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Abstract—An Expectation-Maximization (EM) modeling and a 
speech corpus with fast, median, and slow speaking rate are 
applied to explore the effect of speaking rate on segmental 
duration structure of Initial, Final, and syllable in Mandarin 
Chinese. Experimental results showed that the variance of 
duration was greatly reduced after eliminating effects from 
additive factors by EM algorithm. By excluding the 
interference of acoustical factors, the relationship between 
syllable duration and the structure of Initial and Final 
durations for different speaking rate is observed. The result 
shows that for same syllable duration, the ratio of Final to 
Initial becomes larger when the speaking rate becomes faster. 
Besides, the ratio, generally, becomes larger as the syllable 
becomes longer. However, for extremely short syllable about 
less than 100 ms in fast speed, the ratio becomes large, and in 
syllable duration longer than about 350 ms in median and slow 
speed, the ratio becomes almost a constant. 
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I.  INTRODUCTION 

Speaking rate is one of the most important factors in 
spontaneous speech systems, because variability in speaking 
rate may be often observed in spontaneous speech than in 
read speech. Studies have shown that the acoustic properties 
corresponding to phonetic segments of speech are influenced 
by variability of speaking rate. For example, spectral patterns 
will be changed and formant positions will be shifted [1]-[4] 
and the intelligibility and comprehension will be influenced 
[5]-[8]. Furthermore, changes in speech rate have effects on 
prosody, like the overall level and range of fundamental 
frequency (F0) and durations. While changing speaking rates, 
it also causes variations in prosodic phrasing, such as 
prosodic boundaries. For example, the research of Tseng find 
that duration adjustment is made systematically at each 
prosody level during speech production and examining 
speech rate in relation to prosody units is a significant first 
step to understanding temporal organization of speech flow 
[9].  

Because of its importance, speaking rate has been put 
into considerations in many speech application, for instance, 
speech recognition [10]-[16], emotion classification [17], 
and Text-To-Speech system [18]. Previous studies revealed 
that the mismatch between speaking rates of training and 
test data of speech recognition system will degrade the 

system performance, therefore, some researches focus on 
solving the problem of performance degradation caused by 
speaking rate variability [10]-[16]. Further, different 
emotional dispositions of a person are strongly expressed in 
his/her speaking rate [17], therefore, speaking rate also has 
significant influence in emotion classification.  Hence, 
speaking rate estimation [19] has become an important job. 
In addition, speaking rate-controlled prosody is also critical 
for Text-To-Speech system [18].  

Though there are some studies about the effect of 
speaking rate for vowel duration [20] and prosody units [9], 
there are few studies about the initial and final structure 
change under various speaking rate. Therefore, our objective 
of this paper is to find out the change of initial and final 
structure under various speaking rate to further understand 
the temporal organization of speech flow, so it could be 
applied to speech related application.  

However, it is difficult to get an obvious pattern from 
observing the original duration directly or to incorporate 
qualitative findings into a quantitative model, and there has 
been rather few prosodic model devoted to investigating 
detailed effects of speech rate modification on the realization 
of individual pitch accents, duration, intonation, and prosodic 
structures. Hence, an Expectation-Maximization (EM) 
modeling [21] and a speech corpus with fast, median, and 
slow speaking rate are applied to explore the effect of 
speaking rate on segmental duration structure in Mandarin 
Chinese in this article. The achievement will be useful for 
improving the quality of speech synthesis and the 
recognition rate of speech recognition.  

The paper is organized as follows. In Section II, the EM 
analysis algorithm, including the factors which have impact 
on durations, the syllable duration modeling, and the 
extension to Initial and Final Duration Modeling, is shown. 
Section III describes the experimental results. Conclusions 
are given in the last section. 

