
Schemas for Context-aware Content Storage

Hans-Werner Sehring
Namics

Hamburg, Germany
e-mail: hans-werner.sehring@namics.com

Abstract—Data, to an increasing degree, is not used directly as
content represented in documents, but it serves as a foundation
for content tailored for and delivered to users working in
different and varying contexts. To this end, the actual content
is dynamically assembled from base data with respect to a
certain context. This is particularly true for content
management applications, e.g., for websites that are targeted at
a user’s context. The notion of context comprises various
dimensions of parameters like language, location, time, user,
and user’s device. Most data modeling languages, including
programming languages, are not well prepared to cope with
variants of content, though. They are designed to manage
universal, consistent, and complete sets of data. The
Minimalistic Meta Modeling Language (M3L) as a language
for content representation has proven particularly useful for
modeling content in context. Towards an operational M3L
execution environment, we are researching data schemas to
efficiently store and utilize M3L models. Such schemas serve as
a testbed to discuss context-aware data representation and
retrieval in this paper. This is done by expressing context-
aware models, in particular M3L statements, by means of
traditional persistence technology.

Keywords-data modeling; content modeling; context-aware
data modeling; content; content management; context.

I. INTRODUCTION
In the digital society [1], data is required to represent all

kinds of content, ranging from structured content of text
documents to unstructured, typically binary representations
of video and audio content. It is used for many purposes, the
most obvious ones being information and commerce.
Content is published by means of documents, often
multimedia documents incorporating different media that are
interrelated to form hypermedia networks. So-called
publication channels offer the medium for one kind of
publication, e.g., a website, a document file, or a mobile app.
Content is typically represented in a channel-agnostic way in
order to support multi- or even omni-channel publishing.

It is quite common to deliver content to users in a way
that addresses the context in which they are when requesting
the content. This may include the channel they are using, the
working mode they are in, the history of previous usage
scenarios, etc. Targeting content to users’ contexts can range
from simply arranging content in a specific way, over
specifically assembled documents, to content that is
synthesized for the current requests. Examples are a

prominent display of teasers for content that is assumed to be
of interest to the user, the production of documents matching
a user’s native language, adjustment of document quality
based on the current network bandwidth and the receiving
device, and creating content that represents some base data in
knowledgeable form.

For such content targeting scenarios, data needs to be
stored in a way that allows generating different views on the
content, mainly by selecting content relevant in a certain
context. Data representing all forms of content in such a
system, therefore, needs to be attributed with the contexts in
which it is applicable or preferred. Obviously, some notion
of context is required for such representations [2].

Data modeling and programming languages typically do
not exhibit features to represent context and to include it in
evaluations. Database management systems, being the
backbone of practically every information system, are
particularly optimized for one connected set of data that is
supposed to be consistent and complete. This means that
they are not well equipped for dynamic content production,
neither regarding content representation nor efficient
context-dependent retrieval.

Data retrieval needs particular attention when content is
dynamically assembled depending on some context in which
it is requested. For the tasks of context-aware content
management, complex collections of data to be used as
content are requested frequently. A context-aware schema
has to efficiently support the underlying queries that are
employed to identify relevant content.

For the discussion of data models, we consider content in
contexts as it is expressible using the Minimalistic Meta
Modeling Language (M3L). This language allows expressing
content in a straightforward way. Being a modeling
language, there is no obvious mapping to established data
structures, though.

The rest of this paper is organized as follows. Section II
reviews related work in the area of context-aware data and
content models. Section III gives a brief overview over the
M3L and describes those parts of the language that are
required for the discussion in this paper. Section IV presents
a first conceptual model of an internal representation of M3L
concepts. Section V makes this model more concrete by
means of logical representations, comparable to the logical
view on databases. Aspects of alternative implementations
are touched in Section VI. The conclusion and
acknowledgment close the paper.

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-611-8

CONTENT 2018 : The Tenth International Conference on Creative Content Technologies

II. RELATED WORK
Context is important in the area of content management,

but also other modeling domains. This section names some
existing modeling approaches for contextual information.

A. Content Management Products
Most commercial content management products have

introduced some notion of context in their models and
processes. They utilize context information to target content
to users. Some use the term personalization, which is similar
to, but different from contextualization [3].

