
UPC-CompilerCheck: A Tool for Evaluating Error Detection Capabilities of UPC
Compilers

Marina Kraeva†, James Coyle‡, Glenn R. Luecke∗, Indranil Roy§, Elizabeth Kleiman‖, and James Hoekstra¶

High Performance Computing Group, Iowa State University,
Ames, Iowa 50011, USA

Email: †kraeva@iastate.edu, ‡jjc@iastate.edu, ∗grl@iastate.edu,
§iroy@iastate.edu, ‖ekleiman@mtmercy.edu and ¶hoekstra@iastate.edu

Abstract—The ability of system software to detect compile-
time errors and issue messages that help programmers quickly
fix these errors is an important productivity criterion for
developing and maintaining application programs. To evaluate
this capability for Unified Parallel C (UPC) compilers, 3141
Compile-Time Error Detection (CTED) tests and a CTED
evaluation tool, called UPC-CompilerCheck, have been devel-
oped. UPC-CompilerCheck assigns a score from 0 to 5 for
each compiler-generated error message based on the usefulness
of the information in the message to help a programmer fix
the error quickly. This tool also calculates average scores for
each error category and then prints the results. Compiler
vendors could use UPC-CompilerCheck to evaluate and im-
prove the compile-time error detection capabilities of their UPC
compilers. All tests, UPC-CompilerCheck and test results for
the Berkeley, Cray, GNU and HP UPC compilers are freely
available.

Keywords-Languages; UPC; compile-time error detection.

I. INTRODUCTION

Unified Parallel C (UPC) is an extension of the C pro-
gramming language for parallel execution on shared and
distributed memory parallel machines [1], [2]. UPC uses
a single shared, partitioned address space, where shared
variables may be directly read and written by any thread.
Shared variables are stored in the memory of the thread for
which they have affinity. “UPC combines the programmabil-
ity advantages of the shared memory programming paradigm
and the control over data layout and performance of the
message passing programming paradigm” [3]. Providing
a productive programming environment for UPC will en-
courage new scientific applications to be written in UPC.
Since debugging UPC programs can be time consuming,
it is important to have UPC compilers, tools and run-time
systems that can detect both compile-time and run-time
errors and issue messages that help programmers quickly fix
the errors. A tool to evaluate error detection capabilities of
UPC run-time systems has already been developed [4]. This
paper describes the UPC-CompilerCheck tool for evaluating
error detection capabilities of UPC compilers.

Application programs are usually developed by (a) writing
the application, (b) compiling the application and fixing all
errors detected at compile time, (c) running the application

and fixing all errors detected at run-time and (d) then
validating the program using problems for which answers
are known. Compile-time tools cannot be expected to find
all errors, so run-time error detection tools such as [5], [6]
will often be needed. However, when errors can be found at
compile-time, programmer productivity will be increased.

To evaluate error detection capabilities of UPC compilers,
3141 UPC compile-time error detection (CTED) tests and
the UPC-CompilerCheck tool have been developed by ISU’s
HPC Group. Each test contains exactly one UPC compile-
time error. The UPC-CompilerCheck tool compiles these
tests, assigns a score from 0 to 5 based on the quality of
the error message, calculates the averages of these scores
for each error category and reports results.

These tests and UPC-CompilerCheck provide an easy
way to evaluate and compare compile-time error detection
capabilities of different UPC compilers and could be used
as part of a computer procurement process along with the
UPC RTED tests [4]. In addition, compiler vendors could
use the CTED tests, recommended error messages and UPC-
CompilerCheck to evaluate and improve the compile-time
error detection capabilities of their UPC compilers.

UPC compile-time tests, recommended error messages,
UPC-CompilerCheck and test results are freely available [7].
As new UPC compilers/releases become available, ven-
dors and researchers are encouraged to send results to
cted.project@iastate.edu so that they can be posted on this
web site.

The paper is structured as follows. Section II provides
background on UPC and on UPC tools. Section III de-
scribes the design of UPC-CompilerCheck, and how it is
used. Section IV shows examples of actual error messages
along with their scores, and describes why each score was
assigned. Section V provides scoring averages for each error
category for several UPC compilers. Section VI contains our
conclusions about the current state of UPC compilers for
finding the various types of errors at compile time.

