includes: Recover_Scenario_Ci_Gj

Normal sequence of events:
1. The coordinator of Ci receives a notification that a

goal is activated and changes the status of the
coalition, i.e.,

C_STATUS (Ci) := Activated

2. The coordinator broadcasts an invitation to join a

coalition to the agents of ColENV and monitors that
the required configuration is established

3. When a configuration is established, i.e.,

MINCONF(Gi)≤CUR_CONFIG(Ci)

it broadcasts the message engaged to the involved
components and changes the status of the
collaboration, i.e.,

C_STATUS (Ci) := Active

4. Agents collaborate and communicate with each
other to perform the tasks required to achieve the
required goal and the coordinator monitors the
status of the agents in the duration of the scenario
execution. If it discovers an agent failure then go to
step 8.

5. When goal is achieved the agents report to the
coordinator about completion of scenario.

6. Coordinator hands over the control to the
collaborative environment manager and changes the
status of the collaboration, i.e.,

 C_STATUS (Ci) := Dormant

7. The coordinator broadcasts disengage message to

all agents.
8. The collaboration coordinator re-evaluates the

status of the coalition. If the condition of the
sufficient configuration is not satisfied then it
changes the status of the collaboration to Activated
and activates timer.

9. If the agents recover within the timeout then the
status is changed to Active and the normal execution
is resumed.

10. If the agents fail to recover within timeout then
switch to executing failure recovery scenario
Recover_Scenario_Ci_Gj.

Description of use case Recover_Scenario_Ci_Gj

Precondition

Normal execution of scenario to achieve
goal Gj by coalition Ci failed.
Status of Ci is Activated

Postcondition Reconfiguration and resuming normal
execution or permanent failure

Extends: Coalition Ci achieves goal Gj

Sequence of events:
1. The coordination of Ci broadcasts a new invitation to

all agents of the collaborative environment to join a
coalition and activates a timer

2. If within the timeout the coordinator receives a
respond from the agents whose roles match the roles
of failed agents then continue. Otherwise the
scenario terminates, i.e., go to 4.

3. The coordinator sends engagement message to the
newly joining agents and changes the status of the
coalition to Active. After this, the normal execution

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-575-3

COLLA 2017 : The Seventh International Conference on Advanced Collaborative Networks, Systems and Applications

resumes, i.e., the use case Collaboration Ci achieves
goal Gj resumes.

4. The coalition sends the failure message to the
collaborative environment manager and changes the
status of the collaboration Ci to Dormant.

5. The coordinator broadcasts disengage message to all
agents.

Let us now depict the proposed system structure. We
distinguish between three layers: the collaborative manager
layer, coalition coordinators and, finally, agents. The
structure is presented in Figure 1.

Figure 1. System architecture

The collaborative environment manager is responsible for

triggering the system goals and broadcasting the
corresponding messages to the coalition coordinators. The
coalition coordinators (a special kind of agents) check
whether they are eligible to initiate a coalition and if this is
the case, broadcast the invitations to all agents of the
collaborative environment. The coalition coordinator
monitors the coalition forming and as soon as the
configuration conditions are fulfilled, monitors an execution
of the scenario associated with the given goal. Upon
completion of the scenario, it acknowledges it to the
collaborative environment manager and disengage the
agents. If the execution of the scenario fails and cannot be
recovered then the coalition coordinator reports the failure
the coalition manager.

To join a coalition, each agent a check that it has the
eligible role and becomes engaged in the coalition. If the
resources permit then an agent can join several coalitions at
the same time but typically in different roles.

As it is easy to note, the main complexity of ensuring
correctness of agent collaboration is associated with handling
agent failures and recovery. Indeed, it is easy to run into a
deadlock situation, i.e., reach the state that no progress can
be achieved because the agents are engaged in different
coalitions and the system lack the resources to recover and
resume its execution. Next, we discuss how to systematically
analyse agent failure and ensure correctness of agent

collaboration even in presence of failures using our analysis
method, HAZOP, adapted for the analysis of the dynamic
behaviour.

IV. SYSTEMATIC ANALYSIS OF CORRECTNESS OF AGENT
COLLABORATION

 HAZOP – Hazard and Operability Study – is a well-
established technique in safety analysis [1][2]. It was
originally developed in chemical industry. HAZOP provides
a group of safety experts with a structured basis for
brainstorming possible deviations in the behaviour of the
system and analysing their impact on safety. As a result of
performing HAZOP, the safety experts typically identify
hazards associated with the system and propose the means to
mitigate them.

HAZOP defines a list of guideword that can be
systematically applied to certain system parameters to
identify whether the deviations in these parameters can cause
safety hazards. The list of the guidewords is presented in
Table I.

