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Abstract—Vectors Symbolic Architectures (VSAs) are distributed
representations that combine random patterns, representing
atomic symbols across a hyper-dimensional vector space, into
new symbolic vector representations that semantically represent
the component vectors and their relationships. In this paper, we
extend the VSA approach and apply it to decentralized workflows,
capable of executing distributed compute nodes and their inter-
dependencies. To achieve this goal, services must be discovered
and orchestrated in a decentralized way with the minimum
communication overhead whilst providing detailed information
about the workflow - tasks, dependencies, location, metadata,
and so on. To this end, we extended VSAs using a hierarchical
vector chunking scheme that enables semantic matching at each
level and provides scaling up to tens of thousands of services. We
then show how VSAs can be used to encode complex workflows
by building primitives that represent sequences (pipelines) and
then extend this to support full Directed Acyclic Graphs (DAGs)
and apply this to five well-known Pegasus scientific workflows to
demonstrate the approach.

Keywords–vector symbolic architectures; decentralized work-
flows; semantics; associative memory models.

I. INTRODUCTION

Workflows provide a robust means of describing applica-
tions consisting of control and data dependencies along with
the logical reasoning necessary for distributed execution. For
wired networks, there have been a wide variety of workflow
systems developed [1]–[10]. A scientific workflow is a set of
interrelated computational and data-handling tasks designed
to achieve a specific goal. It is often used to automate pro-
cesses, which are frequently executed, or to formalize and
standardize processes. The majority of existing workflows
rely on centralized management and therefore require a stable
endpoint in order to deploy such a manager. In more dynamic
settings, such as Mobile Ad Hoc Networks (MANETs) [11]
where more collaborative applications (e.g., multi-user chats,
or distributed analytics for coalitions [12], [13]) are needed, on
demand workflows that are capable of spontaneously discov-
ering multiple distributed services without central control are
essential. The resulting distributed pathways are complex, and
in some cases impossible to manage centrally because they are
based on localized decisions, and operate in extremely transient
environments.

In the current state-of-the-art, discovery of workflow steps
is not dynamic; the exact services to be used for each workflow
step must be specified in advance and, further, workflow or-
chestration is typically managed via a central point of control.
Macker and Taylor [14] provides a mechanism that is decen-
tralised, however, the specification of each workflow step, ip-
address, connections and data, must be known in advance and

is passed around between services via a JSON data block.
Wittern et al. [15] present a graph based data model that
aims to capture relationships between services and their usage
detail for API ecosystems; the approach provides an interface
that enables consumers to search for required services and
service providers to obtain usage and compatibility statistics
between the services and those of other providers as well as
discovering new requirements. In contrast, we describe the use
of VSAs to enable individual services to be self-describing and
to learn contexts for which they are compatible. We describe a
decentralised, multicast, environment where individual services
can interrogate VSA encoded workflow messages, compute
their compatibility to participate in a particular workflow step
and be chosen if they are the best match. This is analogous
to a group of humans listening to various work requests and
deciding for themselves that they are capable and available to
do a piece of work, i.e., all humans can understand the work
request message and each human knows for themselves if they
are available and capable of doing the the work. Naturally,
more than one person may offer to do a particular job and we
describe mechanisms for negotiating who gets to do the work.

However, applying VSAs to workflows requires several ex-
tensions and our contributions to this area can be summarized
as follows:

• Scaling Through Chunking: To address scalability, we
extend VSAs using a hierarchical vector chunking scheme
that is capable of binding multiple levels of abstraction
(workflow and sub-workflows/branches) into single vec-
tor. This approach scales to tens of thousands of vectors
while maintaining semantic matching.

• Encoding Workflows: We employ our chunk encoding
scheme to encode and decode very large sequences of
services.

• Representing Workflows Primitives: We extend the
encoding scheme to support Directed Acyclic Graph
(DAG) workflows having one-to-many, many-to-many,
and many-to-one connections.

• Distributed Discovery and Orchestration: We show
how our VSA encoding scheme can be used for dis-
tributed discovery and orchestration of complex work-
flows. Workflow vectors are multicast to the network and
participating services compute their own compatibility
and offer themselves up for participation in the workflow.

