
Enabling Advanced Network Services in the Future
Internet Using Named Object Identifiers and Global

Name Resolution

Shreyasee Mukherjee, Parishad Karimi, Dipankar Raychaudhuri
WINLAB, Rutgers University

North Brunswick, New Jersey, USA.
Email: {shreya, parishad, ray}@winlab.rutgers.edu

Francesco Bronzino
Inria

Paris, France
Email: francesco.bronzino@inria.fr

Abstract—This paper presents the concept of named object
identifiers as the architectural foundation for realizing advanced
services, mobility and security in the future Internet. The pro-
posed named object approach uses unique identifiers for service
definition and end-to-end message delivery, and can be added
as a new layer on top of the IP architecture in a backward-
compatible manner. The proposed ID-based service layer requires
control plane support in the form of a global name resolution
service (GNRS) for dynamic binding of names to network
addresses. The requirements for a generalized and flexible name
resolution service are discussed considering both functional and
performance aspects. Several proposed realizations of the name
resolution service are described, including DMap and Auspice
used in the MobilityFirst future Internet architecture. In con-
clusion, examples are given for some new services supported by
the proposed identifier-based architecture and specific identifier-
based protocol designs, such as mobility, multi-homing, multicast
and context-based services.

Keywords–Future Internet Architecture (FIA); Named services;
Name resolution.

I. INTRODUCTION

The current Internet architecture, which was designed
with fixed hosts in mind, uses IP address to identify both
the users, as well as their location. This overloading of the
namespace, also called location-identity conflation [1], makes
deploying basic services such as mobility or multi-network
access, challenging. End-to-end protocols such as, TCP are
tied to the IP address of an interface which changes as an
end-point moves, causing transport and application sessions
to break. Group based communication to Internet-of-Things
or anycast based cloud service access are important use cases
which currently require overlay networking solutions above
the IP layer and could benefit from improved network layer
services. We believe that it is timely to consider evolving
the IP architecture to support location-independent identifier-
based communications between ”named objects” in order to
realize significant service flexibility and security benefits [1]–
[3]. Separation of names or identities (IDs) from network
address/locator has been proposed in multiple architectures
to facilitate location-independent communication [2]–[6]. Note
that while some architectures use names to denote network-
attached objects, others use identities (IDs), both of which
can be loosely defined as a string defining a communicating
end-point, and, for the purpose of this paper, we use them
interchangeably. Assigning long-lasting unique IDs to different

Figure 1. Named-object abstraction: names can be assigned to any network
connected entity

network entities ranging from end-points to contents will allow
for native support of services on top of any underlying routing
mechanism, including IP. As shown in Figure 1, names are
quite versatile, and can be used to identify any network-
attached object, from traditional end-user devices to IoT groups
(for example, sensors in a smart home), specific content in
information-centric networks, named network entities (such as
access points and routers within a domain) and context, (for
example, vehicles on the New Jersey Turnpike between exits
9 and 10).

The naming layer will be placed between the network
and transport layer, alleviating the need for those layers to
inefficiently support different services like mobility [7] and
multihoming [8]. The packet header will include both the ID
and the routable address(es), allowing for address-based data
traversal within the routers. This will provide a backward-
compatible solution, which can be incrementally-deployable
on top of the current IP-based Internet. The control plane
that enables routing of ID-based packets consists of a globally
reachable name resolution service, which will provide name
to address mapping to end-points, first-hop routers or any core
router depending on the service.

In this paper, we first discuss the necessity of such a global
name resolution service (Section II). Then we identify the
design requirements for realization of a generalized distributed
name resolution service for ID-based networks (Section III).
Next we describe two in-network and one overlay name reso-
lution services developed for the MobilityFirst architecture [4]
and highlight the set of requirements they fulfill (Section IV).
Finally, we explain how such a generic name resolution service

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

TABLE I. COMPARISON OF EXISTING AND PROPOSED MAPPING
RESOLUTION SYSTEMS

System Mapping resolution Implementation
Domain Name Sys-
tem (DNS)

URL → IP addr Dedicated servers in
application layer

Network address
translation (NAT)

IP addr → IP addr In-network at NAT-
capable routers

MobilityFirst GNRS GUID name → network addr In-network routers
LISP ALT IP addr name → IP addr location Dedicated overlay

servers
Serval Service ID → sock/addr In-network at

Serval-capable
routers

can enable basic mobility or session continuity as well as
advanced services, such as multi-network access, large scale
multicast and context aware services (Section V).