II. EM ANALYSIS ALGORITHM 

A. Factors 

In naturally spoken Mandarin Chinese, duration varies 
considerably depending on various linguistic and 
nonlinguistic factors [22]. Mandarin Chinese is a tonal and 
syllable-based language. Each character is pronounced as a 
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syllable, the basic pronunciation unit. There exist only about 
1300 phonetically distinguishable syllables comprising all 
legal combinations of approximately 411 base-syllables and 
five tones. Mandarin base-syllables have very regular 
phonetic structure. Each base-syllable is of the form 
(C)(C)V(N), where C is a consonant, V is a vowel, and N is 
a nasal consonant (the symbols between parentheses signal 
optionality). So, base-syllables comprise one to four 
phonemes. Generally speaking, syllable duration increases as 
the number of constituent phonemes increases. Syllables 
with single vowels are shortest. Syllables with stop initials or 
no initials, and without nasal endings are pronounced shorter. 
Syllables with fricative initials and with nasal endings are 
longer. Therefore, duration is seriously influenced by the 
phonetic structure of base-syllables, and base-syllable is 
listed as one of the impact factors.  

Tonality of a syllable is characterized by its pitch contour 
shape, loudness and duration. For example, syllables with 
Tone 5 (Neutral Tone) are always pronounced much shorter. 
Therefore, tonality is also considered as a factor which has 
impact on duration.  

To prevent the speed variation in different utterance 
sentence in recording process for specific speed rate, 
utterance is also included as a factor for normalization.  

Aside from the acoustic factors mentioned above, 
including lexical tone, base-syllable, and utterance, other 
high-level linguistic components, such as word-level and 
syntactic-level factors, like the boundary index, position in 
word, length of word factors used in [22], also seriously 
influence the duration of an utterance. In the model, the 
prosodic state, as a substitute for high-level linguistic 
information, is used to indicate the state in prosodic word or 
prosodic phrases, for example, to indicate the possible 
prosodic word or phrase boundaries, or the notions of 
prominence. Therefore, the prosodic state is used to account 
for the influence of all high-level linguistic features. There 
are two advantages of using the prosodic state to replace 
high-level linguistic features. Firstly, duration information is 
a prosodic feature, so the variation of the duration should 
better match the prosodic phrase structure than the syntactic 
phrase structure. Secondly, as mentioned above, some 
unsolved problems, such as the ambiguity of word-
segmentation and word-chunking in Mandarin Chinese and 
the difficulty of performing automatic syntactic analysis on 
unlimited natural texts, can be avoided in the current 
duration modeling approach. This prevents us from using 
improper or incomplete high-level linguistic information. By 
doing so, the modeling of duration can simply consider the 
effects of prosodic state and acoustical factors, like tone, 
utterance and base-syllable factors. Due to the fact that the 
prosodic state is not explicitly given, it has been treated as a 
hidden variable in the EM algorithm. The number of 
prosodic states is set as 16 in our modeling. A by-product of 
the EM algorithm is the determination of the hidden prosodic 
states of all the units in the training set. This is an additional 
advantage. From the sequence of prosodic states, some high-
level linguistic phenomenon could be observed, like the 
possible prosodic phrase boundaries.  

In sum, four major affecting factors including tone, base-
syllable, utterance, and prosodic state are considered. 

B. Syllable Duration Modeling 

By considering the factors in Section II-A, an additive 
duration model can be expressed by  


nnnn ljytnn γXZ    

where nZ  and nX  are, respectively, the observed duration 
and the normalized (residual) duration of the nth syllable. nX  
is considered as the residual duration after excluding all the 
impact from factors and is modeled as a normal distribution 
with mean   and variance  . nt , 

ny , 
nj , and ln  are 

the impact value of the lexical tone, prosodic state, base-
syllable, and utterance identification number factor of the nth 
syllable, indicated by nt , ny , nj  and nl .  