We show that the result provides several desirable features
and byproducts: it can encode workflows /sub-workflows that
can be unbound on-the-fly and executed in a completely
decentralized way; associated metadata can also be embedded
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into the vector, e.g., security, configuration, etc.; the vector
representation is extremely compact and self-contained and
can be passed around using standard group transport protocols;
and semantic comparisons or searches are scoped within a
sub-group of services in a workflow, allowing scoped service
matchmaking. We, then, apply the implementation to several
Pegasus [16] workflows (Montage, CyberShake, Epigenomics,
Inspiral Analysis, and SIPHT) and analyze the output.

The rest of the paper is structured as follows. In the next
section, we provide some background into VSAs. In Section
III, we outline the contributions we have made to scale VSAs
and the extensions we applied for Workflows. In Section IV, we
show how the VSA approach is applied to Linear Workflows
and then to more complex DAG workflows. We discuss the
resulting architecture and implementation in Section V, apply it
to several Pegasus workflows in Section VI, and in Section VII,
we conclude.

II. VECTOR SYMBOLIC ARCHITECTURE OVERVIEW

VSAs [17] are distributed representations that can be
considered to sit somewhere between pure connectionist ap-
proaches and classic symbolic approaches, in that they employ
’atomic’ symbols to build complex representations of objects,
like the classical symbolic approach to cognitive modeling and
artificial intelligence research. However, the atomic symbols
employed are random patterns of values spread over a hyper-
dimensional vector space of dimension N. VSA symbols
represent data and object features using random symbolic
component vectors and combine these into vectors that seman-
tically represent the component vectors and their relationships.
VSA vectors are, therefore, said to be semantically self-
describing [18]. Atomic vectors can be real valued like Plate’s
Holographic Reduced Representation (HRR) [19], typically
having dimension 512 ≤ N < 2048, or binary vectors, such as
Pentti Kanerva’s Binary Spatter Codes (BSC) [20], typically
having N ≥ 10, 000. For the work described here, we chose
to build off Kanerva’s BSCs, but most of the equations and
operations listed and discussed should also be compatible with
HRRs [21], too.

In BSCs, atomic symbols are assigned a random vector to
represent an entity and due to the very high dimensionality
employed, such atomic vector symbols are uncorrelated to
each other with a high probability [20]. Higher level/com-
plex concepts are built by combining atomic vectors using
a bundling or superposition operation. A key advantage of
this approach is that superposition involves no computation-
ally expensive iterative learning of weights like traditional
connectionist approaches [22]; rather, learning is achieved by
direct combination of sub-features. An additional advantage
is that VSA methods are completely deterministic and hence
analysable and explainable, unlike traditional connectionist
methods.

Superposition is the combination of sub-feature vectors
into a same sized compound vector such that each vector
element participates in the representation of many entities,
and each entity is represented collectively by many elements
[21]. Normalised Hamming Distance (HD) can be used to
probe such a vector for its sub-features without unpacking or
decoding the sub-features. If two high level concept vectors
contain a number of similar sub-features, such vectors are said
to be semantically similar, e.g., if we have three services:

Service1 = AudioINv +DeNoisev + Convolutionv + Classifyv

Service2 = AudioINv +DeNoisev +DFTv + Classifyv

Service3 = AudioINv + LowPassv + PowerSpecv + Classifyv

where ’+’ is the superposition or bundling operator; then,
comparing Service1 with Service2 will give a match since they
have 3 common sub-features. Also, Service1 and Service2 will
be more similar to each other than they are to Service3.

An issue arises, however, when using superposition to com-
pare compound vectors in this way because such compound
vectors behave as an unordered bag of features. Thus, if:

Service4 = AudioINv +DeNoisev + Classifyv + ShutDownLinev

then Service4 would be equally similar to Service1 as Service2,
despite having a different output step. In order to resolve such
issues VSAs employ a binding operator that allows feature
values such as DeNoise and Classify to be associated with a
particular field name, or role. This is analogous to how variable
names are used in programming languages to associate values
with a particular property, e.g., speed=3.

