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Abstract—This paper presents a novel methodology for gen-
erating high-quality Digital Surface Models (DSMs) through the
fusion of point clouds obtained from multi-date stereo images. By
applying a custom fusion algorithm to the point clouds generated
by the Context-Aware Reconstruction of Scenes (CARS) software,
the proposed approach enhances DSM quality in terms of
completeness and error metrics compared to the original DSM.
The fusion process effectively integrates multiple DSMs, resulting
in a more comprehensive and accurate terrain representation.
This method addresses challenges such as shadow occlusions and
temporal variations, demonstrating significant improvements.
The technique shows potential for applications in precision
agriculture and other fields requiring detailed terrain models.
Validation using the Intelligence Advanced Research Projects
Activity (IARPA) challenge dataset highlights the method’s
robustness in mixed terrains, offering a notable increase in
completeness and solving issues related to data gaps in shadowed
areas.

Keywords-Point Cloud Fusion; Digital Surface Model (DSM);
Multi-Date Stereo Images; Terrain Representation.

I. INTRODUCTION

The world population has exceeded the 8 billion barrier
according to a United Nations press release of November
2022. Moreover, the world population is expected to reach
8.5 billion by 2030, and 10.4 billion by 2100. This rapid
growth is expected to place increasing pressure on land and
other natural resources, presenting significant challenges to
food security [1]. The growing need to produce more and
higher-quality food with unsustainable agricultural practices,
as well as climate change and urban growth, are accelerating
the loss of available arable land, threatening sustainability
in terms of productivity and environmental impact [2]. It is
important to note that climate change will lead to extreme
environmental events that will require a rapid and efficient
response from the agricultural sector. The agricultural sector
must adapt effectively to mitigate the adverse effects of such
events and ensure global food security [3].

Several studies have already indicated that modernisation
processes are crucial to overcome the difficulties caused by
agricultural land change [4]. Among these processes is where
Precision Agriculture (PA) can be mentioned and highlighted
as one of the solutions to ensure food security for the whole
world. The PA, also known as Smart Farming or Agriculture
4.0, is an agricultural management strategy focused on improv-
ing the efficiency in the use of resources, productivity, quality,
profitability, and sustainability of agricultural production [5].

This discipline implements technologies and resources of
all kinds, including, among others, Digital Surface Models
(DSM). A DSM is a type of elevation model that not only
represents the height of the terrain in areas devoid of objects
but also considers all features present on the terrain, including
buildings, tree canopies, and other elements on the earth’s
surface [6]. DSM can have a wide range of applications
in the field of PA, notably in evaluating the suitability of
terrain for agricultural use, crop yield monitoring, and biomass
estimation [7]. DSMs are a fundamental starting point for
the development of other models, among which the Digital
Elevation Model (DEM) stands out. The latter represents
the earth’s surface once the elements that are not part of it
have been removed, providing crucial information in various
disciplines within the environmental field [6]; these models
stand as pivotal spatial information tools in geomorphological
applications, enabling the extraction of essential attributes like
slope, aspect, profile curvature, and flow direction [8].

The extraction of elevation models can be derived from a
variety of techniques; however, historically, aerial photogram-
metry and LiDAR have been the most widely used methods for
their generation. Nowadays, techniques derived from optical
satellite imagery are also used. Among these, interferometric
techniques based on radar images have been extensively inves-
tigated. Nevertheless, their application requires more complex
processing involving the use of specialised algorithms and
software, compared to techniques based on optical satellite im-
agery. In addition, optical imagery offers better interpretability
and is more widely accessible and available [9].

One of the most commonly used techniques for DSM
generation from optical satellite imagery is the stereo method.
DSMs are generated using dense point clouds acquired from
stereoscopic satellite imagery [10]. Point clouds are detailed
sets of three-dimensional points that capture terrain features
(buildings, vegetation, etc) using advanced image-matching
algorithms [11]. Some research already mentions the im-
portance that point cloud fusion brings to the quality and
accuracy of DSM [12]. By integrating information from mul-
tiple viewpoints, point cloud fusion overcomes the occlusions
and inaccuracies inherent in individual stereo pairs, resulting
in more complete and detailed terrain representations. This
approach not only improves spatial resolution and accuracy,
but also facilitates the extraction of finer details [10].

This paper presents a methodology to generate high-quality
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DSMs by fusing point clouds obtained from stereo images
captured at different dates. This approach uses point clouds
generated by the Context-Aware Reconstruction of Scenes
(CARS) software [13]. The main objective is to study the
improvement produced by the fusion of DSMs and compare
the results with other similar works like [10], where different
software (S2P: Satellite Stereo Pipeline [14]) were used to
generate the point clouds. As CARS appear to generate better
results in the used stereo images dataset than S2P [13], it is
significant to analyse the improvement made by the fusion of
the results from CARS.