II. NAME RESOLUTION SERVICES

Clearly, the use of identifiers implies the need for an
efficient resolution system that can provide fast and efficient
identity to location translation for all such named objects. In
the current Internet, two similar resolution systems exist. A
distributed globally available Domain Name System (DNS)
translates identities (URLs) to obtain network locations (IP
addresses) [9] and NAT capable routers locally translate private
IP addresses to public IP addresses. However, a key drawback
of existing systems is that they were designed based on the
notion that most entries will either be static or change at a
relatively slow time-scale. Even though DNS has historically
evolved significantly from the time it was based on text files to
sophisticated hierarchically distributed resolvers, it still lacks
the support for the requirements of next generation networks,
i.e. a distributed mapping infrastructure that can scale to orders
of magnitude higher update rates with orders of magnitude
of lower user-perceived latency. Alternatively new designs
for distributed resolution services have been proposed for a
variety of device, content and service oriented communication,
most notably the global name resolution service (GNRS) in
MobilityFirst [10]–[12], the distributed overlay ALT servers
in LISP [13] as well as distributed translation of service
identifiers to interfaces in Serval [14].

Table I summarizes the basic design choices and names-
pace translation of the aforementioned resolution systems.
As shown, each of these resolution systems have their own
implementation logic or APIs, and reside in different layers
of the internet architecture. While they each focus on slightly
different objectives, we believe that it is useful to look into
the fundamental requirements for identity-based networks and
propose a generic name resolution service with a unified
control plane that allows interoperability in the data plane of
existing and proposed ID-based architectures.

III. FUNCTIONAL REQUIREMENTS

In this section we describe the key requirements from a
resolution system to enable ID oriented future services.

A. Low Update and Response Latency

User perceived latency plays a crucial role in the quality
of experience of any digital commercial service subscribers.
As reported by VMware, typical network latency of about
100 milliseconds is considered acceptable for the usage of

TABLE II. BASIC RESOLUTION SYSTEM STRUCTURE AND API
SEMANTICS

insert(ID, <value set>, opts)
update(ID, <value set>, opts)
query(ID)
delete(ID)

(a) API semantics

Key Value Metadata
ID <values> Opts
...

(b) Database structure

their office productivity services [15]. In 2006, Amazon found
that every 100 millisecond of added latency reduces sales by
1%. Considering that Amazon’s total revenue in 2006 was
19B+, this would have amounted to a loss of 190M per 100
milliseconds of added latency [16]. Future 5G applications
such as vehicle-to-vehicle safety messaging or real-time mobile
control may require less than one millisecond network latency
to be deployable in practice [17], which mandates future name
resolution systems to be able to return up-to-date responses
within milliseconds.

Note that the network latency includes both the time to
update a mapping and the time to return a correct response to
a querying entity for the mapping. Therefore, the resolution
system should be physically distributed with the distribution
optimized to find the sweet spot of minimizing lookup latency
and update latency. That is, an ideal resolution system should
have potentially all mappings in close network-proximity to
both the entities making inserts and queries. While this could
be practically hard to achieve in some cases, specially if the
entities are topologically far away, it brings forth interesting
challenges on how to optimize distribution based on the
identity of the service itself; for example, vehicle to vehicle
safety communication (∼1 millisecond) vs. locally popular
content caching (10s of milliseconds) vs. globally available
personal cloud storage(∼100 milliseconds).

B. Storage and Load Scalability

There are approximately 4.9 billion global mobile data
users and according to a recent study, over 20% of these users
currently change network addresses over 10 times a day [18].
Cisco has predicted that by 2021, the number of mobile users
will go up to 5.5 billion, whereas the total number of mobile
connected devices could be as high as 12 billion [19]. Even
if the mobile data users follow certain predictable patterns of
mobility, this growth in the number of mobile objects will
generate in the order of 10s of billions of daily updates. This
in turn would require further resources and create additional
workload for the common name resolution infrastructure.

To address these scalability, DNS currently relies heavily
on caching of mapping entries through its hierarchy (local
name servers, authoritative name servers, top level domains)
to help reduce both system load and client-perceived latency.
However, handling mobility at this scale requires up-to-date
responses, which makes caching ineffective (near-zero TTLs).
As a resut, the load and client-perceived latency increase with
the mobility rate. Therefore the proposed resolution system
should be able to scale to orders of magnitude higher storage
and load scalability than existing systems.