Services must agree upon a common method to assign
atomic vectors for roles whereas feature vectors are usually
compound vectors built up from lower level compound vectors
and/or atomic vectors. When a role is bound to a value this
results in a role-filler pair. Feature values such as DeNoise can
be detected or extracted from the role-filler using an inverse
binding operator. Bitwise XOR is used as both binding and
unbinding with BSCs because it is its own inverse. In addition
it is commutative and distributive over superposition ( [20],
page 147). It is also lossless, which means that both roles and
fillers can be retrieved from a role-filler pair without any loss,
e.g., using ′.′ as the bitwise XOR operator; if Z = X.A then
X.Z = X.(X.A) = X.X.A = A, since X.X = 0, the zero
vector. Similarly A.Z = X. Due to the distributive property,
the same method can be used to test for sub-feature vectors
embedded in a compound vector as follows:

Z = X.A + Y .B (1)
X.Z = X.(X.A + Y.B) = X.X.A + X.Y.B (2)
X.Z = A + X.Y.B (3)

Examination of (3) reveals that vector ‘A’ has been ex-
posed, thus, if we perform HD(X.Z,A) we will get a match.
The second term ′X.Y.B′ is considered noise because ′X.Y.B′

is not in our known ’vocabulary’ of features/symbols. When
a role and value (filler) are bound together this is equivalent
to preforming a mapping or permutation of a vector value’s
elements within the hyper-dimensional space, so that the new
vector produced is uncorrelated to both the role and filler
vectors. For example, if V = R.A and W = R.B then R, A

and B will have no similarity to V or W . However, comparing
V with W will produce the same match value to comparing
A with B. In other words, if A is closely similar to B then V

will be closely similar to W because binding preserves distance
within the hyper-space ( [20, page 147]).

Thus, binding with atomic role vectors can be used as a
method of hiding and separating values within a compound
vector while maintaining the comparability between vectors.
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This important property can be used to encode position
and temporal information about sub-feature vectors within
a compound vector. It also explains why we can state that
′X.Y.B′ from (3) above, will not match to any known symbol,
however, note that we can get back to B from ′X.Y.B′; simply
perform the appropriate xor’s, B = ((X.Y.B).X).Y . We can
now rephrase our Service description to differentiate its sub-
features, i.e., we can reformulate Service1 to:

Service1 = Inputrv. AudioINv+Cleanuprv.DeNoisev
+ Processrv.Convolutionv + Outputrv.Classifyv

This clearly resolves the incorrect matching between Service1

and Service2 with Service4. To test if Service1 uses
DeNoisev as its cleanup step we perform:

HD(xor(Cleanuprv, Service1), DeNoisev) (4)

When using 10kbit vectors, if the result of (4) is less than
0.47 then the probability of DeNoisev being detected in error
is less than 1 in 109 ( [20, page 143]). If we have an audio
signal we want to classify, we might multicast a request vector
Z = Inputrv.AudioINv+Outputrv.Classifyv which would
cause listening services such as services 1, 2 and 3 to respond
or become activated. We could further query the responding
services to determine what type of cleanup and processing they
do as per (4).

III. EXTENSIONS TO VSAS FOR WORKFLOWS

The number of detectable sub-features that can be superim-
posed into a single vector is of limited capacity, 89 vectors for
BSCs of dimension 10k [23], and this issue must be addressed
in order to encode large workflows. Chunking is a bundling
method that combines groups of vectors into a single com-
pound vector which is then used as base for further bundling
operations, recursively producing a hierarchical tree structure
where each node in the tree is a compound vector, as shown
in Figure 1. Various methods of recursive chunking have been
described [19]–[21], [23]. However, such methods suffer from
limitations when employed for multilevel recursion - some
lose their semantic matching ability if any single term differs,
others can not maintain separation of sub-features for higher
level compound vectors when lower level chunks contain the
same vectors. We addressed these issues and describe a novel
recursive encoding scheme that provides semantic matching at
each level by combining two different methods of permuting
vectors.

C

B1 B2 B3 B4

A1 A2 A3 A4

+ + +

+ + +

Figure 1. Workflow Chunk Tree, chunking proceeds from the bottom up.

In our scheme, the terminal nodes are worker services,
the higher level nodes are concepts used to apply grouping to

parts of workflow. The higher level nodes (known as ’clean-up
memory’ [19], [20], [23]) are still services but they simply pro-
vide a proxy to the services to be unbound and executed, and
thus are typically co-located with the first service of the sub-
sequence, i.e., there is no network overhead. In a centralised
system, Clean-up memory is typically implemented as an
autoassociative memory. For our distributed workflow system,
clean-up memory is implemented by the services themselves
matching and resolving to their own vector representation.

