
Composite Event-Driven Programming
New Concepts for New Types of Interaction

Fredy Cuenca

School of Mathematical Sciences and Information Technology
Yachay Tech

San Miguel de Urcuquı́, Ecuador
Email: fcuenca@yachaytech.edu.ec

Abstract—Implementing multi-touch and multi-modal systems
requires splitting the code across several event handlers, which
complicates programmers work. The present paper finds the root
of this problem in the event-driven paradigm; more concretely,
in the fact that event-driven languages lack abstractions for
representing event sequences. It then suggests to augment event-
driven languages so that programmers can have the possibility
to define event sequences –herein called composite events– that
can then be bound to event handlers. The main features of
the composite event-driven language developed by the authors
are outlined, as well as its benefits and problems. The paper
suggests that, since its design, the event-driven paradigm was
tailored for mouse-based interactions, and it may be important
to question its suitability for implementing multi-touch and multi-
modal interactions.

Keywords–Multi-modal Systems; Multi-touch Systems; Interac-
tive Systems; Event Languages; Composite Events.

I. INTRODUCTION

Many researchers agree that implementing (multi-)touch
and multi-modal systems results in programs that are difficult-
to-read and difficult-to-maintain [1][2][3]. In the domain of
(multi-)touch systems, even simple gestures, such as the pinch-
to-zoom gesture, require the system to handle a stream of
touch-down, touch-move, and touch-up events, from within
the intention of the user to enlarge a particular region of
the touchscreen has to be unveiled. Similarly, multi-modal
commands, like speech-and-pointing commands, will be per-
ceived by multi-modal systems as a series of speech events
and pointing events. Thus, such multi-modal systems have the
difficult task of having to continuously identify which speech
events and pointing events are part of the same command.

The implementation of those interactions that are reflected,
in the system, as sequences of interrelated events, forces
programmers to litter their code with a multitude of flags
and global variables that have to be updated across different
event handlers in order to keep track of the event sequences.
The resulting difficult-to-read, difficult-to-maintain “callback-
soup” [1][2] is not a consequence of bad programming habits
or poor comprehension of event-driven principles. Rather, it is
accidental complexity: complexity caused by the languages and
tools chosen for programming [4]. This type of complexity can
only be reduced by selecting or developing better programming
languages and tools [4]. The present work intends to shed some
light on how to develop better languages and tools.

We believe that the appearance of the “callback-soup” is
largely due to the fact that event-driven languages, which

are widely used to implement interactive systems [5][6], only
offer abstractions, called events, for representing simple user
actions, such as a touch-down or a speech input; but these
languages do not offer abstractions for representing sequences
of user actions.

This paper proposes a programming model that enables
programmers to compose events. In the proposed model,
there is an abstraction called composite event, this being
a programmer-defined event sequence. Composite events are
defined by connecting primitive events, such as touch events
or speech inputs, through a set of operators, where each
operator represents a temporal, spatial, or semantic relation
among their operands. Composite events can then be bound to
event handlers, callback functions that implement the system’s
runtime behavior.

For instance, two basic interactions with a touchscreen
photo viewer can be described by binding the composite event
touch-flicking-left to the event handler ShowNextPhoto(),
and the speak-and-touch remove-this event to the event handler
RemovePhoto(). The two aforementioned composite events
would be defined by the programmer as a combination of touch
events (former case) or as a mix of touch events and speech
events (latter case).

In the proposed programming model, at runtime, the event
handlers are to be launched every time their associated com-
posite events are automatically detected by a composite event-
driven tool. This model will save programmers from having
to implement a supervisory mechanism for tracking event
sequences; such a mechanism would be incorporated in the
composite event-driven tool to be exploited by programmers.
By delegating the detection of event sequences to the com-
posite event-driven tool, programmers can clean their source
codes of the flags and global variables that were necessary for
this task when using event-driven languages.

The remainder of this paper proceeds as follows: In Sec-
tion 2, the proposed approach is compared against others
that also intend to ease the creation of multi-modal/multi-
touch interaction. Section 3 outlines the main features, gains,
and limitations of a composite event-driven tool that was
implemented as part of a PhD project. Finally, Section 4 argues
in favor of augmenting event-driven languages with composite
events.

II. RELATED WORK

The benefits of using composite events for rapid proto-
typing of multi-modal systems have already been highlighted

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

[3][7]. Additionally, this paper reports similar gains when
prototyping (multi-)touch gestures and, most importantly, pro-
poses composite events as a unified solution to the “callback
soup” problem that infects both multi-modal and multi-touch
interactive systems.