II. BACKGROUND

The UPC Compiler Group at the University of California
Berkeley/Lawrence Berkeley National Laboratory actively

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

participated in writing of the UPC Specification and devel-
oped the first UPC compiler. This compiler is an open-source
and portable implementation of UPC [3]. Cray, HP, GNU
and IBM have also developed UPC compilers.

The UPC working group at the High Performance Com-
puting Lab (HPCL) at George Washington University is in-
volved in the UPC specification, UPC testing strategies, UPC
documentation, UPC testing suites, UPC benchmarking, and
UPC collective and Parallel I/O specification [8].

At Michigan Technological University work on UPC
includes the recent release of the MuPC run-time system
for UPC as well as collective specification development,
memory model research, programmability studies, and test
suite development [9].

Researchers at the University of Florida’s High Per-
formance Computing and Simulation Laboratory are cur-
rently involved in the research and development of a next-
generation performance analysis tool supporting UPC. This
tool helps users to identify bottlenecks in their programs and
serves as a test-bed for advanced analysis techniques aimed
at increasing programmer productivity [10].

The High Performance Computing Group from Iowa State
University has developed a run-time error detection tool
called UPC-CHECK that includes deadlock detection [5],
[11]. In addition the ROSE-CIRM tool [6] has been devel-
oped by Dan Quinlan’s group at Lawrence Livermore Na-
tional Laboratory to complement UPC-CHECK by detecting
other run-time errors. Ali Ebnenasir from the Department
of Computer Science of Michigan Technological University
developed UPC-SPIN [12], a software framework for the
model checking of the inter-thread synchronization function-
alities of Unified Parallel C (UPC) programs. A list of UPC
programming tools can be found in the Programming Tools
section of the UPC Wiki page [2].

III. METHODOLOGY

This section summarizes the methodology used to develop
compile-time error tests and UPC-CompilerCheck. For each
error, a program has been written that contains the specified
error and no other errors (each program contains one and
only one compile-time error). For each test a file with a
recommended error message was created that contains the
error name, the line number and the file name where the error
occurs along with any additional information that would
assist a programmer to find and correct the error.

The UPC compile-time error tests have been written to
cover a wide range of errors in many different situations.
The following are the UPC compile-time error categories:

• Items that the UPC specification explicitly does not
allow and that should be detected at compile-time

• Out-of-bounds shared memory access using indices
• Out-of-bounds shared memory access using pointer

references

• Out-of-bounds shared memory access in UPC library
functions

• Argument errors in UPC library functions
• Wrong order of UPC statements and function calls
• Uninitialized variables
• Deadlocks
• Race conditions
• Memory leaks and memory related errors
• Operations specifically undefined by the UPC specifi-

cation
• Warnings
The UPC CTED evaluation tool is a collection of scripts

for compiling the tests, comparing actual messages with
expected messages and then assigning a score of 0, 1, 2,
3, 4 or 5 to the message generated by each test. Scores for
messages are assigned as follows:

• A score of 0 is given when the error is not detected.
• A score of 1 is given for error messages with the correct

error name.
• A score of 2 is given for error messages with the correct

error name and line number where the error occurred
but not the file name where the error occurred.

• A score of 3 is given for error messages with the correct
error name, line number and the name of the file where
the error occurred.

• A score of 4 is given for error messages which contain
at least the information required for a score of 3 but
less information than needed for a score of 5.

• A score of 5 is given in all cases when the error message
contains all the information needed for fixing the error
quickly.

The scoring is the same as was done for the run-time
tests [4] even though for compile-time tests if a compiler
identifies the correct line number it is likely that it also
will identify the correct file name. This means for compile-
time tests that the score of 2 will likely never be given. The
information needed for scores of 4 and 5 is tailored to each
test. Examples in Section IV illustrate this.