Recchia et al., [24] point out that, for large random vectors,
any mapping that permutes the elements can be used as a
binding operator including cyclic-shift. The encoding scheme
shown in (5) employs both XOR and cyclic-shift binding to
enable recursive bindings capable of encoding many thousands
of sub-features even when there are repetitions and similarities
between sub-features:

Zx =
x∑

i=1

Zi
i .

i−1∏
j=0

p0
j + StopV ec.

i∏
j=0

p0
j (5)

Omitting StopV ec for readability, this expands to,
Zx = p0

0.Z
1
1 + p0

0.p
0
1.Z

2
2 + p0

0.p
0
1.p

0
2.Z

3
3 + ... (6)

where

• ‘.′ = XOR and ‘+′ = BitwiseMajority V ote.
• The exponentiation operator is redefined to mean cyclic-

shift, +ve exponents mean Cshift right, −ve expo-
nents mean Cshift left.

• Zx is the next highest semantic chunk item containing
a superposition of x sub-feature vectors. Zx chunks can
be combined using (5) into higher level chunks, e.g., Zx

might be B1, the superposition of A1, A2, A3, ...

• Z1, Z2, Z3, ... are sub-features being combined for the in-
dividual nodes in Figure 1. Each ‘Z’ is itself a compound
vector representing a sub-workflow or a compound vector
description for an individual service step.

• p0, p1, p2, ... are a set of known atomic role vectors used
to define the current position/step in the workflow. The
reason multiple ‘p′ vectors are XOR’ed together to define
a single position within the workflow is to provide an
iterative method for ordered activation of workflow steps
during workflow execution, see (9).

• x is the, definable, ’chunk size’.
• StopV ec is a role vector that indicates to Zx that all sub-

feature/workflow steps have been executed.

A. Workflow execution
During workflow execution of a chunk tree similar to

Figure 1 and encoded using (5), control first passes down
the chunk tree, i.e., from C → B1 → A1, before traversing
horizontally, A1 → A2 → A3 → A4 → B1 StopV ec. At this
point B1 ’sees’ its own StopV ec and employs (9) to traverse
horizontally at the next higher semantic level; see also flow
arrows in Figure 2.

Referring to (6), an initiator or requester prepares the
workflow, Zx, for instantiation onto the network by performing
an unbind operation, using (9), thus exposing the first workflow
step, Z1, as shown:

Z′1 = (T + p0
0.Zx)

-1 (7)

Z′1 = p-1
0 .T -1 + Z0

1 + p-1
1 .Z1

2 + p-1
1 .p-1

2 .Z2
3+... (8)
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The T vector is a known atomic role vector used by Zx’s
children to calculate their position within the sub-workflow.
It is only bundled onto the workflow vector when an initiator
or higher level node is requesting execution of its own sub-
workflow, i.e., when traveling down the workflow.

In (8), note that all other Z vectors remain hidden because
they are still permuted. Thus, listening services can only match
to Z1. As control passes, horizontally, from Z1 → Z2 → Z3 ...

each active service uses the current permutation of the T

vector to calculate its zero based position ‘n’ within the
currently active parent chunk vector. It can then activate the
next workflow step in the chunk by repeating the unbind
operation, generalized as:

Z′n+1 = (p−n
n .Z′n)

−1
(9)

Hence, Z′2 = (p-1
1 .Z′1)

-1
= p-1

1 .p-2
0 .T -2 + p-1

1 .Z-1
1 + Z0

2 +

p-2
2 .Z1

3 + . . . Thus, execution proceeds in a completely de-
centralized manner whereby each node is activated when its
preceding node, or parent, unbinds the currently active chunk
vector and multicasts it to the network.

B. Local Arbitration
A major advantage of the VSA approach is the ability

to find semantic matches because each service can extend
beyond simple matches to include measures of real-time
compute utility as well as policy. For certain scenarios, such
as military coalition environments, there is a need to ensure
multiple copies of services are distributed throughout the
communications network. In order to decide which service is
invoked, we employ a process of local arbitration, which is
achieved as follows. Using terminology from (7) and (9), if
the currently active service is Z′n, then before transmitting the
next service request, it enters match collecting mode in order
to arbitrate matches from all nodes that reply within a tunable
window of time. After the interval expires, the highest ranking
responder is selected and a continue message is broadcast
by Z′n identifying the winner. Since all communications are
multicast, all services see all messages, and consequently the
winning service continues and losing services discontinue.
To reduce communication overhead further, matching services
delay their response by an interval inversely proportional to
their match value. Thus, better matches respond quicker. If
a service sees an equal or higher match value before it has
responded then it terminates without sending a reply.

