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Abstract—Software tools for programming gate-based quantum
computers are being developed by many parties. These tools
should now grow towards a phase where they support quan-
tum devices running realistic algorithms to outperform classical
algorithms on digital computers. At this moment, they lack
capabilities for generic gates, capabilities for quantum debugging
and generic quantum libraries. This paper gives a view on the
functionalities needed for such software environments looking at
the various layers of the software stack and at the interfaces for
quantum cloud computing.
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I. INTRODUCTION

Quantum computers are still in an early stage of devel-
opment, and experimental quantum processors are getting to
support up to a few dozen of qubits [1][2]. That number is
growing, and support for a large number of qubits is just a
matter of time. Where we speak of quantum computers in this
paper, we mean gate based quantum computers and not quan-
tum annealers. Software tools for programming gate-based
quantum computers are also in an early stage of development,
where the basics, however, were already set 20 years ago [3]–
[5]. Currently, these software tools are mainly supporting a
set of low-level quantum instructions, embedded in a classical
(digital) programming language. They are adequate for running
rudimentary quantum applications [6] that can already run
on only a few qubits. Quantum computing should now grow
towards a phase where the development of quantum software
must get more emphasis. This is comparable with the sixties of
the previous century, when programming tools like Fortran and
Algol brought a much higher abstraction to digital computers
than just assembly language.

Since it is not obvious what ‘higher abstraction’ means for
quantum computing, this paper discusses what functionality
is needed in the next level of quantum computing and how
this can be implemented in a structured way, by means of a
stack of software layers. Important here is that, in this paper,
we assume that (1) quantum processors remain bulky devices
for a long time (like digital computers in the beginning), (2)
that real quantum applications will always be a mix of digital
and quantum computing, where only a part of the problem is
solved in a quantum manner, and (3) that we want to make this
available for a larger public, that has limited knowledge about
the underlying quantum layer. For this, we require (1) a strict
interface between remote quantum hardware, (2) local software
that runs at the user side that can, (a) independent of the used

TABLE I. Shortlist of languages being used for quantum software tools.

C / C++ based (>30) Matlab / Octave based (12)
F# based (1) Maxima based (2)
GUI based (>10) NET based (4)
Java based (>15) Online service (10)
JavaScript based (1) Perl / PHP based (3)
Julia based (1) Python based (>6)
Maple based (3) Scheme/Haskell/LISP/ML based (8)
Mathematica based (8)

local programming language, interact with the remote hard-
and software, (b) independent of the used local programming
language, make use of high level quantum algorithms in
libraries, and (c) has profound quantum specific debugging
capabilities where (small versions of) the desired algorithms
can be analysed, while stepping through the program in debug
mode, up to the underlying quantum states using simulations.

The remainder of this paper is organised as follows. In
Section II, we give an overview of the current state of the art,
by making a functional grouping of existing tools and their
capabilities. In Section III, we discuss the functionality we
expect from a quantum software environment to meet the above
requirements. In Section IV, we sketch our desired software
environment, by defining layers and discussing the functional-
ity of each of those layers and the placement of the separation
between local and cloud, followed by some examples of (later
defined) quantum function libraries in Section V. We conclude
in Section VI with a summary and conclusions.

II. STATE OF THE ART

Many quantum software tools are freely available via the
Internet, and overviews with good summaries of those tools
can be found in [7]–[9]. Most of these tools are still in the
development phase. The list of available tools is too long to
be duplicated here, but a first impression can be gained by
organising them according to the used programming language.
Table I shows the programming languages that are being used
for implementing quantum tools, and the number of each of
these quantum tools. What can be observed in this table is
the wide range of different programming languages that has
been used. There is no clear winner from that, simply because
almost any classical programming language is suitable for this
job, with each of these languages having its own advantages
and disadvantages.

An other way to group the tools is taking a high-level view
on their functionality. We recognise the following functional
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TABLE II. Examples of quantum compiling tools

Name Remarks
Scaffold or ScafCC C-alike, updated version of CLANG.

Compiles to LLVM & QASM [10].
Liquid (Microsoft) F#-alike, updated version of F# (called Q#),

with an emulator on board [11].
Quipper Haskel-alike [12]
QCL mix of C and Pascal alike, detailed language

specification with emulator on board [13].

groups: (a) quantum compilers, (b) quantum function libraries,
and (c) back-end quantum simulators. We are aware that some
tools may not fully fit into one particular group and these
groups may overlap, but it is helpful to identify several high-
level functionalities. We will now discuss the characteristics
of each of these groups one by one.