C. Extensibility and Flexibility

In order to simplify the deployment of a range of ID based
services, the resolution system should be flexible enough to

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

TABLE III. SUMMARY OF REQUIREMENTS FROM A NAME
RESOLUTION SYSTEM

Requirements Goals
Latency Low(<1ms) to medium(100ms) based on service req.

Scalabilty Very high workload(>100B updates per day)
Moderately high storage based on distribution

Implementation In-network and distributed

Semantics

Flexible and scalable information schema
<key, value> pair + supplementary information (optional)

Standardized APIs

Security Attack resilient, access control, flexible policies
Optional confidential info, private instantiations

store multiple kinds of mapping (key→values). For example,
it could capture relationships like grouping between names
by providing name-to-name mapping and recursive resolution
of names. This would not only enable name based multicast
communication but also allow a richer information schema to
be mapped onto names and then stored in the same resolution
system, as explained further in Section V.

The syntax and semantics should also be flexible enough
to support a range of existing and future name based archi-
tectures [4]–[6], which could all utilize the resolution system
as a common control plane, accessible through well-defined
standardized APIs. Therefore, the structure of the database
itself should not be bound to the structure of the names. For
example, HIP [5] and MobilityFirst [4] use flat names, whereas
LISP [6] which utilizes IP addresses, has hierarchical names.
The database should also allow extensible fields or some form
of optional information to be stored per mapping as meta-
data, which could be essential for certain kinds of service
deployments.

Table IIIa highlights the basic API that includes semantics
for inserting a new entry, updating an existing entry, as well as
querying and explicitly deleting of an entry. Although time-to-
live (TTL) based delete could be performed, similar to DNS,
we believe that TTL based designs make it difficult to handle
fast mobility as well as temporary disconnections prevalent in
wireless access scenarios. Table IIIb further shows the database
structure with fields for inserting the ID as the key, a set of
values and optional meta-data.

D. Security and Reliability

The resolution service serves as a database, mapping IDs
to the location of network-attached objects (which may be
correlated to physical locations). Its central role in providing
such name resolution entails security and privacy as important
design considerations. Local or private instantiations and con-
fidential mappings should also be provisioned for. However,
there should not be a single root of trust and strict hierarchical
distributions, since, database placement should be optimized
based on the service requirements, which in most cases is not
closely tied to autonomous systems and network hierarchy. It
is also important to allow access control and flexible policy
support to prevent malicious usage of the infrastructure [20].

Table III summarizes the broad set of functional require-
ments for a generic name resolution system for ID-oriented
communication in the future internet.

IV. GLOBAL NAME RESOLUTION INFRASTRUCTURE FOR
MOBILITYFIRST

MobilityFirst relies heavily on the name resolution service
for advanced network-layer functionalities. This reliance ne-

Figure 2. DMap based insertion and lookup of GUID X to locator mapping

cessitates high performance from the resolution service, which
depends on resolving identifiers to dynamic attributes in a fast,
consistent, and cost-effective manner at Internet scale. Keeping
the above requirements in mind, the project has looked into
alternative designs of the name resolution system [10]–[12],
including both in-network and overlay designs. The Mobil-
ityFirst namespace is flat, with globally unique identifiers
(GUIDs) that can be assigned to any network-attached object,
from individual devices to groups, network routers and ser-
vices, as shown earlier in Figure 1. These GUIDs are 160 bits
and derived from public keys, hence they are self-certifiable
and cryptographically secure. Routing is based on network
addresses with the name resolution system storing up-to-date
mappings between the GUID and its corresponding network
addresses. The data packets are also self-sustained and carry
both the GUID and the routing address in the header. This
ensures in-transit packets to be rebinded by any router along
the path, to a new network address through a mapping re-query,
as and when required (for example, during mobility). All of the
three designs, that is, DMap [10], Auspice [11] and GMap [12],
support the basic APIs for insert, update and querying an entry
based on GUIDs and have similar database structures with
globally distributed implementation and no centralized root of
trust.