The rest of the paper is structured as follows. The Method-
ology section is divided into three parts. First, we present
the Align and Fusion methodology. Then, the considered real
context for validation purposes is detailed. The Methodology
section is closed with a description of the obtained results.
Finally, the Conclusion section summarizes the main contri-
butions of the presented work and future perspectives.

II. METHODOLOGY

A. Align and Fusion methodology

The present subsection describes the iterative procedure to
fusion P point clouds generated by CARS from different
multi-date image pairs in order to create a unique fused
DSM for a given Region of Interest (ROI). Each point cloud
p ∈ 1, ..., P is aligned with a reference point cloud selected by
the user, and the P aligned point clouds are fused along with
the reference one. The final fused point cloud is rasterised
into an image for display. The proposed procedure includes
the following steps:

1) Preparation: Pre-alignment processing of the point
clouds composed from each image pair.

• CARS generates multiple point clouds for each DSM,
as it separates the processing into tiles. Subsequently,
the point cloud files generated for each tile are merged
to generate a single point cloud for each DSM to be
fused. The common set of pixels in both point clouds
is projected for each DSM onto a grid with a specified
node spacing, ideally equal to or greater than the image
resolution. This forms a two-dimensional matrix in which
the value of each cell represents the estimated height z
in the coordinates (x, y).

• Applying a grayscale-closing interpolation, single pixel
holes are filled averaging the values of elements in a
surrounding 3x3 area, while the larger holes are kept
as non-data. These larger holes are usually consequence
of being located in shadow areas. This creates the new
DSMs, that will be the reference DSM and the DSM p
to be fused: Eref and Ep respectively, which will be the
inputs to the fusion step (Section II-A3).

• Another pair of DSMs Dref , Dp is generated from the
previous Eref , Ep by completely filling all holes using
the lowest hole edge values (using the 5th percentile), so
that the occluded parts where no data has been generated
are assumed to be at ground level. These DSMs will be
used for alignment purposes (Section II-A2).

2) Alignment: Due to the pointing errors of RPCs (Ra-
tional Polynomial Coefficients) models [15], 3D point clouds
obtained from different images are usually not aligned. The
usual method for adjusting the parameters of all cameras
uses correspondences between images (e.g., by Scale-invariant
Feature Transform algorithm [16] matching). However, this
method is sensitive to noise and radiometric changes, which
are common in a multidate analysis [10]. The error induced
in the point clouds by the pointing error is mainly a 3D
translation, so following the strategy proposed by Facciolo et
al. [10] the translation of Dp that maximizes the Normalized
Cross-Correlation (NCC) over Dref is calculated as follows:

NCC(u, v) ≡ 1

|Ω̂|

∑
j∈Ω̂

(uj − µu(Ω̂))(vj − µv(Ω̂))

σu(Ω̂)σv(Ω̂)
(1)

where u, v are each one of the DSMs to align (in this case
Dref , Dp respectively), Ω̂ ≡ Ωu ∩ Ωv is the intersection of
the sets of known pixels in both DSMs, j represents an index
that iterates over the pixels within the intersection set Ω̂, uj

refer to the pixel values of DSM u at position j. µu and σu
represents the simple mean and the standard deviation of u,
respectively. The same notation applies to v.
We then look for the pair (dx∗, dy∗) under which the offset
dx, dy maximizes NCC:

(dx∗, dy∗) = arg max
dx,dy

NCC(u,vdx,dy) (2)

where vdx,dy represents the DSM v shifted dx and dy. A
search for (dx∗, dy∗) is applied following a coarse-to-fine
method:

• 1) Shift v in coarse steps (e.g:25 cells) and calculate the
NCC at each shift.

• 2) The offset that gives the largest NCC value in the
initial search is selected.

• 3) New consecutively smaller steps (e.g: 5 and 1 cells) are
added to the coarse shift (shifting in total always less than
the value of the previous coarse shift) until (dx∗, dy∗)
that maximizes NCC is found.

Shift in z (dz∗) is calculated as the difference between the
height means of Dref and Dp.
Finally, the translation (dx∗, dy∗, dz∗) is applied to Ep to
obtain Ep,aligned, which is saved as a point cloud file.

