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Abstract— Effective control of animal feed and pasture 

management are increasingly important factors for animal 

health and farm sustainability. Recent technological advances in 

animal monitoring devices offer a significant potential for 

enhancing these practices. This paper presents the development 

of an innovative animal monitoring system for sheep, designed 

to capture images of pastures while minimizing redundant data 

collection. By integrating Machine Learning (ML)-based animal 

posture detection, the system autonomously triggers image 

acquisition only during relevant feeding activities. Additionally, 

the system automatically uploads the captured images for 

processing, reducing the need for manual intervention. 

Preliminary results demonstrate the system's feasibility and 

improved efficiency compared to state-of-the-art approaches.  

Keywords-component; Ruminant monitoring; grazing behavior; 

floristic analysis. 

I.  INTRODUCTION 

The control of animal feed and the management of 
pastures are essential for maintaining animal health and 
ensuring the economic sustainability of farms. Recent 
technological advances have made it possible to utilize animal 
monitoring devices, which can play a crucial role by collecting 
and processing data about animals' feeding behavior—data 
that was previously impossible to gather. These devices 
enable the collection of data for multiple purposes, including 
identifying feeding patterns, tracking areas of pasture, 
categorizing the plants consumed, and estimating the amount 
of nutrients consumed. 

In recent years, there has been an increasing number of 
studies and technical solutions in the field of animal 
monitoring. These systems often incorporate various sensors, 
including video cameras, to support the monitoring process in 
diverse ways, e.g. observing behavior and activity, migration 
routes and location. 

The approaches reported in the literature typically involve 
collars equipped with cameras configured to take photos at 
regular intervals during specific periods. Some collars also 
feature localization devices, such as Global Navigation 
Satellite System (GNSS) receivers, to identify feeding 
patterns. Despite providing valuable information, state-of-the-
art approaches have inherent limitations that hinder their 
widespread adoption. For instance, image recordings are 
either pre-programmed or manually activated. Pre-
programming often results in a significant amount of 

redundant or useless data (e.g., multiple photos of the same 
pasture, or photos taken when the animal is not eating) (see 
e.g. [1]). These unnecessary images consume a significant 
amount of memory and energy, limiting the autonomy of the 
devices and requiring substantial post-processing effort, often 
dependent on manual intervention. Manual activation, 
however, requires systematic human supervision, which is 
usually unfeasible. Moreover, these devices typically require 
manual intervention to collect and upload images to 
processing platforms, making the process cumbersome, 
inefficient, and costly. Another significant limitation is the use 
of Commercial Off-The-Shelf (COTS) cameras with low 
battery capacity, necessitating additional batteries that 
significantly increase the collar's total weight and size.  

This work addresses the aforementioned issues and 
limitations of state-of-the-art approaches, with the primary 
objective of developing an animal monitoring device for 
sheep that captures images of the pastures and location while 
the animals are feeding. The device integrates Machine 
Learning (ML)-based animal posture detection 
functionalities, triggering image acquisition only at relevant 
moments, such as when animals begin eating after moving to 
a new location. Furthermore, the system automatically 
uploads images to a processing platform. These features result 
in a system that operates autonomously, with extended battery 
life, and minimizes redundant data, significantly improving 
cost, efficiency, and usability compared to state-of-the-art 
approaches. 

This paper presents the initial steps toward developing this 
system, including its architecture and collar implementation. 
Preliminary results are also included, demonstrating the 
feasibility of the approach. 

The remainder of this paper is organized as follows: 
Section II briefly reviews the state-of-the-art. Section III 
presents the system architecture. Section IV includes 
functional and performance results. Finally, Section V 
concludes the paper. 

II. STATE OF THE ART 

In recent years, there has been a growing number of 
studies and solutions in the field of animal monitoring. These 
studies often incorporate various sensors, including video 
cameras, to support the monitoring process in diverse ways, 
such as observing behavior [2], activity [3], feeding habits [1], 
births [4], habitat choices [5], migration routes [6], and 
location [7]. 
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For example, a study presented in [5] monitors the feeding 
sites and habitats of pregnant migratory females of the 
Rangifer tarandus species during the summer. Sixteen females 
were fitted with Vertex Plus [8] collars that integrate a GNSS 
receiver and a camera. The collars were set to record ten-
second video clips every 20 minutes, resulting in a total of 
200,000 videos. These videos were then individually analyzed 
to identify those containing useful information for the study, 
which were around 25,869 videos. Another study focuses on 
analyzing the grazing behavior of sheep using collars with 
Point Of View (POV) cameras [1]. The study had a twofold 
objective: analyzing the feeding habits of sheep during the 
spring and determining if the behavior of a subset of sheep 
fitted with cameras could represent the behavior of the entire 
flock. The cameras were affixed to the sheep collars, along 
with a GNSS receiver and a set of batteries that extended the 
recording time. The cameras recorded video clips at fixed 
intervals throughout the day, resulting in a recording period of 
six to eight hours per day per sheep. This study provided 
valuable information about the animals’ diet and revealed a 
relationship between the activity of the flock and the activity 
of the sheep with POV cameras. 