In most cases, there are publication rules associated with
content, similar as discussed in [4]. These rules are based on
so-called segments. Every user is assigned one or more
segments. When requesting content, the rules are evaluated
for the actual segment(s) in order to select suitable content.

Content authors and editors maintain the content rules.
Segments are assigned to users automatically by the systems
based on the users’ behavior (user interactions), the user
journey (e.g., previously visited sites and search terms used
for finding the current website), and context information
(e.g., device used and location of the user).

Segments offer a rather universal notion of context,
though there is no explicit context model.

B. Context-aware Data Models
Parallel to the notion of context used for content, there

exists some work on the influence of environments on
running applications. In mobile usage scenarios, context
refers mainly to such environmental considerations, e.g.,
network availability, network bandwidth, device, or location.

Context changes are incorporated dynamically into
evaluations in these scenarios [5].

Context-awareness is not limited to data models. It is also
used for adaptable or adaptive software systems, e.g., to map
software configurations to execution environments [6], or to
control the behavior of a generic solution [7].

C. Concept-oriented Content Management
Concept-oriented Content Management (CCM) [8] is an

approach to manage content reflecting knowledge. Such
content does not represent simple facts, but instead is subject
to interpretation. Furthermore, the history of things is
described by content, not just their latest state.

CCM is not directly concerned about modeling context.
Instead, it aims to introduce a form of pragmatics into
content modeling that allows users on the one hand to
express differing views by means of individual content
models, and on the other hand to still communicate by
exchanging content between individualized models.

CCM uses a notion of personalization that goes far
beyond the one of content management systems (see above).

It is similar to contextualized content usage, although the
system does not know about the context of a user. Instead,
users carry out personalization (in CCM terms) manually.

A CCM system reacts to model changes and relates
model variants to each other. The basis for this is systems
generation: based on the definitions of users, schemas, APIs,
and software modules are generated.

Some aspects of the considerations presented in
Section VI were gained from the research on the generation
of CCM modules for persistence.

III. THE MINIMALISTIC META MODELING LANGUAGE
The Minimalistic Meta Modeling Language (M3L,

pronounced “mel”) is a modeling language that is applicable
to a range of modeling tasks. It proved particularly useful for
context-aware content modeling [9].

For the purpose of this paper, we only introduce the static
aspects of the M3L in this section. Dynamic evaluations that
are defined by means of different rules are not presented here
because – at least in the current state of investigation – they
lay outside the scope of content models.

The descriptive power of M3L lies in the fact that the
formal semantics is rather abstract. There is no fixed domain
semantics connected to M3L definitions. There is also no
formal distinction between typical conceptual relationships
(specialization, instantiation, entity-attribute, aggregation,
materialization, contextualization, etc.).

A. Concept Definitions and References
A M3L definition consists of a series of definitions or

references. Each definition starts with a previously unused
identifier that is introduced by the definition and may end
with a semicolon, e.g.:
Person;

A reference has the same syntax, but it names an
identifier that has already been introduced.

We call the entity named by such an identifier a concept.
The keyword is introduces an optional reference to a

base concept, making the newly defined concept a
refinement of it.

A specialization relationship as known from object-
oriented modeling is established between the base concept
and the newly defined derived concept. This relationship
leads to the concepts defined in the context (see below) of
the base concept to be visible in the derived concept.

The keyword is always has to be followed by either a,
an, or the. The keywords a and an are synonyms for
indicating that a classification allows multiple sub concepts
of the base concept:
Peter is a Person; John is a Person;

There may be more than one base concept. Base concepts
can be enumerated in a comma-separated list:
PeterTheEmployee is a Person, an Employee;

The keyword the indicates a closed refinement: there
may be only one refinement of the base concept (the
currently defined one), e.g.:
Peter is the FatherOfJohn;

Any further refinement of the base concept(s) leads to the
redefinition (“unbinding”) of the existing refinements.

Statements about already existing concepts lead to their
redefinition. For example, the following expressions define
the concept Peter in a way equivalent to the above variant:
Peter is a Person; Peter is an Employee;

B. Content and Context Definitions
Concept definitions as introduced in the preceding

section are valid in a context. Definitions like the ones seen

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-611-8

CONTENT 2018 : The Tenth International Conference on Creative Content Technologies

so far add concepts the topmost of a tree of contexts. Curly
brackets open a new context, e.g.:
Person { Name is a String; }
Peter is a Person{"Peter Smith" is the Name;}
Employee { Salary is a Number; }
Programmer is an Employee;
PeterTheEmployee is a Peter, a Programmer {
 30000 is the Salary; }

We call the outer concepts the context of the inner, and
we call the set of inner concepts the content of the outer.