TABLE I. LIST OF GENERIC HAZOP GUIDE WORDS

Guideword Interpretation
No/None Complete negation of the design

intention. No part of the intention is
achieved and nothing else happens

More Quantitative increase
Less Qualitative increase
As Well As All the design intentions is achieved

together with additions
Part of Only some of the design intention is

achieved
Reverse The logical opposite to design

intention is achieved but something
quite different happens

Early Something happens earlier than
expected relative to clock time

Late Something happens later than
expected relative to clock time

Before Something happens before it is
expected, relating to order of
sequence

After Something happens after it is
expected, relating to order or
sequence

 Table I presents the generic guideword list from the
Defence Standard 00-58 [1] and IEC-61882 [2]. Since the
HAZOP method has been used in different domains, it has
received several interpretations that allow the engineers to
focus on a wide spectrum of aspects – from human errors to
software.

To analyse the dynamic aspect of the system behaviour,
we can interpret the guidewords in a variety of ways. While
choosing the interpretation, we aim at understanding how the
deviations in the agent behaviour and interactions in a
coalition affect the likelihood of achieving the desired goals.
In this paper, we adopt the reinterpretation of the HAZOP

Collaborative
environment

Coalition
coordinator 1

Coalition
coordinator

Agent 1 Agent 2 Agent N

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-575-3

COLLA 2017 : The Seventh International Conference on Advanced Collaborative Networks, Systems and Applications

guidewords proposed in [3]. The adopted interpretation of
the HAZOP guidewords [3] focuses on the message
exchange between the agents, as shown Table II.

Let us now explain how to apply the guidewords to the
basic scenario of the agent interactions. We present the
examples illustrating the situation in which the deviations in
the agent behaviour result in a failure or a delay in achieving
the desired goals.

Messages outgoing from the coordinator:

Invite message:
No: Execution of scenario is not triggered
Before: Message sent when the goal is not triggered
Earlier: Message sent before the goal is triggered
Later: Message sent with the delay

Messages from the agents:
Confirm participation
No: Message might block execution of the goal if no other
agent confirm
After: Message delays execution of scenario

Inter-agent Communication Message:
No: No message is sent after completing execution:
Deadlocks goal execution
More than: several messages sent after completing
execution: scenario is executed in wrong order
Before /Early: message is sent before task completes and
triggers earlier than required execution of tasks in another
agents
Later: execution of the goal is delayed.

TABLE II. INTERPRETATION OF HAZOP GUIDE WORDS

Attribute Guideword Interpretation

Predecessor/
successors
during
interactions

No Message is not sent
Other than Unexpected

message sent
As well as Message is sent as

well as another
message

More than Message sent more
often than intended

Less than Message sent is
often as intended

Before Message sent before
intended

After Message sent after
intended

Part of Only a part of a set
of messages is sent

Reverse Reverse order of
expected messages

Message timing

As well as Message sent at
correct time and
also incorrect time

Early Message sent earlier
than intended time

Later Message sent later
than intended time

Sender/ receiver
objects

No Message sent but
never received by
intended recipient

Other than Message sent to
wrong recipient

As well as Message sent to
correct recipient and
also an incorrect
recipient

Reverse Source and
destination are
reversed

More Message sent to
more recipients than
intended

Less Message sent to
fewer recipients
than intended

Message guard
conditions

No/none The conditions is
not evaluated and
can have any value
(omission)

Other than The condition is
evaluated true
whereas it is false,
or vice versa
(commission)

As well as The condition is
well evaluated but
other unexpected
conditions are true

Part of Only a part of
conditions is
correctly evaluated

Message guard
conditions
(cont.)

Late

The conditions is
evaluated later than
required (other
dependant
conditions have
been tested before)
The conditions is
evaluated later than
correct
synchronisation
with environment

Message
parameters/
return
parameters

No/None Expected
parameters are
never set/returned

More Parameters values
are higher than
intended

Less Parameter values
are lower than
intended

As Well As Parameters are also
transmitted with
unexpected ones

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-575-3

COLLA 2017 : The Seventh International Conference on Advanced Collaborative Networks, Systems and Applications

Part of Only some
parameters are
transmitted
Some parameters
are missing

Other than Parameter
type/number are
different from those
expected by
receiver

Our analysis allows us to derive recommendation how to

mitigate the impact of deviations. For instance, it clearly
demonstrates that a message omission leads to the system
deadlock. Therefore, a timeout mechanism should be
implemented to ensure that the goal execution progresses
despite possible message omissions.

If an agent sends a confirmation of a task completion
then the consequent task might start in an incorrect state. To
mitigate this hazard, a coordinator might additionally check
to ensure that the required task was indeed completed.