To illustrate the EM algorithm, an auxiliary function is 
defined in the expectation step as  

 )|,(log),|(),(
1 1

 n

N

n

Y

y
nnn yZpZypQ

n

 
 

  

where N is the total number of training samples; Y is the total 
number of prosodic states; },,,,,{ ljytv    is the set of 

parameters to be estimated, and   and   are, respectively, 
the updated and old parameter sets. t , y , j , and l  

represent the impact value of all the lexical tone, prosodic 
state, base-syllable, and utterance identification number 
factor. For example, the possible nt , the lexical tone of the 

nth syllable, is 1 to 5, therefore, t  represent 1 , 2 , 3 , 

4 , and 5 .  
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where ),;( vZN   is a normal distribution of Z with mean   

and variance  . ),|( nn Zyp  can be represented as 
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To cure the drawback of the non-uniqueness of the 
solution because of the use of additive factors, the 
optimization procedure in the Maximization step (M-step) is 
modified to a constrained optimization via introducing a 
global duration constraint. The auxiliary function then 
changes to  
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where z  is the average of nZ  and   is a Lagrange 
multiplier [23]. The constrained optimization is finally 
solved by the Newton-Raphson method [23].  

Initializations of the parameters in   are done by 
estimating each parameter independently. Then, iterative 
sequential optimizations of the parameters in   are 
performed in the M-step. Iterations are continued until a 
convergence is reached. The prosodic state can finally be 
assigned by 

 ),|(maxarg* nnn Zypy
ny

  

C. Extension to Initial and Final Duration Modeling 

Each Mandarin syllable is composed of an optional 
consonant Initial and a Final. The Final comprises an 
optional medial, a vowel nucleus and an optional nasal 
ending. To exploit the relationship between the syllable 
duration and its component Initial and Final durations in 
different speaking rate, the above syllable duration modeling 
is extended to the duration modeling of Initial and Final. 
There are two approaches. One approach is to keep the 
prosodic states of the three models independent because the 
optimal prosodic states of both Initial and Final duration 
models may not match with those of the syllable duration 
model. The mismatch may results from the inconsistency in 
the effect of linguistic features on the Initial duration and on 
the Final duration. A previous study [24] found that 
consonant-lengthening can happen at all initial positions 
especially at the beginning of a word, while vowel-
lengthening can occur only at phrasal final. The other 
approach is to share the same prosodic states so the 
relationship between the impact value of prosodic states of 
syllable and those of Final and Initial can be observed more 
conveniently. For the first approach, Initial and Final models 
could adopt the similar method as syllable. For the sharing 
model, an additional constraint is set in Initial and Final 
models to let their prosodic states the same as in syllable 
model. The training algorithm of Initial and Final models is 
then modified to an ML (Maximum Likelihood) one with all 
prosodic states being predetermined by the training 
procedure of syllable model. 

III. EXPERIMENTAL RESULTS 

The corpus is recorded in fast, median, and slow speed 
by a professional female announcer in reading style using 
WaveSurfer software on personal computer. The median 
speed was recorded first. The material contains 359 short 
paragraphs including news, blogs and text books of 
elementary school. There are totally 44934 syllables. 
Averagely, every sentence contains 10.37 syllables. The 

sentence length ranges from 80 to 272 syllables. The 
sampling rate is 20 kHz and the file format is 16 bit PCM. 
The pronunciations have been labeled. The boundaries of 
syllable, Initial and Final have also been marked by 
automatic segmentation based on Hidden Markov Model 
ToolKit (HTK) [25], and then corrected manually.  

Table 1 shows the duration mean, standard deviation and 
the ratio of standard deviation to mean of syllable, Initial and 
Final in fast, median, and slow speed. The experiment of 
Initial was done without considering the null Initial and the 
very short Initials of {b, d, g} which are generally difficult to 
be segmented accurately. As shown in Table 1(a) and (b), the 
duration mean of syllable, Initial and Final lengthen and the 
standard deviation become larger as the speed slows down. 
Besides, from Table 1(c), the ratio of standard deviation to 
mean of fast speed is the largest. That is, the relative 
variation is the greatest in high speed.  