A. Quantum compilers
The word compiler refers in this context to a tool that

translates an entire program from higher level statements into
some lower level instructions (e.g., binary or assembly). The
execution of that program is started thereafter. The purpose of
a compiler is to generate low level quantum instructions (in
assembly or as native code), from a mix of low and high level
quantum statements, of classical control statements and loops,
of organised code in reusable routines, etc.

Quantum tools that present themselves as quantum com-
pilers are mainly modifications from an existing (classical)
compiler. The result is a changed syntax to have it extended
with quantum specific instructions. The present extensions are
mainly to offer a syntax for elementary instructions at the level
of quantum assembly code. Table II offers a few examples of
those tools.

Their main disadvantage is that creating a new language
may break access to existing code libraries with classical al-
gorithms. For instance, the development of quantum algorithms
for outperforming classical machine learning algorithms will
draw significant benefits if classical code libraries with, for
example, neural network algorithms are well-accessible from
the same software environment.

Next to this, quantum compilers that introduce new lan-
guages, or break compatibility with existing languages lack in
most cases powerful development and (quantum) debugging
tools.

B. Quantum function libraries
The term function library refers in this context to the use

of an existing and well-supported (classical) programming en-
vironment, where the quantum programmer can call quantum-
specific routines from a library. Their purpose is similar to
that of compilers, with the difference that the generation of
low level quantum code occurs in run time. Examples of such
quantum tools are: Qiskit (IBM), Quantum Learning Machine
(QLM, Atos), PyQuil (Rigetti), ProjectQ (ETH Zurich), and
OpenQL (TU Delft).

The approach of using function libraries brings hardly any
limitation, think of generating thousands of dedicated quantum
instructions by a single call to a library function. For instance,
a single call to a routine for a Quantum Fourier Transform or
a matrix expression, that automatically generates hundreds of
quantum instructions operating on tens of qubits. However,

the present quantum function libraries have a strong focus
on low-level quantum computing, and may only be targeted
at a specific quantum processor. Quantum programming with
the present tools is mainly a matter of calling routines for
generating individual low level quantum instructions (like as-
sembler). By calling several of them with different parameters,
one can generate a sequence of quantum instructions to build
a quantum circuit. The identification and handling of higher
level quantum instructions is still a topic of further research.

Some of these tools already offer powerful quantum de-
bugging capabilities, like the generation of a drawing of the
generated quantum circuit and access to a build-in quantum
simulator. Such simulator can return intermediate results, like,
for instance, a quantum state, that can never be obtained using
a real quantum processor. Some of these tools also offer a
graphical user interface, for positioning a few quantum gates
into a quantum circuit to process a few qubits. That approach
mainly serves an educational purpose for those who are setting
their first steps in quantum computing. However, as soon as
your quantum program grows in size, the use of scripting for
calling quantum functions may become more convenient.

C. Back-end simulators
The term back-end simulator refers in this context to a

tool that reads low level quantum assembly and executes them
in a manner like a real quantum processor would do. As
such, it becomes irrelevant for the quantum programmer in
what language such tool is written since that tool is instructed
directly via low level assembly instructions. The concepts of
high level instructions and function libraries are not applicable
here and therefore we consider it as another group.

Back-end simulators contain a very simple translator, to
feed low level assembly instructions (usually stored in an
ASCII file) to a build-in simulation engine. They are by
definition dedicated to low-level functionality only, and can
simulate/emulate on a digital computer what a real quantum
processor would have returned. These tools aim at simulating
a real quantum processor as good as possible on a classical
digital computer. They may even try to simulate the physical
imperfections of a particular quantum processor as well. For
instance, by adding some random mechanism (noise) to mimic
the loss of quantum coherence after executing more and
more quantum instructions, or by deliberately accounting for
topological limitations of a particular quantum processor.

These tools may be offered as a stand-alone tool, or as
part of a larger software environment (sometimes referred to as
‘virtual quantum machine’). The translation functionality they
possess, may also be used to interface with a real quantum
processor, but that is out of scope here. Examples of such
quantum tools are (modules inside) QX (QuTech) [14], QLM
(Atos) [15], QVM (Rigetti) [16] and Quantum Experience
(IBM) [17].