 Our analysis of the deviations in the agent behaviour
allows us to derive the following recommendations to ensure
correctness of agent interactions in the collaborative
environments:

• Implement acknowledgement and timeout
mechanisms on the communication between the
collaborative environment manager and the coalition
coordinators during the goal triggering

• Implement acknowledgment, timeout and resend
mechanism between the collaborative environment
manager and the coalition coordinators for the task
completion communication

• Ensure that a reliable level of connectivity is
maintained in the collaborative environment to
support inter-agent communication.

V. CONCLUSION AND RELATED WORK
In this paper, we have proposed a general model

facilitating reasoning about correctness of agent interactions
in the collaborative environments. Our analysis is based on
formal definition of relations between the goals that
collaboration should achieve and states of the agent. A
formalization of a goal-oriented development was proposed
in [6]. In this paper, the focus was not only on formal
representation of relationships between the agents and goals
but also on the systematic analysis of deviations.

An approach to integration with other techniques for
safety analysis was proposed in [8]. This work is relevant to
a high-level analysis of collaboration. An approach to
analysis of collaborative behaviour in the context of mode-
rich systems was proposed in [9]. The focus of this work
was on reasoning about modes of collaborating components.

A formalization of agent collaboration has been
performed in [7]. The focus of this work was on tolerating
temporal agent failures, while in our work we focused on
systematic analysis of deviations in component interactions.

HAZOP analysis has been adapted to analyse human
computer-interactions, as well as process deviations. Our
use of HAZOP is similar to the former and allows us to
reason about interactions of components participating in
collaboration.

In this paper, we proposed a systematic approach to
analyse agent interactions in collaborative environments.
We formally defined relationships between the state of
agents and ability of coalition to achieve the required goals.
We have demonstrated that the HAZOP method allows us
systematically study deviations in the agent interactions and
establish a link between errors in interactions and goal
achieving.

As a future work, it would be interesting to apply the
proposed approach to complex collaborative environment
from the Internet of Things domain.

REFERENCES
[1] DefStan00-58, HAZOP studies on systems containing programmable
electronics. Defence Standard, Ministry of Defence, UK, 2007.
[2] IEC61882, Hazard and operability studies (HAZOP studies).
Application guide. International Electrotechnical Comission, 2001.
[3] J. Guiochet, D. Martin-Guillerez, and D. Powell, “Experience with
Model-Based User-Centered Risk Assessment for Service Robots”, HASE
2010: pp. 104-113.
[4] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: A
Roundtrip from Research to Practice”, Proceedings of RE’04, 12th IEEE
Joint International Requirements Engineering Conference, Kyoto, Sept.
2004, pp. 4-8.
[5] OMG-UML2.OMG unified modeling language (UML). Superstructure,
v2.1.2, Onject Management Group.
[6] I. Pereverzeva, E. Troubitsyna, and L. Laibinis, “Formal Goal-Oriented
Development of Resilient MAS in Event-B”, in Proc. of Ada-Europe 2012
--17th International Conference on Reliable Software Technologies.
Lecture Notes in Computer Science 7308, pp. 147–161, Springer, June
2012.
[7] L. Laibinis, E. Troubitsyna, A. Iliasov, and A. Romanovsky, “Rigorous
Development of Fault-Tolerant Agent Systems”, in M. Butler, C. Jones, A.
Romanovsky and E. Troubitsyna (Eds.), Rigorous Development of
Complex Fault-Tolerant Systems. Lecture Notes in Computer Science, vol.
4157, pp. 241-260, Springer, Berlin, November 2006.
[8] K. Sere and E. Troubitsyna, “Safety Analysis in Formal Specification”.
In J.M. Wing, J. Woodcock, J. Davies (Eds.) Proc. of FM'99 - Formal
Methods: World Congress on Formal Methods in the Development of
Computing Systems, Lecture Notes in Computer Science 1709, pp. 1564 –
1583, Springer, France, September 1999.
[9] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, D. Ilic et al, “Developing Mode-Rich Satellite Software by
Refinement in Event-B”, Science of Computer Programming, 78(7), pp.
884-905, 2013.
[10] Internet of Things, [Online]. Available from: www.internet-of-
things.eu/ March, 2017.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-575-3

COLLA 2017 : The Seventh International Conference on Advanced Collaborative Networks, Systems and Applications

	I. Introduction
	II. Towards Formal modelling of Collaborative Environments
	III. Modelling System Architecture and Agent InteractionS
	IV. Systematic Analysis of Correctness of Agent Collaboration
	V. Conclusion and Related Work
	References