3) Fusion: In this step all point cloud files aligned in the
previous step are combined into a single matrix:

M(x, y, k) =

{
Eref (x, y) if k = 0

Ep,aligned(x, y) for k = 1, 2, . . . , P
(3)

A three-dimensional matrix is generated, where x, y represent
the pixel location and every value of k is a layer which
represents one of the point cloud in the fusion. The dimension
k has a maximum value equal to the number of fused point
clouds. The value of each cell in the matrix, M(x, y, k),
represents a height z. For each pixel x, y we perform a k-
medians clustering analysis of the values of the heights along
k with a similar approach than [10], increasing the number
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of clustering from a single one to a maximum number nmax,
with the difference that in [10] nmax is always 8, and in our
approach nmax = min(8, length(k) − 1), such that nmax is
equal to the number of existing heights minus 1 if there are
equal or less than 8 heights or 8 if there are more. By this
way, we are able to perform better with small numbers of fused
DSMs, where using 8 clusters with less than 8 heights values
has no sense. The number of clusters is increased until every
cluster has a span between the minor and maximum height
of each cluster less than a predefined value (arbitrary value
used in this analysis: grid resolution + 1m). If one or two
clusters are detected, the lowest level is saved, and if more
are detected, it is saved as non-data, since the results are not
considered coherent. Once the cluster is saved, the value of its
median is taken as the height in that pixel, forming the DSM
merged in a two-dimensional matrix.

The objective of this method is to obtain the best estimation
of the height, by saving a height level which is similar between
some of the DSM to be fused. The intention is to prevent
objects above ground level, such as variable vegetation, from
distorting the result by preserving the value that should rep-
resent the ground level, using the lowest height cluster. The
heights corresponding to the object that perturbs the height
value at that point would be stored in another cluster, obtaining
the one cluster corresponding to the ground and that of the
upper object. If more than two clusters are obtained, the value
of the height at that point is considered invalid because it does
not fit any of the cases, assumed to be a spurious result and
stored as non-data.

4) Rasterization: Once the fused DSM has been obtained
as a matrix, the objective is to generate a georeferenced raster
image. This goal is achieved creating a 2D matrix for the DSM
with dimensions defined by the resolution and the boundaries
of the region of interest:

width =

[
xmax − xmin

r

]
+ 1 (4)

height =
[
ymax − ymin

r

]
+ 1 (5)

Where xmin, xmax is the maximum and minimum co-ordinate
respectively in the chosen Coordinate Reference System
(CRS), and the same for ymin, ymax. r represents the reso-
lution of the DSM grid.

The matrix is initialized with NaN (Not a Number) values
to indicate the absence of data. Each point in the point cloud
is inserted into the DSM matrix. For each point (x, y), the
corresponding position in the matrix is calculated and the value
of z is assigned to that position.

To smooth the DSM and reduce noise, a weighted Gaussian
filter is applied. This filter considers the proximity of the points
and their height values to generate a more accurate DSM. The
motivation for this method, not applied in [10], is to use one
equivalent to the one used in the CARS rasterization [13], in
order to make a fairer comparison between an original CARS
DSM and the DSM resulting from the fusion.

Figure 1: Panchromatic band image (PAN) from the IARPA database

Finally, a raster image is created. The image is georefer-
enced using the geographic coordinates of one of the corners
(typically the upper left corner) and the defined resolution.
The geographic projection is established using a CRS corre-
sponding to the worked portion of the surface. The final raster
image, representing the DSM, is saved in GeoTIFF format.
Each pixel of the image corresponds to a cell in the DSM
matrix and its brightness value represents the height.

B. Real context validation

1) Dataset: The algorithm is used for fusing DSMs gener-
ated from the IARPA challenge dataset [17], which covers the
city of Buenos Aires, Argentina. This dataset contains, among
other files, 30 cm resolution NITF images from World-View 3
satellite, which can be converted specifying ROI to TIF images
as in Figure 1 and GEOM files with the RPCs corresponding to
each image. The specific site analyzed contains high- and low-
density urban areas corresponding to city areas. They do not
represent agricultural fields but contain some tree zones and a
flat highway area, thus allowing the study of the algorithm’s
behavior in different types of terrain.

Based on the fusion method presented in Section II-A,
different DSMs obtained from pairs of manually selected
images have been fused under two of the criteria selected by
[10]:

• The angle between the views of the image pair must be
within 5º and 45º.

• Temporal proximity
For the generation of the DSMs and the visualization of

the subtended angle between the views, a graphical interface
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of our own creation was used, which uses CARS for the
generation of the point clouds for each pair of images.

2) Metrics: We compared the fused DSM with the original
DSM generated by CARS using a very high quality LiDAR-
generated DSM as ground truth. The following DSM quality
metrics are used:

• Completeness: Percentage of pixels with valid values (not
NaN).

• Root Mean Square Error (RMSE).
• Standard Deviation (STD).

C. Results

Following the procedure described in Section II, we obtain
point clouds and their corresponding raster images as shown
in Figures 2 and 3, respectively. Most of the occluded and
vegetated areas visible in Figure 2 indicate that ground data
has been obtained after the fusion (examples in red circles,
where tree crowns, represented as groups of points higher
than the ground with reddish colours, have been removed and
ground points have been obtained).

Figure 2: Original and fused point clouds. Top: Original DSM generated by CARS.
Bottom: Fusion of 8 DSMs by applying the procedure described in section II-A.