Different compilers may issue different messages (with
different error names) for the same compile-time error. UPC-
CompilerCheck has a list of synonymous phrases for each
error so that equivalent error messages will be evaluated
appropriately. Additional synonymous phrases may need
to be added as new compilers/releases become available.
Error messages were evaluated by UPC-CompilerCheck as
follows:

• For each test and score, a scoring script was created.
• Error messages were reduced to a canonical form for

easy comparison with the recommended error messages
by first changing all text to lower case and then re-
placing selected phrases with standard phrases. Blanks,
hexadecimal addresses, and integers longer than three
digits are removed to reduce false matches.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

• Scoring scripts were applied to the canonical form of
each error message for evaluation.

UPC-CompilerCheck has been designed for easy usage.
To run all tests one sets up the configuration file and then is-
sues the ‘run tests all’ command. Sample configuration files
for each compiler are provided. By issuing the ‘run tests all
<error category>’ command the user can run only the tests
in the selected error category. The ‘run tests all’ command
also calculates average scores for each error category and
then prints the results. UPC-CompilerCheck also allows one
to run individual tests and to examine the output.

IV. EXAMPLES

This section contains four examples to illustrate how the
tests have been written and how messages were scored.

A. Example 1

Applying a binary operator with incorrect operands.

Example 1: c A 3 1 a A.upc
...
26 #include “upcparam.h”
27 #include <stddef.h>
28
29 shared [4] char Arr A[4*THREADS];
30
31 int main() {
32 shared [4] char *Ptr S;
33 char *Ptr L;
34 ptrdiff t diff;
35
36 Ptr S=&Arr A[4*MYTHREAD+1];
37 Ptr L=(char *)&Arr A[4*MYTHREAD];
38
39 diff=Ptr S-Ptr L;
40
41 if(MYTHREAD==0) {
42 printf(“diff = %d\n”,diff);
43 }
44
45 return 0;
46 }

The following is the recommended error message:

ERROR: incorrect operands
An attempt to apply subtraction binary
operator to pointer-to-shared ’Ptr_S’
and pointer-to-local ’Ptr_L’ is made at
line 39 in file ’c_A_3_1_a_A.upc’.
The pointer ’Ptr_S’ is declared at line
32 in file ’c_A_3_1_a_A.upc’.
The pointer ’Ptr_L’ is declared at line
33 in file ’c_A_3_1_a_A.upc’.

A score of 3 was given to the Berkeley UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

c_A_3_1_a_A.upc: In function ‘main’:

c_A_3_1_a_A.upc:39: warning: Attempt to
take the difference of pointer-to-shared
and pointer-to-private

A score of 3 was given to the GNU UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

c_A_3_1_a_A.upc: In function â:
c_A_3_1_a_A.upc:39: error: Attempt
to take the difference of shared and
nonshared pointers

A score of 0 was given to the Cray and HP UPC compilers
since they did not detect the error.

B. Example 2

Using an uninitialized pointer.

Example 2: c H 2 l.upc
. . .
25 #include “upcparam.h”
26 #define N 10
27
28 int main() {
29 shared double *ptr x;
30 double* ptr x1;
31
32 if(MYTHREAD==THREADS/2) {
33 ptr x1=(double*)ptr x;
34 ptr x=(shared double*) upc alloc(N*sizeof(double));
35 ptr x1–;
36 printf(“ptr x=%p; ptr x1=%p \n”, (double*) ptr x,

(double*) ptr x1);
37
38 upc free(ptr x);
39 }
40
41 return 0;
42 }

The following is the recommended error message:

ERROR: uninitialized pointer
An attempt to assign pointer ’ptr_x’
that is not explicitly initialized to
another pointer is made at line 33 in
file ’c_H_2_l.upc’.
The pointer ’ptr_x’ is declared at line
29 in file ’c_H_2_l.upc’.

A score of 4 was given to the Cray UPC compiler for
issuing the following message since it correctly identified
the error, file name, line number and gave the variable
name. It was not given a score of 5 since the message did
not give the line number where ptr x was declared.

CC-7212 cc: WARNING File = c_H_2_l.upc,
Line = 33

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Variable ‘‘ptr_x’’ is used before it is
defined.