Despite their value, these approaches face scalability and 
mass adoption challenges due to the significant amount of 
irrelevant information collected, resulting in inefficiency and 
autonomy limitations, and the dependence on human 
intervention at several stages. 

III. SYSTEM ARCHITECTURE 

The architecture of the system proposed in this paper is 
shown in Figure 1. It includes a collar with inertial sensors and 
a camera that captures images when a suitable software trigger 
is issued. The collar has a Bluetooth Low Energy (BLE) 
interface that connects to a data aggregation gateway located 
in the animal’s shelter. When a collar and a gateway are within 
communication range, the images and accelerometer data 
stored in the collar’s internal memory during the grazing 
period are uploaded to the gateway. The gateway, in addition 
to aggregate data from the various collars, contains a Tensor 
Processing Unit (TPU) [9] that identifies the species 
photographed through a previously trained learning model. 
The system also comprises a cloud-based application that 
centralizes information sent from one or more shelters and/or 
farms. Among other functionalities and uses, the collected 
data is used to train, in real-time, the image identification 
model. The updated model parameters are then sent back to 
the gateways’ TPUs, to improve the performance of the 
species identification mechanism. 

Image capture is based on the animal’s behavior. The 
collar continuously monitors the animal's behavior via inertial 
sensors (accelerometers, in the case) and classifies them 
according to a previously defined ethogram [10]. Whenever it 
detects that the animal is eating in a new place, it triggers an 
image acquisition, to ensure that representative data is 
collected, while reducing redundancy. Images are saved in an 
internal memory of the collar, and they include a time stamp 
that allows the moment of collection to be identified. 

 

Figure 1.  System architecture. 

The data transfer between collars and the gateway is done 
through an opportunistic communication mechanism. To this 
end, collars periodically emit a BLE beacon [11], which, when 
detected by the gateway, triggers the information transfer 
process, which is illustrated in Figure 2. The gateway can 
connect to up to five collars simultaneously, allowing five data 
transfers to take place at the same time. As soon as the 
gateway connects to a collar, it sends the Get Info command, 
to which the collar responds with information about the 
device. The information packet sent by the collar to the 
gateway includes fields such as device ID, timestamp, animal 
type, battery status, number of files, and number of photos. 

 

 

Figure 2.  Information transferred between collar and the gateway. 

If there is data or photos to transfer, the gateway sends 

one of the following commands: “Get File” for transferring 

data files or “Get Photo” for transferring photos. The collar 

replies with a “File Info” frame containing information about 

the name and size of the file, followed by eventually multiple 

packets to the gateway (“File Data”). After the data transfer 

is complete, the gateway sends the “Delete File” command to 

delete the transferred file, followed by a delete operation, 

when successful. The data file contains fields about the 
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sensor data, as well as relevant device information such as the 

battery and timestamp value. The sequence of commands for 

sending photos follows a similar process, mutatis mutandis. 

The gateway transmits the “Get Photo” command to initiate 

the transfer of an image. Subsequently, the collar transmits a 

“Photo Info” frame to the gateway, which contains the name 

and size of the photo to be sent. After sending this 

information, several “Photo Data” frames are sent with the 

photo data. Once the transfer of the photo data has been 

completed, the gateway transmits a command to the device to 

delete the photo, which is acknowledged in case of success. 

IV. SYSTEM EVALUATION 

In the prototype implementation collar is based on an 

nRF52833 System on Chip from Nordic Semiconductor 

featuring an ARM Cortex-M4 at 64 MHz and a Bluetooth 5.4 

module. The collar also has a 3-axis accelerometer that is 

used to monitor the animal’s behavior. The camera is a 

Arducam Mega 5MP with a Serial Peripheral Interface, 5 MP 

maximum resolution, auto-focus, and power supply of 3.3 V 

or 5V. The images are stored in compressed JPG format and 

with UXGA resolution (1280x720 pixels). Based on the 

prototype, a few tests were carried out to show the feasibility 

of the approach and obtain preliminary performance data. 

A. Storage tests 

      Table I presents the total time taken to capture a set of 

images in different conditions, including illumination and 

vegetable species. The acquisition time varies with the image 

contents, from 408 kB to 742 kB. This is expected as the 

image format used to store data uses compression to reduce 

the size and compression algorithms depend on spatial 

redundancy which, in turn, depend on the image and on the 

illumination. In the case of this test, it was observed that 

photos with poor lighting and blur have a shorter capture time 

and size compared to photos with good lighting and good 

detail, since they contain a higher spatial redundancy.  