These tools serve purposes other than quantum function
libraries and quantum compilers do. They are valuable to
study the quantum assembly language, to study how to deal
with limitations in the quantum instruction set of the target
machine, or to study quantum error correction methods against
decoherence. They are also valuable to study the interfacing
between a local software environment and a quantum processor
somewhere in the cloud.
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TABLE III. Example of two different dialects of quantum assembler, both
representing the same quantum circuit

Atos-QASM QX
BEGIN
qubits 18 qbits 18
cbits 0 .ckt
H q[0] H q[0]
H q[5] H q[5]
CTRL(PH[1.570]) q[15],q[16] CR q[15], q[16], 1.570
CTRL(PH[0.785]) q[14],q[16] CR q[14], q[16], 0.785
CTRL(PH[0.392]) q[13],q[16] CR q[13], q[16], 0.392
H q[15] H q[15]
... ...
H q[16] H q[16]
END

III. DESIRED SOFTWARE FUNCTIONALITY

In this section, we describe the functionality we expect
in quantum software, such that it supports implementation of
more complex, hybrid digital and quantum algorithms and that
it will enable a larger public that has limited knowledge about
the underlying quantum layer to access quantum computing.

A. Commonly available functionality

In spite of all functional differences between the discussed
tools, they all share a common functionality: the concept of
quantum circuits for representing a set of quantum instructions
via interconnected gates, and the concept of quantum assem-
bler or Quantum Assembly Language (QASM) as a language
for describing those circuits as a list of sequential quantum
instructions. There are several of these quantum assembly
languages, each with their own dialect (syntax), but from a
pure conceptual point of view they all are roughly the same.
Table III shows an example of two different QASM dialects,
both describing the same quantum circuit. The first one shows
the syntax used by QLM (from Atos), the second one shows
the syntax used by QX (within Quantum Inspire).

A QASM file is typically a sequence of individual QASM
instructions, embedded between a header (with declarations)
and a footer. Some QASM tools also allow for grouping those
instructions into macros (like functions) to simplify the use
of the same code multiple times. Each QASM instruction is
build-up from (a) an instruction name, (b) optional parameters,
and (c) a list of qubit identifiers on which this instruction
should operate. Each instruction can change the contents of
a ‘quantum register’ (via gates or measurements), and many
of them in sequence define a quantum circuit. There is an
apparent consensus on the naming of several of these gates,
for instance, instruction names like H, X, Y, Z, but this
consensus does not hold for all gates. This difference can be
confusing, but is not a big issue when well defined. When
these names are well specified by means of the corresponding
matrix representation, the conversion from one QASM dialect
into another is pretty straight forward. And when a particular
gate is not available in one QASM, it can always be created
in another QASM via a combination of a few other gates.
Note that some QASM dialects start their counting of qubits
from 0, while others start from 1. This is only a matter of
convention and preference, mainly driven by the supporting
language, and not a big issue either. In conclusion, one may
say that it is relatively easy to translate one QASM dialect into
another one.

B. Next level functionality
To reach the desired level of quantum programming that

supports the implementation of more complex, hybrid quantum
algorithms and to enable a larger public that has limited knowl-
edge about the underlying quantum layer to access quantum
computing, we need a next level of software functionalities.
Examples of these functionalities are:
Desired capabilities for generic gates

• Define circuit libraries with generic gates, with an
arbitrary number of qubits, and callable as if it was a
single instruction. OpenQASM [18] does supports the
concept of macros and can provide this functionality,
but that concept is not available in all QASMs. The
desired circuit library should generate, for instance, a
Quantum Fourier Transform, or a circuit for modular
exponentiation by one instruction/call for an arbitrary
large number of qubits.

• Define circuit libraries with generic gates in terms of
an unitary matrix or a matrix expression, while the
tool translates that into circuits with only basic gates.
This capability is currently a weak point for almost all
tools. It may be available for one or two qubit gates,
but the issues get problematic for more qubits.

Desired capabilities for quantum debugging

• The capabilities to let the software draw a circuit
from a QASM specification to debug what has been
specified. Tools like Liquid, QLM and ProjectQ give
support for that, but it should be available on all tools
of interest.