A score of 4 was given to the HP UPC compiler for
issuing the following message since it correctly identified
the error, file name, line number and gave the variable
name. It was not given a score of 5 since the message did
not give the line number where ptr x was declared.

‘‘c_H_2_l.upc’’, line 33: warning:
variable ‘‘ptr_x’’ is used before its
value is set.
ptr_x1=(double*)ptr_x;

∧
A score of 0 was given to the Berkeley and GNU UPC

compilers since they did not detect the error.

C. Example 3

An out-of-bounds array access error.

Example 3: c D 1 d E.upc
. . .
25 #define N 40
26 #define M 45
27
28 shared [] long double arrA[N]; /*DECLARE1*/
29 int main() {
30 long double var res;
31 int i;
32
33 upc forall(i=0;i<N;i++;&arrA[i])
34 arrA[i] = (long double)(i+1);
35 var res = 10;
36 upc barrier;
37
38 if(MYTHREAD == (THREADS-1)){
39 /*ERROR*/
40 arrA[N-M] = var res;
41 for(i=0;i<N;i++)
42 printf(“arrA[%d]=%d\n”, i, (int)arrA[i]);
43 }
44
45 return 0;
46 }

The following is the recommended error message:

ERROR: out of bounds
Index value -5 is out of bounds for
array ’arrA’ at line 40 in file
’c_D_1_d_E.upc’.
The array ’arrA’ is declared with bounds
0:39 at line 28 in file ’c_D_1_d_E.upc’.

A score of 3 was given to the HP UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

‘‘c_D_1_d_E.upc’’, line 40: warning:
subscript out of range

arrA[N-M] = var_res;
∧

A score of 3 was given to the Cray UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

CC-175 cc: WARNING File = c_D_1_d_E.upc,
Line = 40
The indicated subscript is out of range.
arrA[N-M] = var_res;

∧
A score of 0 was given to the Berkeley and GNU UPC

compilers since they did not detect the error.

D. Example 4

An array declarator error when compiled with the dynamic
threads environment option.

Example 4: c A 4 3 b.upc
. . .
24 #include “upcparam.h”
25
26 #define SIZE 10
27
28 shared [2] int Arr A[SIZE];
29
30 int main() {
31 int i;
32
33 if(MYTHREAD==0) {
34 for(i=0;i<SIZE;i++)
35 Arr A[i]=SIZE+i;
36 printf(“Arr A[0]=%d\n”, Arr A[0]);
37 }
38
39 return 0;
40 }

The following is the recommended error message:

ERROR: invalid array declarator
THREADS is not used in the array
’Arr_A’ declaration at line 28 in file
’c_A_4_3_b.upc’.
In the dynamic translation environment,
THREADS must appear exactly once in
declarations of shared arrays with
definite block size, either alone
or multiplied by an integer constant
expression.

The Cray UPC compiler was given a score of 5 since
it contains all the information in the recommended error
message. The Cray UPC compiler issued the following
message:

CC-1560 cc: ERROR File = c_A_4_3_b.upc,
Line = 28
One dimension of an array of a shared

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

type must be a multiple of THREADS when
the number of threads is nonconstant.
shared [2] int Arr_A[SIZE];

∧
The Berkeley UPC compiler was also given a score of 5

for issuing the following message:

upcc: error during UPC-to-C translation
(sgiupc stage):
c_A_4_3_b.upc:28: In the dynamic
translation environment, THREADS must
appear exactly once in declarations of
shared arrays with definite block size.
Offending variable: Arr_A

The GNU UPC compiler was given a score of 3 for
issuing the following message:

c_A_4_3_b.upc:28: error: variable-size
type declared outside of any function
c_A_4_3_b.upc:28: error: variable-size
type declared outside of any function

The HP UPC compiler was given a score of 5 for issuing
the following message:

‘‘c_A_4_3_b.upc‘‘, line 28: error: one
dimension of an array of a shared type
must be a multiple of THREADS when the
number of threads is nonconstant
shared [2] int Arr_A[SIZE];

∧

V. RESULTS

Table I presents the average scores for each error category
when compiling the UPC CTED tests using the Berkeley,
Cray, GNU and HP UPC compilers. Authors were not able
to get access to the IBM UPC compiler. Current results are
listed on the web site [7].