In this example, we assume that concepts String and
Number are already defined. The subconcepts created in
context are unique specializations in that context only.

As indicated above, concepts from the context of a
concept are inherited by refinements. For example, Peter
inherits the concept Name from Person.

M3L has visibility rules that correlate to both contexts
and refinements. Each context defines a scope in which
defined identifiers are valid. Concepts from outer contexts
are visible in inner scopes. For example, in the above
example the concept String is visible in Person because it
is defined in the topmost scope. Salary is visible in
PeterTheEmployee because it is defined in Employee and
the context is inherited. Salary is not valid in the topmost
context and in Peter.

C. Contextual Amendments
Concepts can be redefined in contexts. Implicitly, this

happens by definitions as those shown above. For example,
in the context of Peter, the concept Name receives a new
refinement.

Concepts can be redefined in a context explicitly:
AlternateWorld {
 Peter is an Ape {
 "Peter Miller" is the Name; } }

We call a redefinition performed in a context different
from that of the original definition a conceptual amendment.

In the above example, Peter is both a Person
(inherited) and an Ape (additionally defined), while the name
has been changed.

A redefinition is valid in the context it is defined in, in
sub contexts, and in the context of refinements of the context
(since the redefinition as part of the content is inherited).

IV. A CONCEPTUAL MODEL FOR CONTENT
REPRESENTATIONS

A conceptual model, as known from database modeling,
serves as a first step towards data models for context-aware
content. The notion of “concept” is ambiguous here: The aim
is a model of (M3L) concepts. A conceptual model for this
allows us to abstract from the M3L as a language. The model
is not supposed to address practical properties such as
operational complexity.

A set of M3L concept definitions can be viewed as a
graph with each node representing a concept, labeled with
the name of the concept. There are two kinds of edges to
represent specialization and contextualization. In fact, such a
graph forms a hypergraph to account for contextualization.
Every node can contain a graph reflecting definitions as the
concept’s content.

Concept 1 Concept 2 Concept 3

Concept 4 Concept 5 Concept 6

Concept 7 Concept 8

Concept 9

Concept 7

Figure 1. M3L concept refinements and contexts.

The following subsections detail specialization and
contextualization relationships, as well as contextual
redefinitions.

A. Representing Specialization
Conceptually, a specialization/generalization relationship

can straightforward be seen as a many-to-many relationship
between concepts. Fig. 1 shows an example.

Arrows with filled heads, directed from a concept to its
base concepts, represent specialization relationships in the
figure. For example, Concept 4 is a refinement of Concept 1
and Concept 2.

Fig. 1 furthermore indicates an amendment in a context,
namely Concept 9. While Concept 7 is a refinement of
Concept 4 and Concept 5 in the default context, it is
additionally a refinement von Concept 6 in the context of
Concept 9 (if it is an is a/is an definition; otherwise,
Concept 7 would only be a refinement of Concept 6 in the
context of Concept 9).

B. Representing Context
Since contexts form a hierarchy, contextualization can be

represented by a one-to-many relationship between concepts
in the roles of context and content.

Fig. 2 represents such a hierarchy by nesting boxes
shown for concepts. The contextualization relationship is
thus visually represented by containment. For example,
Concept 2 is part of the content of Concept 1, or Concept 2 is
defined in the context of Concept 1.

The outermost context is the default context. There is no
corresponding concept for this context.

C. Representing Contextual Information
Specialization and contextualization act together.

Refinements of a concept inherit its content; concepts from
that content are valid also in the context of the refinement.
Each context allows concept amendments. These are a
second way to add variations of concepts.

In order to represent contextualized redefinitions, we
introduce two kinds of context definitions: Initial Concept
Definition and Contextual Concept Amendment. Both can be
placed in any context.

An initial context definition is placed in the topmost
context in which a concept is defined. Redefinitions of
concepts are represented by concept amendments inside the
concept in whose context the redefinition is performed.

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-611-8

CONTENT 2018 : The Tenth International Conference on Creative Content Technologies

Default Context

Concept 1 Concept 4

Concept 2

Concept 3

Concept 5

Concept 6

Concept 7

Figure 2. M3L concept definitions in contexts.