• The capability to read out the full vector (or full ma-
trix) with complex numbers representing the present
quantum state or circuit (also at intermediate points).
This is impossible with a real quantum processor,
and only possible with a simulator. However, it is a
very powerful and essential debugging facility. Some
simulation tools do support this, but there are very
primitive solutions among them.

• The capability to analyse generic quantum states and
gates (during simulation), while stepping through the
program in debug mode, using sophisticated linear
algebra tooling.

• The capability to visualise in an abstract manner
relevant aspects of the (full) state vector or (full)
matrix in case they are too large for a full numerical
inspection. For instance, histograms, magnitude plots
by means of colours, etc,

Desired quantum libraries

• Libraries that implement many quantum func-
tions/circuits, callable from your quantum program.
Many functions are well known from the literature, but
inserting, for instance, a Quantum Fourier Transform
operating on an arbitrary number of qubits (in arbitrary
order) should be as simple as inserting a single qubit
X gate. Section V provides further details.

• Running quantum programs from a programming en-
vironment with good access to classic libraries with
legacy solutions for the quantum application under
study. This may mean (a) a language that is different
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Figure 1. Software stack for quantum tooling with different layers

from the implementation language of the quantum
tools, and/or (b) software that prepares the quantum
application locally (for debugging reasons) for run-
ning it on a remote quantum processor (via a well-
supported API, Application Programming Interface),
and/or (c) software that uses a different operating
system from the one used by the quantum processor.
We will also discuss this further in the next chapter.

These desired functionalities are examples only, and the list is
not complete. They have currently a strong focus on (quantum)
debugging capability, flexibility, and libraries. The present
tools may implement fragments of this list, but we have not
found a tool that can support them all in a convenient manner.

IV. DESIRED SOFTWARE ENVIRONMENT

If we know what functionality we need in the software to
enter the next level of quantum computing, we should define
where and how this functionality should be implemented and
where the separation between local and cloud can be placed.

A. Layered software stack
To define where and how the functionality should be

implemented, we use a full software stack with different layers,
as shown in Figure 1, covering functionality from quantum
applications down to quantum processors. The concept in
Figure 1 is very similar to the picture shown in [19][20]. We,
however, put more emphasis on the desired functionality within
the intermediate levels.

1) Functionalities of bottom Layers: The very bottom of
the low-level layers are reserved for the quantum processors,
each equipped with dedicated hardware for controlling it via
(binary) micro instructions. For instance, to change the quan-
tum state of a quantum processor via dedicated pulses. A soft-
ware layer directly above this hardware allows for translating
a sequence of low-level quantum instructions (e.g., assembly
or binary code) into dedicated pulses for the hardware. This
software layer should hide the hardware difference among
different quantum processors as much as possible, in order
to program them with uniform instructions that are more or
less hardware-independent. In practice, very different quantum
processors will be implemented, based on different physical

principles, and each with their own micro instruction sets. The
quantum programmer should not be bothered by that.

These instructions are still very low-level, and the use of
some QASM dialect is the most obvious choice here. These
instructions allow for defining quantum circuits with basic
gates, where the word basic refers to a set of predefined
gates operating on 1 or 2 qubits only. These instructions
may be restricted to the (hardware) instruction range of the
target quantum processor, and may also account for topological
(hardware) limitations.

Since quantum processors are still under development, the
use of a back-end circuit simulator also has its place in the
lower layers. Their aim is to simulate a real quantum processor
as fast as possible, with as many qubits as the used digital
computer platform can handle, and to simulate/emulate all its
imperfections and, if applicable, all topology limitations as
good as possible.

2) Functionalities of intermediate Layers: A more inter-
mediate level (the Q-circuit algorithms box in Figure 1) gives
the quantum programmer access to all kinds of quantum
algorithms, in a uniform manner, ideally independent from
the used quantum hardware and programming languages. It
is, for instance, equipped with all kinds of algorithm libraries
(examples can be found in the next section) and quantum
debugging capabilities to design the quantum-specific parts of
applications.

These instructions are at least capable of defining arbitrary
circuits with generic gates. This means within this context that
they can operate on an arbitrary number of qubits, far beyond
the instruction set of the quantum processor, and they may even
be specified via (unitary) matrices or high level expressions.
The translation from quantum circuit with a few generic gates
into circuits with many basic gates is the proper place to
perform gate and qubit optimisation. The best results can be
achieved when this translation is partly guided by control
parameters representing some of the hardware limitations of
the target quantum processor (hardware aware). These control
parameters are set only once for a particular target quantum
processor, and preferably invisible in the instructions with
generic gates (hardware agnostic). As such, this translation
is an important intermediate step in quantum programming,
applicable to both quantum compilers and tools based on
function libraries.