The category “explicitly disallowed statements” contains
items that the UPC specification explicitly does not allow
and that should be detected at compile-time. The category
“undefined UPC operations” contains situations where the
outcome of certain UPC statements is stated as being un-
defined by the UPC specification. The “warnings” category
includes tests where programmers should be warned of likely
errors, e.g., use of deprecated functions, shared variables
not initialized by the program, etc. The “argument errors
in UPC library functions” category covers those situations
where inconsistent and/or incorrect information is passed as
arguments to UPC library functions. At the time this project
was done, the GNU and HP UPC compilers did not support
UPC I/O; so, they scored zero on these tests. Notice from

Error category Berkeley Cray GNU HP
explicitly disallowed 2.92 2.75 3.21 2.62
statements
out-of-bounds shared 0.00 1.00 0.00 1.27
memory access using
indices
out-of-bounds shared 0.00 0.00 0.00 0.25
memory access using
pointers
out-of-bounds shared 0.00 0.00 0.00 0.00
memory access in UPC
function calls
argument errors in UPC
functions

0.00 0.07 0.05 0.09

wrong order of UPC state-
ments and function calls

0.00 0.15 0.00 0.10

uninitialized variables 0.00 1.14 0.00 2.29
deadlocks 0.00 0.00 0.00 0.00
race conditions 0.00 0.00 0.00 0.00
memory related errors 0.00 0.00 0.00 0.09
undefined UPC operations 0.16 0.21 0.16 0.21
warnings 0.00 0.00 0.00 1.84
average of the above 0.28 0.48 0.34 0.73
scores

Table I
AVERAGE OF TEST SCORES FOR EACH ERROR CATEGORY AND THE
AVERAGE SCORE OVER ALL ERROR CATEGORIES FOR EACH UPC

COMPILER.

Table I that all the compilers achieved an average score of
nearly 3.0 in the “explicitly disallowed statements” category.

For an error message to be useful it should receive at least
a score of 3. Table II presents the number of tests in each
error category for which an useful error message was issued.
Together Tables I and II show that not only the quality of the
error messages issued is low but also that the UPC compilers
tested are not able to detect many of the errors.

The authors consider that all tests from the “explicitly
disallowed statements” category should receive at least a
score of 3. Table III shows in detail how the compilers scored
on these tests including the number of tests that received a
score of at least 3. Notice that many of these errors were
not recognized by UPC compilers. The total number of tests
in this category is 164.

VI. CONCLUSION

The ability of system software to detect compile-time
errors and issue messages that help programmers quickly fix
these errors is an important productivity criterion for devel-
oping and maintaining application programs. To evaluate this
capability for Unified Parallel C (UPC), 3141 compile-time
error tests and a UPC-CompilerCheck tool have been devel-
oped. For each error message issued, UPC-CompilerCheck
assigns a score from 0 to 5 based on the usefulness of the
information in the message to help a programmer quickly
fix the error. If no error message is issued the test gets score
of 0. UPC-CompilerCheck calculates average scores over
each error category and then prints the results. All tests and
UPC-CompilerCheck are freely available [7].

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Error Category Number Berkeley Cray GNU HP
of tests

explicitly
disallowed
statements

164 133 103 149 98

out-of-bounds 462 0 154 0 196
shared memory
access using
indices
out-of-bounds 169 0 0 0 14
shared memory
access using
pointers
out-of-bounds 324 0 0 0 0
shared memory
access in UPC
function calls
argument errors in
UPC functions

284 0 5 5 6

wrong order of 158 0 6 0 4
UPC statements
and function calls
uninitialized 35 0 10 0 20
variables
deadlocks 18 0 0 0 0
race conditions 785 0 0 0 0
memory related 644 0 0 0 14
errors
undefined UPC 19 1 1 1 1
operations
warnings 79 0 0 0 29