C. Pre-provisoning and Learning to get ready
From (9) we see that each workflow step is exposed by

iterative application of ‘p’ vector permutations. Non-matching
services can use this method to peek a vector enabling an-
ticipatory behavior such as the pre-provisioning of a large
data-set or changing a device’s physical position, e.g., drones.
Obviously, services can peek multiple steps into the future and
could learn how early to start pre-provisioning. This ability
to anticipate could be used to perform more complex, on-
line, utility optimisation learning. For example, a drone, by
monitoring multiple workflows may be able to understand that
it will be needed in 10 minutes to perform a low priority
task and in 15 minutes for a high priority task. Under these
circumstances it may choose not to accept the low priority
task.

IV. VSA REPRESENTATION OF COMPLEX WORKFLOWS

As a test case and to compare to alternative approaches
(e.g., [14]), we modeled each word of Shakespeare’s play
Hamlet as a service and applied hierarchical chunking to
abstract into stanzas, scenes, and acts (see Figure 2). This
approach tests the capability of the chunking scheme to encode
serial and chunked workflows where the services at the lowest
level are the 4620 unique words of the play. The semantic level
above are the individual stanzas spoken by each character; the
level above this are individual scenes of the play (e.g., A1S1,
A1S2); next are the five acts, A1 to A5, and finally a single
10kbit vector semantically represents the whole play. The
individual word services are distributed in a communications
network and by multicasting the top level vector the whole
play is performed in a distributed manner with 29770 word
services being invoked in the correct order.

H1 = (p00.H)-1

A1 A2 A5

A1S1 A1S2 A1S3

w

A1S52

H = T + p00.A11 + p00.p10.A22 + …

A1 = T + p00.A1S11 + 
p0.p10.A1S22 + …

(p1-1. A1S1’)-1

(p1-1. H1)-1

A1’=(p00.A1)-1

(p00.A1S1)-1

Hamlet

A1 A2 A5

A1S1 A1S2 A1S3 A1S52

A1S1who’s A1S1where A1S1Ney A1S1 A1S1me A1S1stand

thethere

w w

(p1-1.A1’)-1

StopVec

StopVec

StopVec Ch
un

ki
ng

answer

Figure 2. Hamlet as a serial workflow.

We employ a vector alphabet, a unique vector per character,
and (5) to build a semantic vector description of each word-
service in the test case. The idea is that each letter making up
a word represents some feature of a service description, i.e.,
analogous to the different input/output/name/descriptions parts
of a real world service. Thus, variable lengths of words and
similarity of spellings represent a mix of different services of
different complexity and functional compatibility. We can use
this feature to find semantically similar service compositions
when the best match composition is not available, i.e., we can
find alternative words or stanzas, as shown in Figure 2, where
the word where is selected as an alternate to there.

We note that this workflow is a linear sequence of services,
next we show how such an approach can be extended to DAG
workflows by employing three phases:

1) A recruitment phase where services are discovered, se-
lected and uniquely named.

2) A connection phase where the selected services connect
themselves together using the newly generated names.

3) An atomic start command indicates to the connected
services that the workflow is fully composed and can be
started.

Thus, in mathematical terms, using (6):

WP = p00. (RecruitNodes)
1 +

p00.p10. (ConnectNodes)
2+ p00.p10.p20.Start3

RecruitNodes = p00.Z1
1 + p00.p10.Z2

1 + ...p00.p10.p20.p30.Z4
1

+p00.p10.p20.. .p40.Z5
2 ...+ p00.p10.p20.. .p90.Z10

2
+p00.p10.p20.. .p100.Z11

3 + p00.p10.p20.. .p110.Z12
4

+p00.p10.p20.. .p120.Z13
5 + p00.p10.p20.. .p150.Z16

5
+p00.p10.p20.. .p160.Z17

6 + p00.p10.p20.. .p170.Z18
7

+p00.p10.p20.. .p180.Z19
8 + p00.p10.p20.. .p190.Z20

9
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ConnectNodes =
(
p00.P1

1 + p00.p0
1.C2

1

)
+(

p00.p10.p20.P3
2 + p00.p10.p20.p30.C4

2

)
+ ...

where each Zn in RecruitNodes is the semantic/compound
vector representation of each service, built from the <job>
entries found in the DAX. A generic description of each service
was built from the service name and its description and used to
build the workflow request vector. For individual instances of
a service, e.g., mDiffFit, we additionally encode the instance’s
parameters and resource names to create similar but distinct
service instances to, again, show that service discovery can be
achieved when descriptions are not identical.