Figure 2 provides an example of a quantum circuit with
generic gates. At a first glance, generic may look the same as
basic gates, but in this case the gates can also be black boxes
operating on many qubits simultaneously specified as matrices,
expressions, or standard functionalities.

One may still consider the supported instructions as rather
low-level, but the distinction between low and intermediate
level brings a significant advantage. If quantum computing is
offered via the cloud, for running quantum applications from
all over the world, then the interface between the lower and
intermediate layer is a natural interface for the cloud based
quantum computer. And the use of one or more QASM dialects
is a natural component in the interfacing between these layers.
It means that software in the intermediate layers may fully run
on a local computer, while software in the lower layer should
typically run on a remote quantum host.
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Figure 2. Example of a quantum circuit with generic gates.

3) Functionalities of higher layers: The higher layers
(above the Q-circuit algorithms box in Figure 1) are typi-
cally reserved for classical programming environments that
are extended with quantum capabilities for solving dedicated
subproblems. Here the new group of users, with limited
knowledge of underlying quantum techniques should be able to
play around. It would be a waist of effort if each programming
environment has to develop its own collection of libraries with
quantum-specific algorithms. Therefore it is far more efficient
to equip them only with language-specific interfaces, wrapped
around common quantum libraries and debugging capabilities
from the intermediate layer.

Quantum applications will most likely be a hybrid mix
of classical programming concepts and quantum-specific algo-
rithms. This means that the classical programming languages
call a quantum algorithm only when needed for solving par-
ticular subproblems. These classical programming languages
should offer the following capabilities:

• Good access to classical software libraries, with ded-
icated algorithms for the problem area. Think of
libraries for artificial intelligence applications. But
think also of access to quantum circuit libraries with
dedicated quantum-specific algorithms like quantum
solutions for dealing with decoherence errors or for
decomposing a large number into its prime factors.

• Good access to quantum debugging capabilities, also
for the quantum specific aspects. Think of inspecting
quantum states and matrices of quantum circuits via
a build-in simulator and drawing quantum circuits
from instructions. These debugging capabilities should
easily interact with the higher layers, all in a very
interactive and flexible manner.

As such, the universal programming language for everybody
does not exist, and therefore the best solution for that is
that the intermediate layers offer access to quantum-specific
libraries for any programming language of interest. It supports
many quantum circuit algorithms as well as quantum-specific
debugging capabilities.

The use of languages with build-in support for linear
algebra expressions, that are also available as interpreter, give
the user powerful extra capabilities for quantum debugging.
These tools allow for inspecting and manipulating interme-
diate results of circuit matrices and state vectors in a very
interactive manner during simulation. Linear algebra languages
like Matlab/Octave, and to some extend Python with Numpy,

Figure 3. Quantum software stack overview.

are examples of languages offering the desired linear algebra
capabilities in an interactive environment and offer access to
a broad spectrum of classical code libraries.

B. Separation between Local and Cloud

It is assumed that quantum computers remain big installa-
tions with bulky refrigeration equipment for a long time. Com-
mercial deployment of quantum computing will then mean
a quantum computer hosted in a remote building, offering
access via the cloud to many users all over the world. Today,
experimental quantum computers already give access via the
cloud, but mainly in a restricted manner; end users have to
setup a remote terminal session with the hosting computer
and they should develop and run everything on that host.
This is quite inconvenient as it limits rapid interaction with
local software, like exchanging intermediate results with local
debugging software. Moreover, commercial users may not be
willing to share their source code with the hosting organisation.
Exchange of low-level code (binary or assembly) gives then
a similar protection as is common today for distributing pro-
grams as a binary executable. In that case, end users develop,
test and debug on a small scale (locally) at an intermediate
level, and then send low level quantum instructions to a remote
host in order to run at full quantum speed and size.