Table II
NUMBER OF TESTS IN EACH CATEGORY WHICH RECEIVED A SCORE OF

AT LEAST 3

Score Berkeley Cray GNU HP
0 31 61 15 66
1 0 0 0 0
2 0 0 0 0
3 90 7 106 5
4 6 50 6 51
5 37 46 37 42

3-5 133 103 149 98
(81.1%) (62.8%) (90.1%) (59.8%)

Table III
NUMBER OF TESTS OUT OF 164 RECEIVING THE INDICATED SCORE FOR

THE “EXPLICITLY DISALLOWED STATEMENTS” CATEGORY.

The Berkeley, Cray, GNU and HP UPC compilers have
been evaluated and results posted on this same web site.
Error detection capabilities for these compilers were gener-
ally poor including the error category “explicitly disallowed
statements” where the UPC compilers should have detected
all these errors.

It is hoped that these tests and recommended error mes-
sages will be used by vendors to evaluate and improve
the compile-time error detection capabilities of their UPC
compilers. We also hope that these tests will be used by high
performance computing centers as part of their procurement
process to reward vendors whose UPC implementations pro-
vide excellent compile-time (and run-time) error detection

and issue high quality messages.

ACKNOWLEDGMENT

This work was supported by the United States Department
of Defense and used resources of the Extreme Scale Systems
Center at Oak Ridge National Laboratory.

REFERENCES

[1] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick,
UPC: Distributed Shared Memory Programming. Wiley-
Interscience, 2003.

[2] “Unified parallel C (upc wiki),” last accessed April 27, 2012.
[Online]. Available: http://upc.wikinet.org

[3] “The Berkeley Unified Parallel C,” last accessed April 27,
2012. [Online]. Available: http://upc.lbl.gov/

[4] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Xu,
E. Kleiman, and O. Weiss, “Evaluating error detection
capabilities of UPC run-time systems,” in Proceedings
of the Third Conference on Partitioned Global Address
Space Programing Models, ser. PGAS ’09. New York,
NY, USA: ACM, 2009, pp. 7:1–7:4. [Online]. Available:
http://doi.acm.org/10.1145/1809961.1809971

[5] J. Coyle, I. Roy, M. Kraeva, and G. R. Luecke, “UPC-
CHECK: A scalable tool for detecting run-time errors in
Unified Parallel C,” in Proceedings of International Super-
computing Conference (ICS), June 2012, to appear.

[6] P. Pirkelbauer, C. Liao, T. Panas, and D. Quinlan,
“Runtime detection of c-style errors in upc code,” in
Proceedings of Fifth Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’11,
2011. [Online]. Available: http://pgas11.rice.edu/papers/
PirkelbauerEtAl-UPC-Error-Detect-PGAS11.pdf

[7] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, E. Kleiman,
and I. Roy, “Compile time error detection test suite and
results for upc.” [Online]. Available: http://hpcgroup.public.
iastate.edu/CTED/UPC

[8] “The High Performance Computing Laboratory, The George
Washington University,” last accessed April 27, 2012.
[Online]. Available: http://upc.gwu.edu

[9] “UPC projects at Michigan Technological University,”
last accessed April 27, 2012. [Online]. Available: http:
//www.upc.mtu.edu/

[10] “High Performance Computing and Simulation Laboratory,
University of Florida,” last accessed April 27, 2012. [Online].
Available: http://www.hcs.ufl.edu/upc/

[11] I. Roy, G. R. Luecke, J. Coyle, and M. Kraeva, “An
optimal deadlock detection algorithm for Unified Parallel C,”
preprint (2012). [Online]. Available: http://hpcgroup.public.
iastate.edu/papers/Deadlock Dectection for UPC.pdf

[12] A. Ebnenasir, “UPC-SPIN: A Framework for the
Model Checking of UPC Programs,” in Proceed-
ings of Fifth Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’11,
2011. [Online]. Available: http://pgas11.rice.edu/papers/
Ebnenasir-UPC-Model-Checking-PGAS11.pdf

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