Other (mostly visual) languages have also been proposed
with the aims of easing the “callback soup” problem. One
important contrast is that while our composite event-driven
model allows describing interactions in terms of events and
event binding, other existing languages require concepts (e.g.,
Petri nets and block diagrams) and programming practices
(e.g., depicting visual models) that may be unfamiliar to
programmers of interactive systems. As the rankings of pro-
gramming popularity published by IEEE [6] and TIOBE [5]
attest, programmers are more accustomed to textual, event-
driven languages. Given that familiarity with a language has
a strong, positive influence on programming language adop-
tion (even stronger than intrinsic properties of the language,
such as performance, reliability, and simple semantics) [8],
the proposed programming language retains the textual and
event-driven nature of mainstream programming languages.
Other more concrete differences of our approach and existing
languages can be found below.

A. Multi-modal interaction description languages
In Squidy [9], multi-modal interactions are represented

as block diagrams that programmers can use to channel and
transform the data coming from different input modalities
to the application. One issue of this model is that each
modality has its own independent channel. Data from different
modalities must be collected in the application as the human-
machine interaction occurs. With our approach, a composite
event can be defined by combining events from the same or
different modalities. The data carried by these events is stored
in parameters that arrive to the application all at once –no need
for queuing events in the application.

Similar to our model, SMUIML [10] allows composing
events so that each composite event can be bound to one event
handler. At runtime, these handlers are launched once their
associated composite events have occurred. We generalize this
approach by allowing programmers to attach event handlers
to very specific stages of a composite event —in our model,
event binding has a time component. This allows launching
several event handlers at different moments of the lifecycle of
a composite event, which makes it possible to provide the end
user with partial feedback.

ICO [11] is a formal language for modeling both multi-
modal and multi-touch interactions. It has an underlying math-
ematical apparatus that allows predicting properties of the
interaction in static time, without having to run the ICO model.
One of its drawbacks is that Petri nets were not tailored for
modeling interaction, thus ICO models do not map close to the
problem domain. ICO users have to tweak their interaction
models to fit them into a Petri net. Our approach, instead,
makes use of a domain-specific notation that has designated
symbols for representing time constraints among events and
special keywords for specifying modalities.

B. (Multi-) touch gesture definition languages
Besides the already reported gains experienced when pro-

totyping multi-modal systems [3][7], composite events also

bring about advantages over existing, salient gesture definition
languages, such as GDL [12], Proton [1] and GestIT [2]. To
a greater or lesser extent, all these languages have proven to
ease the description of touch gestures: programmers can define
gestures in a declarative fashion without having to write fine-
grained code for tracking the gesture state.

GDL [12] is intended for simple description of touch
gestures that can be used across multiple hardware platforms.
A touch gesture is defined as a set of rules that must be met
by the raw touch data along with the value(s) to be returned
when the gesture is detected. GDL allows defining multi-
stroke gestures (e.g., a cross) as long as the strokes can be
issued sequentially. Our language, in contrast, allows defining
gestures involving both sequential and parallel strokes (e.g.,
simultaneous vertical flicks). Furthermore, unlike the proposed
language, GDL does not allow specifying temporal constraints.

On the other hand, Proton allows users to represent gesture
interaction as tablatures. A user study proved that tablatures
are easier-to-comprehend than event-callback code [13]. The
expressiveness of Proton was shown by implementing multi-
user touch-based applications like the classic Pong game, a
tennis-like game between two opponents [13]. One issue with
Proton is its lack of time variables, which makes it difficult
to calculate the duration of a gesture, for instance. In contrast,
our approach allows defining and maintaining different types of
variables (including time variables) throughout the composite
event lifecycle.

As to the Petri nets-based language GestIT, partial feedback
is only possible by decomposing gestures definitions into
smaller, sub-gestures definitions. This is because GestIT only
launches event handlers at the end of a (sub-)gesture. Our ap-
proach does not force programmers to make such decomposi-
tions because multiple event handlers can be bound to different
stages of one single gesture. Furthermore, Proton and GestIT
do not include timeout events, which make it unnecessarily
complex to define recursive gestures. For instance, the single,
double, and triple tap require three separate definitions with
Proton and GestIT. In our approach, timeout events exist and
can be connected with any input event (e.g., touch events
or speech inputs) to be part of a composite event. By using
timeout events, our approach makes it possible to describe
the three aforementioned gestures with one single definition:
a sequence of N taps that end after a period of “silence”.

C. Languages for reactive systems
It should be made clear that the goal of the proposed

approach differs from that of languages such as P [14], Esterel
[15], or Lustre [16].

P is oriented more towards the development of distributed
systems. Therefore, the type of interaction to be modeled with
P is among the components of the intended system. Such a
component-component interaction is uncoordinated and con-
sists of messages sent from different sources. In contrast, the
proposed language is designed for human-machine interaction,
a type of interaction where the inputs are coordinately issued
by one single agent, the end user. Due to this fundamental
difference, P focuses on forcing asynchronous events to be
responded within a reasonable timeframe. For this, P includes
notations for explicit declaration of event deferrals. Our lan-
guage, instead, focuses on describing relations between user
actions and system responses, which can be done concisely
with the proposed composite event binding notations.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Similar contrasts can be found against Esterel or Lustre,
which are intended to develop real-time, embedded systems.
Thus, these are much closer to P than to the proposed language.