The most convenient way of implementing that is therefore
not by opening remote terminal sessions, but by accessing the
remote quantum computer via an API. An API allows the user
to program his (quantum) application in a language that differs
from the programming language being used by the remote host.
The intermediate layers will then send QASM-alike quantum
instructions to a remote host, while the end-user experiences
it as if it runs locally. Figure 3 illustrates this interaction
model, where the interface between local and cloud is situated
between the intermediate and lower layers. The intermediate
layers are equipped with all kinds of libraries for quantum
specific calculations, as well as debugging capabilities via a
local quantum simulator. These libraries generate the required
low level QASM instructions and can forward them through a
language-independent interface to the lower layers running in
the cloud.
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V. EXAMPLE LIBRARIES

To get an idea of the type of algorithms that can be imple-
mented via libraries, we will discuss a few examples: libraries
that convert a mathematical expression into a quantum circuit,
libraries that decompose a generic gate or generic matrix
description of such gates into circuits with basic gates and
libraries that convert arithmetic calculations into a quantum
circuit.

A. Quantum expression libraries
The first example is dedicated to generic gates described by

mathematical functions for generating special unitary matrices.
Think, for instance, of the following matrix expressions:

G1(a) = ej∗a∗Z

G2(a) = ej∗a∗ZZ

G3(a) = ej∗a∗ZZZZ

G4(a, b, c, d) = ej∗(a∗XX+b∗Y Y+c∗ZZ+d∗II)

Where

• a, b, c, d are parameters with arbitrary real values;
• X,Y, Z are the Pauli matrices;
• I is the unity matrix;
• XX,Y Y,ZZ, II are the Kronecker products of X ,

Y , Z and I with themselves;
• ZZZZ is the Kronecker product of ZZ and ZZ.
• j indicating the imaginary number

√
−1.

The solution for the first two examples is quite easy, and can
be found in almost any basic text book on quantum computing.
But finding a good solution for the last one is less obvious.
Fortunately, it can be represented by a relative simple circuit
[21]. One can easily imagine that the list of such expressions
is virtually unlimited, which illustrates the value of bringing
them all together into a well-organised quantum expression
library.

B. Quantum decomposition libraries
Another example occurs when mathematical functions are

not available in the expression libraries, as discussed in the
previous section. In those cases a solution may be to use a
numerical evaluation of that function into a unitary matrix with
complex numbers. For instance, to produce an 8 × 8 matrix
representing a 3 qubit gate. It is not that difficult to decompose
an arbitrary matrix into the product of much simpler matrices,
but a simpler matrix does not automatically mean a simpler
quantum circuit. Examples of useful matrix decompositions
are singular value decompositions, sine-cosine decompositions
[5] or QR-decompositions with Givens rotations [22]. How-
ever, these decompositions can easily result in large quantum
circuits with an exponential number of basic gates, and can
also produce quite inefficient solutions. Decomposition is
still an important topic for further research, because we still
need algorithms that convert arbitrary matrices into quantum
circuits, such that it is fully automatic and produces an efficient
circuit as well.

When the matrix is not fully arbitrary, dedicated solutions
may yield far more efficient solutions then the generic ap-
proach. Examples are

TABLE IV. Explanation of used gates in Figures 4c and 4b.

Peres approach QFT approach
G1 = c([1 + q4, 1 − q4; 1 − q4, 1 + q4]/2) G1 = cR(π/2)
G2 = c([1 + q2, 1 − q2; 1 − q2, 1 + q2]/2) G2 = cR(π/4)
G3 = G2′ (conjugated transpose of G2) G3 = cR(π/8)
G4 = G1′ (conjugated transpose of G1) G4 = Rs(π/8)

G5 = Rs(π/4)
where G6 = Rs(π/2)
q2 = (−j) G7 = Rs(π)

q4 =
√

(−j) G8 = cR(−π/2)
c([g11, g12; g21, g22]) = G9 = cR(−π/4)

[1, 0, 0, 0; G10 = cR(−π/8)
0, 1, 0, 0;
0, 0, g11, g12; where
0, 0, g21, g22] Rs(φ) = [1, 0; 0, e(j∗φ)]

cR(φ) = c(Rs(φ))

• U is a 1-qubit gate specified by a 2×2 unitary matrix
with arbitrary complex numbers;

• cU is a controlled version of U, representing a 4× 4
matrix;

• ccU is a double controlled version of U , representing
a 8× 8 matrix.