Fig. 3 illustrates this. As before, contexts are depicted as
nested boxes. There is one Context and a Sub Context. Both
show a Concept that has originally been defined as a
refinement of Base Concept and is itself refined to
Refinement. In the context on Sub Context, the concept gets
the additional base concept Base Concept 2, and there is
another refinement Refinement 2. These additions are
recorded in the amendment in Sub Context.

Amendments have a reference to the next higher
definition. This reference is called Original. In Fig. 3, it is
shown by the dotted line.

Traversal of the original references allows collecting all
definitions in order to determine the effective definition.

V. LOGICAL CONTENT REPRESENTATION
This section refines contextual content representation

models to a level similar to that of a logical data model. This
way it discusses properties of data representations without
taking implementation details into account.

The complexity of lookups is of major importance for the
schema design. During the evaluation of M3L statements,
many graph traversals are required to find all valid contexts,
all base concepts (to determine content sets) and all
refinements (to narrow down concepts before applying rules;
this evaluation process is not laid out in this paper).

The most important design decision is the degree of
(de)normalization of the schema. The basic assumption is
that content is mainly queried, so that creation and update
cost is less important than lookup cost.

Context

Base Concept

Initial Concept Definition

Refinement

Sub Context

Base Concept 2

Contextual Concept Amendment

Refinement 2

Figure 3. M3L concept amendments in contexts.

We consider two designs of denormalized schemas:
materialization of reference sets and storage of relationships
in way that allows efficient queries. Efficient storage is based
on the usage of numeric IDs to reference concepts and
computing relationships based on ID sets. An example of
such an approach is the BIRD numbering scheme for
trees [10] that allows range queries to determine sub trees.

A. Storing Refinements
Compared to the straightforward conceptual model, the

logical schema is denormalized in order to avoid repeated
navigation of specialization relationships when collecting the
set of (transitive) base concepts or refinements of a concept.

Two approaches are investigated: aggregated concepts
and transitive refinement relationships.

Aggregated data collects necessary information to avoid
nested queries for refinements. All base concepts and all
refinements are stored in an object representing the concept
definition. Context-dependent content is added in contextual
concept amendments (s.a.) that are stored as part of the
context hierarchy.

The description objects additionally reference each other
via original references.

has refinements {4,7,8}
in default context and in

Concept 9

Concept 1 Concept 2 Concept 3

Concept 4 Concept 5 Concept 6

Concept 7 Concept 8

Concept 9

Concept 7

has refinements {4,5,7,8}
in default context and in

Concept 9

has refinements
{6,8} in default

context

has refinements
{6,8,7} in

Concept 9

has refinements {7,8}
in default context and

in Concept 9

has refinements {7,8}
in default context and

in Concept 9

has refinement 8 in
default context

has refinements
{8,7} in Concept 9

Figure 4. Representation of refinements using materialized transitive refinement relationships.

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-611-8

CONTENT 2018 : The Tenth International Conference on Creative Content Technologies

Default Context

Concept 1 Concept 4

Concept 2

Concept 3

Concept 5

Concept 6

Concept 7

on context paths starting at
{0, 1, 2, 3, 4, 5, 6, 7}

on context paths starting at
{1, 2, 3}

on context paths starting at
{4, 5, 6, 7}

on context paths starting at
{2}

on context paths starting at
{3}

on context paths starting at
{5}

on context paths starting at
{6}

on context paths starting at
{7}

Figure 5. Representation of context hierarchies my materializing paths.

Alternatively, just transitive refinement relationships are
materialized for every concept in every context. This way,
transitive refinements are directly available, and base
concepts can be collected using a simple query.

Fig. 4 shows an example for the sample from Fig. 1. The
dashed boxes show the transitive refinements per relevant
context. Base concepts can be determined by queries.

For example, the (transitive) base concepts of Concept 4
are those concepts that have this concept as a
refinement. Specifically, these are Concept 1 and Concept 2
(in both the default context and in the context of Concept 9).

Storing the context together with the refinement
relationships is vital for handling singleton (is the)
relationships, in particular the unbinding of concepts.

B. Storing Context Hierarchies
Performance is particularly important for the retrieval of

the hierarchy of contexts a concept is defined or amended in.
The effective definition of a concept (including aggregated
base concepts and content) relies on this concept hierarchy.