The resulting workflow, WP , is a superposition represent-
ing the linear sequence of steps needed to discover, connect
and initiate the workflow. Hence, execution of the workflow
proceeds in a similar manner to that described in Section III-A,
but with some additional workflow specific processing carried
out by each selected node. The top-level vector, WP is prepared
as per (7)

WP1 = (T + p0
0.WP )

-1
= Recruitnodes + noise

When multicast, this exposes and activates the Recruitnodes

service which, operating as a cleanup service, carries out the
the same operation to initiate the recruitment phase.

Recruit′nodes = (T + p0
0.Recruitnodes)

-1

R′1 = p-1
0 .T -1 + Z0

1 + p-1
1 .Z1

1 + p-1
1 .p-1

2 .Z2
1+...

where Z1 is a request for the first node in the DAG, an
mProjectPP in the Montage DAG. This will be matched by
all listening mProjectPPs. Acting as the local arbitrator, see
Section III-B, the Recruitnodes service multicasts its preferred
match from the replies received. The newly discovered and
activated service uses the current permutation of the T vector
to calculate its position (NODEn

id) in the Recruitnodes phase
from which it can calculate its unique parent and child vector
names to be used during the ConnectNodes phase. Thus, the
first mProjectPP, having position p0 and being a Z1, calculates
its parent and child names as,

P0 = Z0
1 .

(
NODE0

id . ROLE parent
)

C0 = Z0
1 .

(
NODE0

id . ROLE child
)

It then enters Listening for Connections Mode while, as
the new local arbitrator, it also multicasts the next recruitment
request by performing an unbind on its received vector R′1, thus
R′2 = (p-1

1 .Z′1)
-1

= p-1
1 .p-2

0 .T -2 + p-1
1 .Z-1

1 + Z0
1 + p-2

2 .Z1
1 + ...

which will cause another mProjectPP to be selected and
this decentralized process repeats until the last service to be
recruited, the Z9, mjPeg, service unbinds and transmits the next
vector, the Recruitnodes StopVec. The Recruitnodes cleanup
service detects its stop vector, causing it to perform an unbind
and multicast of WP ′ therby activating the Connectnodes

phase:

WP2 = (T + p-1
1 .WP1)

-1
= Connectnodes + noise

At this point, all recruited services are listening for con-
nection request on their unique parent and child vectors. The
activated Connectnodes service, acting as a cleanup service,
uses (7) to initiate and activate the first parent node of the
Connectnodes phase.

Connect′nodes = (T + p0
0.Connectnodes)

-1

P′1 = p-1
0 .T -1 + P0

1 + p-1
1 .C1

1 + p-1
1 .p-1

2 .P2
2+...

When a service matches to its parent vector it simply
performs the next unbind/multicast since in doing so it will
activate its associated child service, automatically informing
the child service of the location of its resources/output/ip-
address.

When a service receives a multicast that matches to its
child vector it can lookup the sender/parent’s ip-address and
send a unicast ’hello’ message to the parent, thus establishing
the required connection before activating the next parent by
performing a further unbind/multicast of the Connectnodes

vector. This process repeats until the final child request is
processed causing the Connectnodes service to detect its
StopVec which, in turn, causes it to unbind and multicast the
StartVec indicating to all nodes that the workflow has been
fully constructed and processing can be started.

V. IMPLEMENTATION

Our VSA platform is implemented in Python2 and has a
modular architecture with several components that are capable
of being reused as plugins to other systems.

The Workflow Importer component imports a Pegasus
workflow description (DAX) file. This is an, XML format,
multi-nested dictionary description of a workflow which details
each service node and its input output resources. The Workflow
Importer reads the DAX file into a python dictionary. It then
parses the dictionary and extracts the job entries to create a
list of vectors that represent each service node in the DAX, the
NodeVectors list. Similarly, it traverses the child section of the
DAX producing the EdgeVectors list, a paired list of vectors
representing the parent (output) and child (input) connections
of the workflow. The Workflow Importer passes NodeVectors
and EdgeVectors to the VSA Creator.