DMap: The direct mapping (DMap) design was the first
proposed implementation, which is an in-network approach,
wherein every autonomous system (AS) in the global network
participates in a hashmap based name resolution service in
order to share the workload of hosting GUID to network
address mapping. Figure 2 provides an overview of how DMap
distributes each GUID mapping across K replica servers in the
internet. Assuming the underlying routing to be stable and all
networks to be reachable, DMap hashes every GUID to K
network addresses (which are IP addresses in this example)
and then stores the mapping at those K addresses. Every time
the mapping changes, K update messages are sent to each of
the servers at these locations. Correspondingly, every query for
the current mapping of the GUID is anycasted to the nearest
of the K locations, as shown.

DMap is the simplest of the three designs and it manages
workload balance across all the ASes efficiently. Since uniform
hash functions decide where a mapping is stored, basic DMap
implementation is not suitable for geographically optimized

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

mapping placement based on service requirements. However
the focus of this work was on providing a globally available
mapping system with high availability, and moderate latencies,
making it ideal to handle basic mobility and services with
medium latency requirements. Detailed internet scale simula-
tion of DMap shows that with 5 replicas per GUID, the 95th

percentile latency is around 86 milliseconds [10], which is
reasonable for most user-mobility centric applications.

Auspice: The main design goal of Auspice, which uses an
overlay approach above the network layer, is to provide an
automated infrastructure for the placement of geo-distributed
name resolvers in order to reduce update and query latencies to
tens of milliseconds [11]. The two main components of Aus-
pice are the replica controllers, which determine the number
and geo-location of name resolvers, and the name resolvers
(active replicas), which are responsible for maintaining the
identifiers attributes and replying to user-request read or write
operations. Each name is associated to a fixed K number of
replica-controllers and a variable number of active replicas of
the corresponding resolver.
Auspice performs per GUID optimized replica placement with
the replica controllers aggregating update and query frequency
to compute popularity and hence number of replicas of the
mapping required and where to place them. Although the
mapping infrastructure is distributed, Auspice is an overlay
implementation and does not require in-network routers to
participate in sharing the workload. The database design is also
more generic with key as the GUID and the mapping being
expressed as a <type, length, value> field. Therefore, Auspice
can store arbitrary strings as a value mapped onto a GUID.
Auspice also takes into account the resource and latency trade
off in its optimization for replica management. So if more
resources are available, it can decide to disseminate more
replicas per GUID and hence reduce overall lookup latency.
Detailed comparative evaluation shows that Auspice with 5
replicas is comparable to commercially deployed UltraDNS
(16 replicas) and with 15 replicas has 60% lower latency than
UltraDNS. Auspice with 5 replicas is also 1.0 to 24.7 secs
lower than three top-tier managed DNS service providers for
propagating updates globally.

GMap: Finally GMap [12] is an updated version of
DMap, in which the GUID→address mapping is distributed
hierarchically considering geo-location and local popularity.
For each GUID, similar consistent hash functions are used
to assign resolution servers. However for each mapping, the
servers are categorized into local, regional and global sets,
based on geo-locality. Each mapping now gets replicated into
K1 local servers, K2 regional servers and K3 global servers.
Therefore, unlike Auspice, GMap does not require per-GUID
replica optimization, but still achieves better latency than
DMap, at the cost of higher storage workload, due to increased
number of replicas per GUID. In addition, GMap allows
temporary in-network caching of the mapping along the route
between a resolution server and a querying entity, to ensure
future mapping requests for the same GUID to be resolved
faster. Internet-scale simulations show GMap to achieve similar
latency goals of tens of milliseconds as Auspice but with lower
complexity and computation overhead. Table IV summarizes
the key features of each of the designs.

TABLE IV. SUMMARY OF MOBILITYFIRST NAME RESOLUTION
SERVICE IMPLEMENTATIONS

Auspice GMap DMap
Implementation Overlay In-network In-network
Algorithm type Demand-aware

replicated state
machine

Distributed hash
table

Distributed hash
table

Record content GUID to arbitrary
number of values

GUID to
arbitrary values
(recursively
other GUIDs
or Network
Addresses)

GUID to up to
5 NAs, each with
an expiration time
and prioritization
weight

Name server
placement

Geo-located
based on requests

Geo-located
based on physical
location of the
GUID

Not Geo-located,
except 1 local
mapping

Number of repli-
cas per GUID

Based on recent
demand and up-
date frequency

Fixed number;
each GUID has
K1 local, K2
regional, K3
global replicas

Fixed number:
each GUID has
K global, 1 local
replicas

Caching No caching; load
balancing by ad-
justing number of
name servers

Caches response
along the path
from querying
entity and name
server

Future work

V. NAME BASED SERVICES

In this section, we explain how a range of services, namely
mobility, multihoming, multicast and context-aware services
can be supported efficiently, using the concept of “named
object” identity within the network.