III. A FIRST COMPOSITE EVENT-DRIVEN TOOL

In the context of a PhD research, a composite event-
driven language along with its supporting tool was devel-
oped and evaluated for rapid prototyping of multi-modal
systems [3][17][7].

A. Automatic detection of composite events
A composite event-driven tool must be in charge of track-

ing every programmer-defined composite event and launching
its associated event handler(s) in a timely manner. In our
particular implementation, every composite event is internally
represented as a finite state machine [3]. The human-machine
interaction is described with a textual notation, as a mapping
of composite events to event handlers, and, under the hood,
the proposed tool generates a set of finite state machines
by means of specialized algorithms [3]. As the constituent
events of a composite event occur, in the specified order,
its reciprocal finite state machine switches to different states.
Finally, the end-node of this machine is reached when its
reciprocal composite event has occurred. Programmers can
attach event handlers to every node or link of a finite state
machine when writing event binding code [17]. Given that
a composite event can be reused in the definition of other,
more complex composite events, our finite state machines are
hierarchical.

B. Experimental results
This language was compared against C#, a mainstream

event-driven language, by means of a within-subjects exper-
iment. A user study involving twelve participants (experi-
enced developers) was conducted to compare programming
efficiency. After modifying an interaction model with both the
composite event-driven language and the baseline language, it
was revealed that the former leads to higher completion rates,
lower completion times, and less code testing [7]. Another
study with non-developers is being conducted to measure
whether the proposed language is simple enough to be under-
stood and used as a discussion tool within multidisciplinary
teams (e.g., in a robotics project). We have not yet conducted
experiments about tool performance (e.g., recognition rate or
recognition speed of composite events). For now, our focus is
on evaluating the feasibility and efficacy of composite event-
driven programming rather than the efficiency of our particular
implementation.

C. Expressiveness
The expressiveness of the proposed language has already

been evaluated by implementing a variety of interactions in-
volving mouse gestures, keystrokes, and speech inputs [3][17].
Later, as part of a PhD research, we implemented a proof-
of-concept application that recognizes hand gestures, body
movements, and a variety of touch gestures (e.g., single-
stroke, multi-stroke, free-form, and multi-touch). More re-
cently, composite events have also been applied in the field
of robotics [18]. The size of the developed applications is
small: we always used less than 30 composite events in our
applications. We still do not have indications, neither in favor
nor against, of whether the easiness-to-maintain will increase
linearly with the size of the applications or not.

D. Limitations
The current version of the proposed composite event-driven

language does not include general-purpose constructs (e.g.,
for’s and if’s). It is a declarative language that includes no-
tations for describing human-machine interaction as mappings
of user actions to system responses or, more concretely, as
mappings of composite events to event handlers. But the fine-
grained code required to implement the event handlers and
the graphical user interface has to be written with a general-
purpose language, as part of a canned application that has to
be imported into our composite event-driven tool. The separa-
tion of interaction code from application code brought about
many problems, such as the inability to create autonomous
executable files (e.g., the imported application is developed
with a general-purpose language whose syntax is unknown
to the developed composite event-driven tool), the excessive
amount of function calls required to exchange data between
the external application and the composite event-driven tool
(e.g., application variables have to be maintained by calling
functions; these variables cannot be set directly from the
composite event-driven language), and the difficulty to debug
a program that is broken into two separate, independent pieces
(e.g., composite event variables are traced within the proposed
tool whereas external application variables are traced with
external tools), among others.

IV. DISCUSSION

The proposed shift up from events to composite events
would be the reflection of a fundamental change in human-
computer interaction: in the past, systems were mainly com-
manded by simple user actions such as clicks on widgets;
but modern multi-modal/multi-touch systems are intended to
be commanded by several coordinated user actions, such as
pointing-and-speech. These sets of coordinated actions would
be abstracted as composite events in the proposed model.

It is true that existing event-driven languages have enough
expressiveness to develop multi-modal and multi-touch inter-
active systems, but the complexity of the resulting code can
be reduced by using composite events: the interaction state
that has to be updated manually with event-driven languages
is maintained automatically by composite event-driven tools.
This benefit was noticed by twelve participants of a compara-
tive user study: All of them agreed that the task of modifying
interaction descriptions was simpler when using composite
events than when using C#, a mainstream event language [7].