TABLE I.  TIMES AND SIZES OBTAINED FOR DIFFERENT PHOTO SIZES 

Photo Number  Total Time (s) Photo Size (kB) 

1 7.9 408 

2 8.2 423 

3 8.6 413 

4 9.9 516 

5 10.6 554 

6 11.4 596 

7 12.3 644 

8 13.3 704 

9 13.5 706 

10 13.9 721 

11 14.2 736 

12 14.8 742 

B. Communications test restults 

Table II presents the transfer times of the images to the 

gateway, with the collar positioned at three distinct distances 

from the gateway. For the same set of images, the collar was 

positioned at distances of 5 meters, 15 meters and 25 meters. 

The images employed in this experiment exhibited a range of 

file sizes, from 107.6 kB to 761.9 kB. Table III reveals that 

the time required to transmit images increases in direct 

proportion to the distance between the collar and the gateway. 

The most notable alteration was observed between distances 

of 15 and 25 meters. This is attributed to the placement of the 

collar in an alternative room, which contained metallic 

objects, potentially influencing the connectivity between the 

two devices. 

TABLE II.  TIME TO TRANSFER AT DIFFERENT DISTANCES 

Photo Size 

(kB) 

Distance between collar and gateway 

5 meters 15 meters 25 meters 

107.6 10s 25s 2m3s 

244.8 23s 59s 4m1s 

280.6 26s 1m2s 4m42s 

392.2 37s 1m34s 6m47s 

432.2 40s 1m35s 6m29s 

534.6 49s 1m59s 6m47s 

638 1m 2m33s 7m51s 

761.9 1m13s 2m58s 8m44s 

 

Table III presents the results of an experiment conducted 

to determine the influence of an increased number of collars 

on the photo transfer time. The objective was to assess 

whether connecting five collars, which is the maximum 

number that can be connected and transferred to the gateway, 

would affect the transfer time. The four additional collars that 

were connected to the gateway only contained data files. The 

four collars were distributed throughout the test environment, 

with the test collar maintained in position at distance two (15 

meters). 

TABLE III.  TIME TO TRANSFER TO DIFFERENT COLLARS CONNECTED 

TO THE GATEWAY  

Photo 

Size (kB) 

Collars connected to the gateway 

1 Collar 5 Collars 

107.6 25s 1m12s 

244.8 59s 2m55s 

280.6 1m2s 3m45s 

392.2 1m34s 4m25s 

432.2 1m35s 4m58s 

534.6 1m59s 5m27s 

638 2m33s 7m20s 

761.9 2m58s 7m52s 
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Analyzing Table III, it becomes evident that the time 

required to transmit images increases when the gateway is 

connected to five collars. For example, for a size of 432.2 kB 

the time elapsed increase from 1 minute and 35 seconds to 4 

minutes and 58 seconds, which corresponds to an increase of 

3m23s. This is due to the gateway having to divide its 

bandwidth and processing capacity between 5 devices, 

slowing down the transfer time for each one. As the gateway 

is only capable of connecting to a maximum of five collars at 

any given time, the presence of either ten or five collars does 

not affect the data transfer times. These times can be used to 

estimate the number of photos that can be transferred per 

hour. Assuming that the photos are approximately 535 kB in 

size, and that there are five or more collars on the sheepfold 

with five of them connected to the gateway, 11 photos can be 

transferred per hour. In the most unfavorable scenario, if the 

photos have an average size of 762 kB, only seven photos can 

be transferred per hour. 

C. Photo results 

Figure 3. presents the collar designed to integrate the 

camera and the rest of the system. 

                       

Figure 3.  Collar detail. 

 

Figure 4.  Photo captured by the 

camera attached to the collar. 

Figure 4. presents a picture taken with the camera while 

the sheep were feeding. The image shows that the photos 

have been taken with sufficient quality to allow the floral 

species in the photos to be identified. Depending on the 

lighting in the scene, the camera tends to focus on the best lit 

areas, sometimes leaving other areas darker or lighter. 

V. CONCLUSIONS 

In this paper, we have addressed the limitations of current 

animal monitoring systems by developing an innovative 

device that integrates machine learning-based posture 

detection to autonomously capture images of pastures during 

sheep feeding activities. Our approach minimizes redundant 

data collection and reduces the dependency on manual 

intervention, thus improving efficiency and extending the 

operational autonomy of the monitoring system. The 

implementation of the image transfer protocol between the 

collar and the gateway ensures efficient and reliable data 

transmission. By sending only relevant data and photos, and 

automating the deletion process post-transfer, the system 

significantly conserves memory and energy resources. The 

preliminary results show our approach's feasibility, 

highlighting its potential to enhance pasture management and 

animal health monitoring on a broader scale. 

Future work will focus on implementing the full system 

and refining the ML algorithms for improving accuracy, 

expanding the system's applicability to other animal species, 

and further automating the data analysis process to provide 

real-time insights for farmers. 
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