The normal distribution assumption is then checked. 
Take syllable durations in slow speed as an example. Fig. 1(a) 
shows the histogram with a fitted normal distribution and Fig. 
1(b) shows a normal Q-Q plot with an RMA (Reduced Major 
Axis) regression line, together with 
the Probability Plot Correlation Coefficient (PPCC) equals 
0.9967. (Basically, a normal distribution will plot on a 
straight line.) Besides, Shapiro Wilk normality test returns a ­
test statistic W = 0.9934, (0 ＜  W ≦ 1, W is small for 
non normal samples). Jarque­ -Bera normality test returns JB 
= 870.1 and chi‐square normality test returns value 200.01. 
The p values of the three tests are much smaller than 0.05. 
From the above observations, except some outliers (those 
samples with much longer and shorter durations), most 
samples actually fit the normal distribution. To make the 
model simple, the assumption of Gaussian distribution is still 
adopted in this study. A mixture Gaussian distribution may 
fit better and could be put as a future study. 

Table 2 shows the mean, standard deviation, and RMSE 
(Root Mean Square Error) of the normalized duration of 
syllable, Final, and Initial in fast, median, and slow speed in 
EM modeling. The Final and Initial models used in this 
experiment are not sharing prosodic states with syllable 
model. After excluding the impact of factors by EM 
modeling, the standard deviation of the normalized duration 
in Table 2(b) greatly reduced compared with the original 
standard deviation in Table 1(b), while the mean of the 
normalized duration in Table 2(a) is almost the same with the 
mean in Table 1(a). Therefore, the EM modeling can 
successfully exclude the impact of factors. The RMSE of 
prediction duration by additive model is shown in Table 2(c). 
From Table 1(b), 2(b), and 2(c), though the original syllable 
standard deviation of high speed speaking rate is higher than 
the deviation of Final, the normalized syllable standard 
deviation of high speed speaking rate becomes lower than 
the deviation of Final, and in prediction stage, the RMSE of 
syllable prediction is lower than the RMSE of Final. The 
relatively high deviation of the normalized Final duration 
and RMSE show that the Final duration in fast speed is more 
difficult to model than syllable duration. 

At last, the relationship between syllable duration and the 
structure of Initial and Final durations after excluding the 
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TABLE I.  THE DURATION (A) MEAN (UNIT: MS), (B) STANDARD 
DEVIATION (UNIT: MS) AND (C) RATIO OF STANDARD DEVIATION/MEAN OF 

SYLLABLE, INITIAL AND FINAL IN FAST, MEDIAN, AND SLOW SPEED. 

(a) 

 Fast Median Slow 

Syllable 185.253 245.541 271.494 

Final 135.001 176.731 195.280 

Initial 73.265 97.643 107.517 

(b) 

 Fast Median Slow 

Syllable 
67.683 77.259 83.390 

Final 
62.291 67.527 75.388 

Initial 
37.679 44.210 48.407 

 (c) 

 Fast Median Slow 

Syllable 
0.365 0.315 0.307 

Final 
0.461 0.382 0.386 

Initial 
0.514 0.453 0.450 

 
 
interference from acoustical factors for different speaking 
rate is examined. The impact value of prosodic states plus 
the mean of duration is taken as the duration excluding the 
impact from acoustic factors. Specifically, the ratio of 

))/(( i
i
yf

f
y μγμγ  versus )( μγ y  is observed. f

yγ , i
yγ , and 

yγ are the impact value of prosodic states of Final, Initial 

and syllable duration models. fμ , iμ , and μ  are the mean of 

Final, Initial and syllable durations. )( ii
y

ff
y μ)/(γμγ  can 

be considered as the duration component ratio of Final to 
Initial in syllable structure. For easy comparing, the Final 
and Initial models used in this experiment are sharing 
prosodic states with syllable model. 