Such generic gates can be decomposed into multiple basic
gates and the simplest one can be found in almost any basic
text book on quantum computing. But finding solutions for
multiple controlled gates is not obvious, and should be gen-
erated automatically by a single function call, for an arbitrary
matrix U and with an arbitrary number of control inputs. One
can easily imagine that the list of different decompositions is
virtually unlimited, which illustrates the value of bringing them
all together into a well-organised ‘quantum decomposition
library’.

C. Quantum arithmetic libraries

Several quantum applications make use of algorithms
where discrete numbers are represented by distinct quantum
states. For instance, algorithms that make use of modular
additions, modular multiplications or modular exponentiations.
In those cases it is not obvious what the most efficient way
is to implement these on many qubits. We will show three
example circuits of how to calculate something ‘simple’ like
the modular increment of a discrete number encoded in 4
qubits. The first one (Figure 4a) can be found in any textbook,
looks quite simple, however, requires gates with many control
inputs. The second one (Figure 4b) with Peres gates is also
known [23], looks more complicated, but requires only single
qubits gates and single controlled qubit gates. The used gates
are explained in Table IV.

The third example (Figure 4c) using quantum Fourier
transforms [24], however, appeared to be the most simple one
of these three, in the sense that only single qubit gates and
controlled phases are used. This may illustrate that generating
an algorithm with the most efficient circuit is not obvious even
for a very simple problem.

There are many more of these modular arithmetic calcu-
lations, each of them with multiple implementations. Their
details are out of scope here, but it may again illustrate the
value of bringing all these implementations together into a
well-organised ‘quantum arithmetic library’.
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(a) Basic circuit of evaluating the
modular increment of a number,

encoded in 4 qubits.

(b) Peres approach of modular increment: looks more complicated than
the basic circuit, however, all gates are operating on only one or two

qubits.

(c) QFT approach of modular increment: offers the simplest implementation, although looks the most complicated.

Figure 4. Three examples of evaluating the modular increment of a number, encoded in 4 qubits.

D. Other quantum libraries
The list of useful libraries is unlimited. Think of circuits

to generate a Quantum Fourier Transform, or to step through
a quantum random walk. The same applies for the best way
to deal with error corrections, to deal with the topology
limitations of a particular quantum computer, or to build
standard circuits by using only the native gates of a particular
quantum computer (those that can be made with a single
pulse). Note that implementations of basic gates like X , Y , Z,
may require more than one pulse (this depends on the physical
implementation being used). Existing tools have some of those
algorithms implemented. However, a common library that can
be used by different quantum tools is currently only in an early
phase of development.

VI. SUMMARY AND CONCLUSIONS

This paper identified what functionality is needed in soft-
ware that enables the next level of quantum computing and
proposes a way to implement this throughout the software
stack. This next level quantum computing makes it possible
to run more complicated algorithms on quantum computers in
the cloud by a larger public.

The needed functionalities were categorised in functionali-
ties for generic gates, for quantum debugging capabilities and
quantum libraries.

A layered quantum software stack was discussed with
extra attention to the functionality of the intermediate layers.
Important is a clear separation between the software that runs
locally and software that runs on a remote host computer that
controls a quantum processor.

Looking at the layered stack, the lower layers contain one
or more quantum processors and/or back-end simulators and
are typically at the remote host. The intermediate and higher
layers are typically running locally. This enables also a clear
separation between the (classical) programming languages
being used for the quantum application, and software that

implement quantum-specific algorithms and quantum-specific
debugging capabilities. The intermediate layers contain all
kinds of libraries, and a local simulator to offer this to the
higher layers.

The thoughts discussed in this paper are to provide input to
a bigger research agenda on software development for quantum
computing. A first step to make the desired functionality
happen is increasing the effort on software development for
the intermediate layers as well. Activities that deserve more
attention are: (a) Interfacing between a local computer and
quantum processor at a remote host. This should not only
be defined in a language-independent manner, but also be
defined for different quantum processors (at different remote
hosts) in a common manner. (b) Collecting a wide variety of
quantum circuit algorithms into libraries, in a uniform manner
that can be used on any quantum processor. This may require
an automated translation from an abstract QASM syntax tree
(generated by the libraries) into the various QASM dialects of
different processors.

This paper has shown a few examples of those libraries.
All kinds of good algorithms are scattered around in literature,
and paying more attention on bringing them all together into
common libraries is a good start.
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