A. Host and Network Mobility

Due to the rapid proliferation of mobile users, ranging from
cellphones to drones, mobility should be treated as a first-
class service. One of the most significant use cases for future
networks is supporting mobile data services on a fast scale, like
authentication and dynamic mobility, involving both micro-
level handoff and macro-level roaming. The current approaches
for mobility support such as mobile IP [7] suffer from routing
inefficiency (in terms of latency, overhead and congestion at
service gateways), due to triangular routing through an anchor
point. Mobility can be handled better within a name-based
architecture which is facilitated by a name resolution service
meeting the functional requirements discussed in Section III.

• Baseline: This is the simplest case where on delivery failure,
the packet is re-sent from the original sender’s location.
• Re-bind (also called “late binding”): When a delivery fails,

the name resolution service is queried for an updated loca-
tion and the packet is forwarded from the current network
address, instead of the original sender’s location.
• Last Known: This is an extension to the ‘re-bind’ case. The

main difference is observed when the user is disconnected
and the current location is not available in the name resolu-
tion service. In such a case while the ‘re-bind’ scheme holds
the packet, waiting for a location update, the ‘last known’
scheme forwards the packet to the last known location in
the GNRS. We expect the user to be closer to his previously
known location when compared to the location of the sender.
• Ideal: This scheme represents best possible scenario. Using

prediction schemes with the information available in the
name resolution service it is possible to get closer to the
performance of the ideal case.

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

Globally-Available Name
Resolution Service

ID_R

ID_S

Network 1

Network 2

ID_R

GUID_R NA1NA2

GUID_R NA1NA2

NA1NA2

GUID_R NA1

ID_R
NA1

ID
_R

N
A

2

GUID_R NA1ID_R NA1

ID_R NA2

Resolve ID_R to
<NA1,NA2> , Route

accordingly

Bifurcation
Router splits the
data based on

link quality

Insert ID_R to
<NA1,NA2> ,

Mapping

Send(ID_R,data)
Link

quality

Link
quality

Storage aware routers improve
block-data delivery

performance over wireless links

ID_R

Figure 3. Overview of multihoming supported by a globally-available name
resolution service

B. Multi-homed traffic engineering

Multihoming can natively be supported by a name-based
architecture. A multi-homed device is simultaneously attached
to more than one service network. The separation of names
and addresses allows for a device or group name to be bound
to a dynamic set of multiple network addresses, denoting the
points of attachment of the device to the network. In-network
multipath routing is enabled using a global name resolution
service as follows: the first hop router that receives a packet
destined to another endpoint’s name queries the name reso-
lution service for the locations of that name. After receiving
the reply from the service, the first hop router appends all
the network addresses associated with the receiver’s ID to the
packet. As data packets traverse through the core network, the
routers forward the packets until a branching point is reached.
This branching point is the router that faces different next hops
for the various network addresses and can dynamically change
in case of mobility. This bifurcation router can be programmed
to schedule the data on each path according to link quality
metrics or policies inserted by the multi-homed endpoints. The
link quality metric can utilize cross-layer information from link
layer protocols or a feedback mechanism from edge wireless
networks. This service can be enabled on top of IP as well,
with some limitations on performance, considering the lack of
path quality information in current mainstream network and
link layer protocols. An overview of how a distributed name
resolution service which serves the functional goals discussed
earlier can facilitate multihoming is shown in Figure 3.

These approaches have been shown to boost the per-
formance of multihoming compared with current end-to-end
approaches such as MPTCP [21], [22]. The extensible fields
as metadata for each identifier in the name resolution service
can further allow for storing fine-grained expressive policy
information about the multi-path connection, e.g., prefer WiFi
to LTE; or use WiFi for delay-tolerant downloads and LTE for
delay-sensitive traffic, etc.