Fig. 2 displays the figure of ))/(( i
i
yf

f
y μγμγ  versus 

)( μγy  , or the ratio of Final to Initial versus the syllable 

duration  after  excluding   the  interference  from   acoustical 

factors. The vertical axis is ))/(( i
i
yf

f
y μγμγ   and the 

horizontal axis is )( μγy  . From Fig. 2, it is easy to see that 

for the same syllable duration, the duration ratio of Final to 
Initial of fast speaking rate is highest. It is followed by the 
ratio of median rate, and the ratio of slow rate is lowest. That 
is, the ratio of Final to Initial, generally, becomes larger as 
the speaking rate increases. It may be because in fast speed, 
the pronunciation is more relaxed and Final dominates. 
Besides, generally, the ratio becomes larger as the syllable 

becomes longer. But, for extremely short syllable in fast 
speed, about less than 100 ms, the ratio becomes large. 
Besides, in syllable duration larger than about 350 ms in 
median and slow speed, the value of the ratio gets almost 
saturated and becomes almost a constant. 

Our objective of this modeling is to find out the change 
of initial and final structure under various speaking rate. 
However, it is difficult to get an obvious pattern from the 
original observed duration. Observing the results of our 
experiment, the value of acoustic factors including lexical 
tone, base-syllable, and utterance, did not show particular 
different pattern among different speaking rate. Therefore, 
we assume that speaking rate does not have big impact on 
the acoustic factors including lexical tone, base-syllable, and 
utterance in our experiment, and we observed the change of 
initial and final structure under various speaking rate as in 
Fig.2. After excluding the interference of acoustic factors, it 
is easy to find out that for the same syllable duration, when 
we increase the speaking rate, the duration ratio of Final to 
Initial becomes larger. 

At last, speaker factor may be also important for 
speaking rate. Since our experiment is based on a corpus 
recorded by a single professional speaker, the impact of 
speaker is not included in our modeling, therefore, the 
further study of speaker factor will be put as our future work. 
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Figure 1.  The (a) histogram (unit of horizontal axis: ms) (b) normal Q-Q 
plot with an RMA regression line (unit of vertical axis: ms) of the observed 

syllable durations in slow speed. 
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TABLE II.  THE (A) MEAN, (B) STANDARD DEVIATION, AND (C) RMSE 
OF THE NORMALIZED DURATION OF SYLLABLE, FINAL, AND INITIAL IN FAST, 

MEDIAN, AND SLOW SPEED (UNIT: MS). 

(a) 

 Fast Median Slow 

Syllable 
183.291 242.985 268.032 

Final 
133.847 175.115 192.651 

Initial 
73.539 97.956 107.382 

(b) 

 Fast Median Slow 

Syllable 
8.928 11.602 11.596 

Final 
11.660 10.544 11.447 

Initial 
5.204 6.489 7.051 

(c) 

 Fast Median Slow 

Syllable 
8.933 11.608 11.600 

Final 
11.677 10.569 11.450 

Initial 
5.233 6.520 7.087 

 

 
Figure 2.  The ratio of Final to Initial versus syllable duration (unit: ms)  

after excluding acoustical factors. 

IV. CONCLUSIONS 

In this paper, the duration variation was studied and 
duration models are built for syllable, Initial and Final in 
different speaking rate for Mandarin Chinese. An EM 
algorithm is applied to syllable duration modeling. 
Extensions of the syllable duration modeling method are also 
performed on Initial and Final. From the experimental 
results, the impact of factors on syllable, Initial and Final 
duration   in    different   speaking   rate   are   explored.    By 

observing the relationship between syllable duration and the 
structure of Initial and Final durations after excluding the 
interference from acoustical factors for different speaking 
rate, an important conclusion is that for the same syllable 
duration, the duration ratio of Final to Initial becomes larger 
as the speaking rate increases. In addition, the ratio basically 
becomes larger as the syllable becomes longer. But for 
extremely short syllable in fast speed, the ratio becomes 
large; in syllable duration larger than about 350 ms in 
median and slow speed, the ratio becomes almost saturated. 
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