By blending in the context information into the transitive
refinements, as shown in the previous subsection, the
situation is leveraged to a large degree. Still, the content that
a concept has in a certain context is also relevant to concept
evaluations.

As for the specialization/generalization relationships, two
approaches are discussed here: materialized content
collections in all contexts and information about paths in the
context hierarchy.

The materialization of contextual definitions works the
same way as that of refinements: with every concept
definition amendment, we store the effective content in the
respective context. This has to be computed on definition.

For the second approach, Fig. 5 illustrates the attribution
of paths to the schematic example of Fig. 2. For each
concept, we note down the concepts lying on the path in the
context hierarchy from the default context to a specific
context. For example, Concept 1 lies on the paths from the
default context to itself, to Concept 2, and to Concept 3.

We used numeric IDs to reference the concept (with the
ID 0 given to the pseudo-concept for the default concept).
IDs have to be ordered from the default context to sub
contexts. By querying for all concepts on the path of a
concept, ordered by ID, we retrieve the path to that concept.

VI. PHYSICAL CONTENT STORAGE MODELS
This section briefly discusses some implementation

approaches of context-aware content models. Specifically,
we present the basics of a mapping to relational databases
and one to a document-oriented database.

A. Mapping M3L to a Relational Database
There is a range of approaches for storing trees and

graphs in relational databases [11]. On the basis of these, we
add materialized transitive relationships as described above.

Relational tables for the transitive context hierarchy can
be defined by statements like (with numeric type INT):
CREATE TABLE concept (id INT PRIMARY KEY);
CREATE TABLE paths (
 concept_id INT REFERENCES concept(id),
 terminal_concept INT REFERENCES concept(id),
 PRIMARY KEY (concept_id, terminal_concept)
);

The table concept holds concepts (both initial definitions
and amendments) with artificial, numeric IDs (other data is
omitted here). The second table holds the path information as
indicated in Fig. 5. concept_id refers to the concept,
terminal_concept refers to the concept on whose path the
concept lies.

Data stored this way can be queried by, e.g.,
SELECT c.* FROM concept c, paths p
 WHERE c.id = p.concept_id
 AND p.terminal_concept = i
 ORDER BY p.concept_id DESC;
to retrieve the path to concept i.

Transitive refinements can be stored in a table:
CREATE TABLE transitive_refinements (
 base_concept_id INT REFERENCES concept(id),
 refinement_id INT REFERENCES concept(id),
 context_id INT REFERENCES concept(id),
 PRIMARY KEY (base_concept_id, refinement_id,
 context_id));

The base concepts of, e.g., Concept 4 can be queried by:
SELECT base_concept_id
 FROM transitive_refinements
 WHERE refinement_id = 4 AND context_id = 0;
in the default context (with ID 0), or by:
SELECT base_concept_id
 FROM transitive_refinements
 WHERE refinement_id = 4 AND context_id = 9;
for the context of Concept 9.

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-611-8

CONTENT 2018 : The Tenth International Conference on Creative Content Technologies

Figure 6. Document definitions to map M3L to MongoDB and a sample query.

B. Mapping M3L to a Document Database
As an example of so-called NoSQL approaches, we

conduct ongoing experiments with MongoDB, a widely used
document-oriented database management system.

The definition of concept relationships is done a similar
way as in relational databases: records have IDs, and records
store IDs for references. There are no distinct relation
structures, though. References are stored as document fields.

In contrast to a purely relational structure, documents
allow representing nested contexts in a natural manner by
embedded documents.

As an example of a schema, the insert statement shown
in Fig. 6 stores the whole graph of Fig. 1.

This structure can be queried as required. For example, to
find concepts with base concept Concept 6 in the context of
Concept 9, the aggregate statement in Fig. 6 can be applied.

VII. CONCLUSION
This section sums up the paper and gives an outlook on

future work.

A. Summary
In this paper, we laid out approaches to context-aware

content management, in particular using the Minimalistic
Meta Modeling Language (M3L).

Though it is easily possible to map context
representations to existing data management approaches,
care has to be taken to achieve efficient implementations.

A logical schema for the representation of contextual
content is presented, and first implementations are
conducted. These demonstrate the feasibility of the schemas.

B. Outlook
The work on the data model mappings for M3L concept

definitions is ongoing work; there is ample room for further
optimizations of the relational database schema. The
mapping to document-oriented database needs much more
elaboration before comparisons can be made.