C. Large-scale multicast

Internet applications like video streaming, online gaming
and social networks, e.g. Twitter, often require dissemination
of the same piece of information to multiple consumers at
the same time. While multicast routing protocols have long
been available, most of these applications rely on unicast based

Figure 4. Name based multicast with recursive name lookups using the name
resolution service

solutions without support from the network. Using appropri-
ate multicast routing solutions would help, however, existing
network-layer multicast solutions (e.g., PIM-SM [23], MO-
SPF [24]) have not been widely adopted, mainly because issues
with scalability and coordination across multiple domains. In
view of the shortcomings of existing schemes, a network-layer
multicast solution, that utilizes the named-object abstraction
was designed as part of the MobilityFirst project. In this
design, names are used to identify a multicast group, as well
as the multicast tree itself and can be stored and managed in a
distributed fashion through the name resolution infrastructure.
As shown in Figure 4, a multicast service-manager computes
the multicast tree and assigns GUIDs to each of the branching
routers of the tree. This tree is then stored in the resolution
service in a recursive manner, wherein each branching router
maps onto the next set of downstream branching points along
with their network addresses, with the leaves of the tree being
the names of the actual devices subscribed to the multicast
group. Data packets are sent encapsulated from one branching
point to the next, with the outer header containing the GUID
and network addresses of the branching router, whereas the
inner header containing GUID of the multicast group. Our
detailed simulations in [25] show that name-based multicast
scales elegantly as the group size and network size increase
compared to inter-domain IP multicast [26].

D. Next-generation context-aware services

Finally, using the same name abstraction and the name
resolution service, we would like to highlight how a rich
set of context-aware services can be supported. Figure 5
shows one such context, where a survivor wants to send a
message to ”firemen dealing with incident X”. As shown in
the figure, the information layer is very rich and can in-
clude a complicated graph of relationships, including incident
hierarchy (all incidents→incident X→X Fire), geographical
hierarchy (US→<NJ, CA>), responder relationships (first
responders→<police, firemen>) and so on. However, these
can be mapped onto a flat naming plane using GUIDs through
an object resolution service, as shown. Therefore, the infor-
mation schema can be flat with no relationships (for example,
individual devices), strictly hierarchical (for example, content
names in a content centric network [27]) or a mix of all of
the above (such as Wikipedia categories [28]), but can still be
efficiently mapped into a flat namespace, by cleanly separating
the information-space from the namespace. Next the name

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

Figure 5. Context-aware services: Mapping a message, Send (”Fireman
dealing with incident X”, ”Help message”) from a survivor using names

resolution service can be updated to map these GUIDs to
network addresses or recursively to other GUIDs.

The end-points do not need to be aware of the separation
or the relationships, which can be handled by specific service
managers related to each service. For example, in Figure 5,
a disaster-management service manager, can determine the
information schema, assign GUIDs and update the object
resolvers and the name resolvers, such that when a survivor
sends a contextual message (send to all all firemen handling
incident X), the application on the end-host maps this context
to an appropriate GUID and the network in-turn maps this
GUID to an appropriate set of network addresses and anycasts
or multicasts the message based on the service requirements.
Ongoing work in MobilityFirst is focused on efficient design
of the object resolvers and the name assignment services for
enabling efficient contextual delivery use-cases. [29]

VI. CONCLUSION

This paper identifies the key set of requirements for
a generic resolution service as a unified control plane for
identifier-based architectures. Three alternative implementa-
tions of a global name resolution infrastructure were described
and compared in terms of their design choices and trade-offs.
Finally, the paper explained how advanced services such as
mobility, multihoming and multicast and context-aware ser-
vices can be supported using named-object service abstractions
along with an efficient name resolution service.

ACKNOWLEDGMENT

The authors would like to thank Dr. Jiachen Chen, WIN-
LAB, Rutgers University for his help with the figures and
crucial feedback. This research was supported by the NSF
Future Internet Architecture (FIA) grant CNS-134529.

REFERENCES

[1] J. Saltzer, “On the Naming and Binding of Network Destinations.” RFC
1498, 1993.

[2] D. Clark, R. Braden, A. Falk, and V. Pingali, “FARA: Reorganizing the
addressing architecture,” in ACM SIGCOMM CCR, 2003.

[3] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish, “A layered naming architecture for the
internet,” in ACM SIGCOMM CCR, 2004.

[4] A. Venkataramani et al., “Mobilityfirst: A mobility-centric and trust-
worthy internet architecture,” SIGCOMM CCR, 2014.

[5] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host Identity
Protocol.” RFC 5201, 2008.

[6] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller, “The Locator/ID
Separation Protocol (LISP).” RFC 6830, 2013.