The event-driven paradigm was inspired in academic re-
search (e.g., University of Alberta UIMS and Sassafras) carried
out in the 80’s [19], when mouse-based interactions were pre-
dominant. By 2000, the mouse-based interactions introduced
by the Apple Macintosh, in 1984, had been widely adopted
by almost all applications [19]. Mainstream event-driven lan-
guages such as Visual Basic and Java were released within
that period; more concretely, in 1991 and 1995, respectively.
Therefore, it should not be a surprise to realize that the event-
driven paradigm with all its underlying concepts was likely
tailored to deal with a type of interaction that is much simpler
than multi-touch and multi-modal interaction, which now claim
silently their own paradigm and tooling.

In a seminal paper, published in 2000, when discussing
event-driven languages, Myers et al. [19] foretold that, in order
to deal with the then-emerging modalities, such as touch and

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

speech, a new paradigm may be needed. To the best of our
knowledge, no one has yet given a clue about how to start
building the new programming paradigm. Based on 4+ years
of research, this paper is suggesting one direction: to extend
the fundamental concept of event to composite events.

We expect that the first, positive results obtained after
implementing our programming model can encourage other
researchers and practitioners to create more full-fledged com-
posite event-driven tools, which, aside from including code
editors, runtime environment, and debugging tools, like our
tool, must also include interface builders and a language
enriched with general-purpose constructs. With such a set of
tools, programmers will no longer need to separate application
code from interaction code and, thus, the aforementioned
limitations might disappear.

ACKNOWLEDGEMENTS

We would like to acknowledge the effort of our former
colleagues of Hasselt Universiteit, namely, Jan Van der Bergh,
Kris Luyten, and Karin Coninx, for helping us implement a
first version of the vision exposed in this paper.

REFERENCES

[1] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala, “Proton: multi-
touch gestures as regular expressions,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI’12), 2012.

[2] L. Spano, A. Cisternino, F. Paterno, and G. Fenu, “Gestit: a declarative
and compositional framework for multiplatform gesture definition,” in
Proceedings of the EICS’13. ACM, 2013.

[3] F. Cuenca, J. Van den Bergh, K. Luyten, and K. Coninx, “A domain-
specific textual language for rapid prototyping of multimodal interactive
systems,” in Proceedings of EICS’14. ACM, 2014.

[4] C. Scholliers, L. Hoste, B. Signer, and W. De Meuter, “Midas: a
declarative multi-touch interaction framework,” in Proceedings of the
fifth international conference on Tangible, embedded, and embodied
interaction. ACM, 2011.

[5] “TIOBE Index,” http://www.tiobe.com/tiobe-index/, 2016, [Online; ac-
cessed 21-December-2016].

[6] “IEEE Spectrum,” http://spectrum.ieee.org/computing/software/the-
2016-top-programming-languages/, 2016, [Online; accessed 21-
December-2016].

[7] F. Cuenca, J. V. d. Bergh, K. Luyten, and K. Coninx, “A user study
for comparing the programming efficiency of modifying executable
multimodal interaction descriptions: a domain-specific language versus
equivalent event-callback code,” in Proceedings of the PLATEAU’15.
ACM, 2015.

[8] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of program-
ming language adoption,” ACM SIGPLAN Notices, vol. 48, no. 10,
2013.

[9] W. König, R. Rädle, and H. Reiterer, “Interactive design of multimodal
user interfaces,” Journal on Multimodal User Interfaces, vol. 3, no. 3,
2010.

[10] B. Dumas, D. Lalanne, and R. Ingold, “Description Languages for
Multimodal Interaction: A Set of Guidelines and its Illustration with
SMUIML,” Journal of multimodal user interfaces, vol. 3, no. 3, 2010.

[11] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “ICOs: A Model-
Based User Interface Description Technique dedicated to Interactive
Systems Addressing Usability, Reliability and Scalability,” ACM Trans-
actions on Computer-Human Interaction, vol. 16, no. 4, 2009.

[12] S. H. Khandkar and F. Maurer, “A domain specific language to define
gestures for multi-touch applications,” in Proceedings of the 10th
Workshop on Domain-Specific Modeling. ACM, 2010.

[13] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala, “Proton++: a
customizable declarative multitouch framework,” in Proceedings of
the 25th annual ACM symposium on User interface software and
technology. ACM, 2012.

[14] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey,
“P: safe asynchronous event-driven programming,” ACM SIGPLAN
Notices, vol. 48, no. 6, 2013.

[15] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,” Science of computer
programming, vol. 19, no. 2, 1992.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, 1991.

[17] F. Cuenca, J. Van den Bergh, K. Luyten, and K. Coninx, “Hasselt uims:
a tool for describing multimodal interactions with composite events,”
in Proceedings of the EICS’15. ACM, 2015.

[18] J. Van den Bergh, F. Cuenca Lucero, K. Coninx, and K. Luyten,
“Toward specifying human-robot collaboration with composite events,”
2016.

[19] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of
user interface software tools,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 7, no. 1, 2000.

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