This increase in completeness for number of DSMs within
3-12 is shown in Figure 4, where sections of the DSMs are
shown: in Figures 4(a-I) and 4(a-II) we observe shadowed
areas with no data (white color), whereas in the fused DSM
of Figures 4(b-I) and 4(b-II) those areas are complete. It must
be mentioned that in Figure 4 it is easy to see how some part
of the trees have been removed in the fusion, and the more
percentage of ground is shown, thanks to obtaining data on
their height from the different views and dates of the DSMs.

The quality metrics of the fused DSM are plotted in Figure
5. In this case, we observe that there is a general trend of
RMSE and STD reduction in Figure 5(a), and a quick increase
in completeness, followed by a reduction from 12 fused DSMs.

(a) (b)

(c)
Figure 3: DSM comparison: a) Best individual DSM (from one pair only) among the
ones used in the fusion. b) Fused DSM obtained from 8 DSMs from individual pairs. c)
DSM obtained by LiDAR, used as ground truth.

Figure 6 shows the difference between the fused DSM and the
ground truth taken by the LiDAR.

It must be mentioned that the improvement in results occurs
with a lesser number of fused DSMs compared to [10], where
the best results were obtained at around 50 fused DSMs. On
the other hand, by adding a significant amount of DSM to fuse
the completeness drop, as more pixel heights are considered as
non-data. It is not clear whether this different behavior from
[10] is due to differences in the algorithm used in the present
work, or differences in the characteristics of the point clouds
generated by CARS and S2P.

One of the advantages provided by this method is the
possibility of removing a large part of the trees from the fused
DSM by simply adding DSMs generated from images taken
in the leafless trees season or by fusing DSMs generated from
different views, so that data can be obtained for the occluded
area. In Figure 6, we observe that the error of the merged DSM
is significantly concentrated in the tree areas, as in the merged
DSM the latter were eliminated, while being present in the
image taken by the LiDAR. The k-clustering algorithm takes
the cluster with the lowest value, which should correspond
to the ground, and stores it as the height at that point. We
can observe this phenomenon in Figure 4, where many trees
have been removed. This has a negative impact on the error
metrics, as this removal of trees, although not detrimental to
the terrain representation, increases the error with respect to
a LiDAR image with trees, so the overall STD and RMSE
values do not accurately represent the improvement of the
fused DSM with respect to the surface and are not reduced
as much as possible due to the increasing of the error in the
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Figure 4: Sections of the DSM where different types of surfaces are shown. Horizontally:
I) area with buildings and trees, II) area with trees on a flat sports field. Vertically: a)
Best individual DSM (lowest RMSE value) b) Fused DSM. c) DSM obtained by LiDAR,
used as ground truth.

Figure 5: Metrics of the results obtained. Left: Completeness of the resulting DSM.
Right: STD and RMSE values.

areas with trees. It should also be mentioned that while the
improvement in RMSE and STD is around 15%-20% and 7%-
12% respectively for the fused DSM with best results (with
a completeness higher than the original DSM, using between
6-12 DSMs), the improvement in completeness is remarkable,
offering a fused DSM with values greater than 97%, so that
the problem of shadow areas without data in the original DSM
is practically solved by this method.

III. CONCLUSIONS

A methodology to generate high-quality DSMs through the
fusion of point clouds obtained from stereo images taken at
different dates has been presented. This approach leverages
the CARS software to generate point clouds, offering an
improvement over previous software such as S2P. The study
demonstrates that the fusion process significantly enhances the

Figure 6: Difference between the fused DSM from 8 point clouds and the actual LiDAR
value.

quality of the DSMs, particularly in terms of completeness
and error metrics. The results validate the effectiveness of the
proposed method in a mixed terrain, showcasing its poten-
tial for applications in precision agriculture and other fields
requiring detailed terrain models. The successful integration
of multiple DSMs results in a more comprehensive and
accurate representation of the terrain, addressing challenges
like shadow occlusions and temporal variations in the data.

These results confirm that the DSM fusion procedure im-
proves the quality of the results, having improved them using
a similar procedure from point clouds generated with different
software.

Considering future continuation of this work, the quality
metrics of our DSMs could potentially be improved by em-
ploying a more sophisticated procedure. This would involve
generating all possible DSMs from pairs of images, organizing
these DSMs based on their parameters, and selecting the most
suitable ones. Additionally, incorporating enough different
dates for covering the maximum surface area while consider-
ing changes in vegetation and luminosity would ensure a more
comprehensive analysis. This approach, aimed at enhancing
the accuracy and completeness of the DSMs, remains a subject
for future work.

Finally, it should be mentioned that sustainable farming
practices can be improved through the use of static DSMs,
as they provide valuable insights for efficient irrigation, soil
erosion prevention, optimized fertilizer application, and other
key activities.
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