The VSA Creator is used to bind the lists of vectors into a
single vector, a reduced representation, of the workflow using
chunking, see Section III. Chunking is performed bottom up
so that higher level vectors are produced as needed. These are
recursively rebound until the vector list is reduced to a single
vector value. The NodeVectors list and the EdgeVectors list
are combined separately producing two high level vectors, the
RecruitNodes vector and the ConnectNodes vector. The VSA
Creator then binds these two vectors together with the Start
vector into a single vector representing the entire workflow, the
WorkFlow vector. This WorkFlow vector and all its associated
sub-vectors are encapsulated in a chunk tree object as per
Figure 1, which is then passed to the VSA executor.

The VSA Executor flattens the workflow by distributing
copies of all non-terminal chunk vectors into the terminal (bot-
tom level/worker) nodes. Non-terminal nodes are distributed to
the first child of a parent node to decode the first vector in a
higher level vector. For robustness, the VSA Executor can be
made to distribute more than one copy of the cleanup objects
into other terminal node objects.

The Logging Component collects metrics as the workflow
runs to feed into external processors. Logging currently col-
lects a trace of the nodes and edges that are being processed
by the workflow.
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The Visualisation Component takes the log output and
generates a DAG layout graph using Graphviz [25].

VI. COMPARATIVE EVALUATION

For the evaluation, we imported five different DAX work-
flows generated using the Pegasus workflow generator [16]:

1) Montage (NASA/IPAC) stitches multiple input images
together to create custom mosaics of the sky.

2) CyberShake (Southern Calfornia Earthquake Center)
characterizes earthquake hazards in a region.

3) Epigenomics (USC Epigenome Center and Pegasus) auto-
mates various operations in genome sequence processing.

4) Inspiral Analysis (LIGO) generates and analyzes gravita-
tional waveforms from data collected during the coalesc-
ing binary systems.

5) SIPHT (Harvard) automates the search for untranslated
RNAs (sRNAs) for bacterial replicons in the NCBI
database.

We ran the experiment on a MacBookPro11-4; Intel Core
i7, 2.8 GHz; 4 cores; 16 GB memory using the CORE/E-
MANE network simulator using the Python toolkit discussed
in the previous section in order to verify workflows could be
loaded, encoded and then executed using the VSA format.
We then recreate the workflows the VSAs have encoded to
verify against the original. This proceeds as follows. Once
imported, the DAX workflows are processed using the VSA
creator to build the semantic vector workflow encoding, and
apply the recruitment and connectivity phases to create service
instances of the workflow jobs and interconnections. During
the execution of the workflow using our simulator, we extract
the metrics described in the previous section, which essentially
contain a log of the run in the order of execution. This results
in a set of nodes and edges being generated which we graph
using Graphviz.

Figure 3 shows the resulting comparisons of the five
workflows. The coloured images represent the Pegasus gener-
ated workflows and blue workflows show the VSA generated
reconstruction of the workflows. Aside from the cosmetic
difference, this demonstrates that all workflows were composed
and correctly connected accurately in all cases.

VII. CONCLUSIONS

In this paper, we applied and demonstrated the viability of
using VSA approach to encode workflows containing multiple
coordinated sub-workflows in a way that allows the workflow
logic to be unbound on-the-fly and executed in a completely
decentralized manner. The Hamlet test-case demonstrated that
we can use VSA service discovery to select alternate services
on-the-fly. We anticipate that such an approach will lend itself
well to edge networks where the transient nature of the mobile
nodes will require such dynamic and decentralized control.
In addition this test-case demonstrates that our encoding
scheme is scalable, i.e., 30k individual services steps where
successfully encoded and decoded in the correct order. The
Pegasus test-case demonstrates the potential for encoding more
complex multi-pathway workflows by encoding and decoding
a number of Pegasus DAGs.

The local arbitration mechanism employed to choose the
best matched services not only demonstrates a method that

enables workflows to be orchestrated without a central point
of control but can also be used to perform utility optimsation.

Using VSAs to enable services to become self-describing
has a distinct advantage because of superposition. Conven-
tional approaches could use multicast to transmit a bag of
features across the network but each individual component
feature within the bag would have to be examined and com-
pared separately for a service to assess its compatibility to the
request. In addition VSAs are robust to noise, they support
mathematical inference and analogical mapping operations
[19], [20] which could be used to learn similarities between
vector symbols across coalitions and infer new workflows
from previously seen workflows. For these reasons, our future
work will therefore focus on such self-describing service
compositions in order to realize the vision set out in [13].
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