[7] C. E. Perkins, “Mobile ip,” IEEE Communications Magazine, 1997.

[8] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses.” RFC 6824, 2015.

[9] P. Mockapetris, “Domain Names - Concepts and Facilities.” RFC 1034,
1987.

[10] T. Vu et al., “Dmap: a shared hosting scheme for dynamic identifier to
locator mappings in the global internet,” in IEEE ICDCS, 2012.

[11] A. Sharma et al., “A global name service for a highly mobile internet-
work,” in ACM SIGCOMM Computer Communication Review, 2014.

[12] Y. Hu, R. D. Yates, and D. Raychaudhuri, “A Hierarchically Aggregated
In-Network Global Name Resolution Service for the Mobile Internet,”
in WINLAB TR 442.

[13] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis, “Lisp alternative
topology (lisp+ alt).” RFC 6836, 2013.

[14] E. Nordström et al., “Serval: An end-host stack for service-centric
networking,” in Proc. of USENIX NSDI, 2012.

[15] “VMware View 5 with PCoIP, Network Optimization Guide White
Paper,” www.vmware.com/content/dam/digitalmarketing/vmware/en/
pdf/whitepaper/view/vmware-view-5-pcoip-network-optimization-
guide-white-paper.pdf, 2011 [accessed: 2017-02].

[16] G. Linden, “Make Data Useful,” www.gduchamp.com/media/
StanfordDataMining.2006-11-28.pdf, 2006 [accessed: 2017-02].

[17] “5G:A Technology Vision,” www.huawei.com/5gwhitepaper, 2013 [ac-
cessed: 2017-02].

[18] Z. Gao, A. Venkataramani, J. F. Kurose, and S. Heimlicher, “Towards
a Quantitative Comparison of Location-Independent Network Architec-
tures ,” in Proc. of ACM Sigcomm, 2014.

[19] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016-2021,” 2017.

[20] X. Liu, W. Trappe, and J. Lindqvist, “A policy-driven approach to access
control in future internet name resolution services,” in Proc. of ACM
MobiArch, 2014.

[21] P. Karimi, I. Seskar, and D. Raychaudhuri, “Achieving high-
performance cellular data services with multi-network access,” in IEEE
Globecom, 2016.

[22] S. Mukherjee, A. Baid, I. Seskar, and D. Raychaudhuri, “Network-
assisted multihoming for emerging heterogeneous wireless access sce-
narios,” in Proc. of IEEE PIMRC, 2014.

[23] D. Farinacci et al., “Protocol independent multicast-sparse mode (PIM-
SM): Protocol specification,” in RFC2362, 1998.

[24] J. Moy, “Multicast extensions to OSPF,” in IETF RFC 1584, 1994.

[25] S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri,
“Achieving Scalable Push Multicast Services Using Global Name
Resolution,” in Proc. of IEEE Globecom, 2016.

[26] D. Meyer and B. Fenner, “Multicast source discovery protocol
(MSDP),” in RFC 3618, 2003.

[27] V. Jacobson et al., “Networking named content,” in Proceedings of
emerging networking experiments and technologies. ACM, 2009.

[28] “Wikipedia Categories,” http://en.wikipedia.org/wiki/Help:Categories,
[accessed: 2017-02].

[29] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan, “CNS: Content-
oriented notification service for managing disasters,” in Proc. of ACM

ICN, 2016.

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/view/vmware-view-5-pcoip-network-optimization-guide-white-paper.pdf
www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/view/vmware-view-5-pcoip-network-optimization-guide-white-paper.pdf
www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/view/vmware-view-5-pcoip-network-optimization-guide-white-paper.pdf
www.gduchamp.com/media/StanfordDataMining.2006-11-28.pdf
www.gduchamp.com/media/StanfordDataMining.2006-11-28.pdf
www.huawei.com/5gwhitepaper
http://en.wikipedia.org/wiki/Help:Categories

	I Introduction
	II Name Resolution Services
	III Functional Requirements
	III-A Low Update and Response Latency
	III-B Storage and Load Scalability
	III-C Extensibility and Flexibility
	III-D Security and Reliability

	IV Global Name Resolution Infrastructure for MobilityFirst
	V Name Based Services
	V-A Host and Network Mobility
	V-B Multi-homed traffic engineering
	V-C Large-scale multicast
	V-D Next-generation context-aware services

	VI Conclusion
	References