The utilization of databases to support M3L concept
evaluation is an open issue. Practical rule sets will guide the
investigations in the future.

Experiments with different implementations are ongoing.
Data models have yet to be rated based on practical results.

ACKNOWLEDGMENT
Though the ideas presented in this paper are in no way

related to Namics, the author is thankful to his employer for
letting him follow his research ambitions based on
experience made in customer projects. The discussions with
colleagues, partners, and customers are highly appreciated.

REFERENCES
[1] M. Gutmann, “Information Technology and Society,” Swiss

Federal Institute of Technology Zurich / Ecole Centrale de
Paris, 2001.

[2] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and
L. Tanca, “A Data-oriented Survey of Context Models,”
ACM SIGMOD Record, vol. 36, pp. 19-26, December 2007.

[3] A. Zimmermann, M. Specht, and A. Lorenz, “Personalization
and Context Management,” User Modeling and User-Adapted
Interaction, vol. 15, pp. 275-302, Aug. 2005.

[4] S. Trullemans, L. Van Holsbeeke, and B. Signer, “The
Context Modelling Toolkit: A Unified Multi-layered Context
Modelling Approach,” Proc. ACM Human-Computer
Interaction (PACMHCI), vol. 1, June 2017, pp. 7:1-7:16.

[5] G. Orsi and L. Tanca, “Context Modelling and Context-
Aware Querying (Can Datalog Be of Help?),” Proc. First
International Conference on Datalog Reloaded (Datalog '10),
Mar. 2010, pp. 225-244.

[6] D. Ayed, C. Taconet, and G. Bernard, “A Data Model for
Context-aware Deployment of Component-based
Applications onto Distributed Systems,” GET/INT, 2004.

[7] S. Vaupel, D. Wlochowitz, and G. Taentzer, “A Generic
Architecture Supporting Context-Aware Data and Transaction
Management for Mobile Applications”, Proc. International
Conference on Mobile Software Engineering and Systems
(MOBILESoft '16), May 2016, pp. 111-122.

[8] J. W. Schmidt and H.-W. Sehring, “Conceptual Content
Modeling and Management,” Perspectives of System
Informatics, vol. 2890, M. Broy and A.V. Zamulin, Eds.
Springer-Verlag, pp. 469-493, 2003.

[9] H.-W. Sehring, “Content Modeling Based on Concepts in
Contexts,” Proc. Third Int. Conference on Creative Content
Technologies (CONTENT 2011), pp. 18-23, Sep. 2011.

[10] F. Weigel, K. U. Schulz, and H. Meuss, “The BIRD
Numbering Scheme for XML and Tree Databases – Deciding
and Reconstructing Tree Relations using Efficient Arithmetic
Operations,” Proc. Third international conference on Database
and XML Technologies (XSym'05), Aug. 2005, pp. 49-67.

[11] V. Tropashko, SQL Design Patterns: The Expert Guide to
SQL Programming. Rampant Techpress, 2006.

db.concept.insert({ name: "Default Context", content: [
 { name: "Concept 1", baseConcepts: null, content: null },
 { name: "Concept 2", baseConcepts: null, content: null },
 { name: "Concept 3", baseConcepts: null, content: null },
 { name: "Concept 4", baseConcepts: ["Concept 1", "Concept 2"], content: null },
 { name: "Concept 5", baseConcepts: ["Concept 2"], content: null },
 { name: "Concept 6", baseConcepts: ["Concept 3"], content: null },
 { name: "Concept 7", baseConcepts: ["Concept 4", "Concept 5"], content: null },
 { name: "Concept 8", baseConcepts: ["Concept 4", "Concept 5", "Concept 6"], content: null },
 { name: "Concept 9", baseConcepts: null, content: [
 {name: "Concept 7", baseConcepts: ["Concept 4", "Concept 5", "Concept 6"], content: null,
 original: "Concept 7" }] }] })
db.concept.aggregate([
{$unwind:"$content"},{$replaceRoot:{newRoot:"$content"}},{$match:{name:"Concept 9"}},
{$unwind:"$content"},{$replaceRoot:{newRoot:"$content"}},{$match:{baseConcepts:"Concept 6"}}])

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-611-8

CONTENT 2018 : The Tenth International Conference on Creative Content Technologies

