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Abstract—Erasure-coding redundancy schemes are employed in
storage systems to cope with device and component failures. Data
durability is assessed by the Mean Time to Data Loss (MTTDL)
and the Expected Annual Fraction of Entity Loss (EAFEL)
reliability metrics. In particular, the EAFEL metric assesses losses
at an entity, say file, object, or block level. This metric is affected
by the number of codewords that entities span. The distribution of
this number is obtained analytically as a function of the size of the
entities and the frequency of their occurrence. The deterministic
and the random entity placement cases are investigated. It is
established that for certain deterministic placements of variable-
size entities, the distribution of the number of codewords that
entities span also depends on the actual entity placement. To
evaluate the durability of storage systems in the case of variable-
size entities, we introduce the Expected Annual Fraction of
Effective Data Loss (EAFEDL) reliability metric, which assesses
the fraction of stored user data that is lost by the system annually
at the entity level. The EAFEL and EAFEDL metrics are assessed
analytically for erasure-coding redundancy schemes and for the
clustered, declustered, and symmetric data placement schemes. It
is demonstrated that an increased variability of entity sizes results
in improved EAFEL, but degraded EAFEDL. It is established that
both reliability metrics are adversely affected by the size of the
erasure-coding symbols.

Keywords–Reliability analysis; MTTDL; EAFDL; EAFEL;
MDS codes; Unrecoverable or latent sector errors; Deferred re-
covery or repair; stochastic modeling.

I. INTRODUCTION

The durability of data storage systems and cloud offerings
is affected by device and component failures. Desired reliabil-
ity levels are ensured by employing erasure-coding redundancy
schemes for recovering lost data [1-4].

The frequency of data loss events is assessed by the Mean
Time to Data Loss (MTTDL) metric that has been widely
used to assess the reliability of storage systems [3][4]. Also,
the amount of data loss is obtained by the Expected Annual
Fraction of Data Loss (EAFDL) metric that was introduced in
[5]. This metric was recently complemented by the Expected
Annual Fraction of Entity Loss (EAFEL) metric [6]. The
EAFEL metric assesses data losses at an entity, say file, object,
or block level, whereas the EAFDL metric assesses data losses
at a lower data processing unit level.

The smallest accessed unit of a storage device is a sector
in Hard-Disk Drives (HDDs), a page in flash-based Solid-State
Drives (SSDs), and a data set in Linear Tape-Open (LTO is
the trademark of HP, IBM, and Quantum in the Unites States
and other countries) tape systems [7]. A sector has a typical
size of 512 bytes or 4 KB, a page has a size that ranges
from 4 KB to 16 KB, and a data set currently has a size
of 5 MB or more. Erasure-coding redundancy schemes are

implemented by treating the units that contain user data as
symbols and complementing them with parity symbols (units)
to form codewords. In the case of HDDs and SSDs, one or
more units are allocated to an entity and the last unit may be
partially filled. Depending on the file system employed, the
remaining space of a partially-filled unit may or may not be
used to store the contents of another entity. Therefore, user
data may or may not be stored in an aligned fashion with
units (symbols), which in turn implies that entities may or
may not be aligned with codewords. The case where entities
are aligned with codewords was considered by the reliability
model presented in [6]. By contrast, in the case of tape, user
data is written sequentially such that a unit may contain data
of multiple entities. Therefore, user data and entities are not
aligned with symbols and codewords, respectively. Moreover,
the reliability model presented in [6] assumed that entities have
a fixed size, whereas in practice they have variable sizes. It
turns out that the MTTDL metric does not depend on the
placement and size of the entities, but the EAFEL metric
does. More specifically, EAFEL depends on the number of
codewords that stored entities span. Furthermore, the EAFEL
metric reflects the fraction of lost user data only when entities
have a fixed size. To evaluate system durability in the case of
variable-size entities, in this article we introduce the Expected
Annual Fraction of Effective Data Loss (EAFEDL) reliability
metric, that is, the fraction of stored user data that is expected
to be lost by the system annually at the entity level.

The key contributions of this article are the following. The
reliability model presented in [6] for the assessment of the
EAFEL metric is enhanced in two ways. First, entities are
considered to be stored such that they are not aligned with
codeword boundaries. Second, the size of entities is considered
to be variable. The objective of this article is to assess
system reliability by deriving the distribution of the number
of codewords that entities span. We address the following
question. Does this distribution only depend on the statistics
of the entities stored, that is, on their size and frequency of
occurrence, or does it also depend on their placement? In the
present work, we shed light on this issue by investigating the
cases of deterministic and of random entity placement. The
distribution of the number of codewords that entities span is
obtained analytically as a function of the size of the entities
and the frequency of their occurrence. We also establish that
for certain deterministic placements of variable-size entities,
this distribution also depends on the actual entity placement.

The general non-Markovian methodology that was applied
in prior work to assess the EAFDL and EAFEL metrics
for erasure-coding redundancy schemes and for the clustered,
declustered, and symmetric data placement schemes, is ex-
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TABLE I. NOTATION OF SYSTEM PARAMETERS

Parameter Definition
n number of storage devices
c amount of data stored on each device
l number of user-data symbols per codeword (l ≥ 1)
m total number of symbols per codeword (m > l)
(m, l) MDS-code structure
es entity size
s symbol size
seff storage efficiency of redundancy scheme (seff = l/m)
U amount of user data stored in the system (U = seff n c)
r̃ MDS-code distance: minimum number of codeword symbols lost

that lead to permanent data loss
(r̃ = m − l + 1 and 2 ≤ r̃ ≤ m)

C number of symbols stored in a device (C = c/s)
ss shard size (ss = es/l)
J shard size measured in symbol-size units (J = ss/s = es/(l s))
Y number of lost entities during rebuild
Q̆ amount of lost user data during rebuild

tended to derive analytically the EAFEL and the new EAFEDL
reliability metrics for the case of variable-size entities. Subse-
quently, we demonstrate the effect of erasure-coding capability
as well as of entity and symbol sizes on system reliability for
the entire range of bit error rates.

The remainder of the article is organized as follows. Sec-
tion II describes the storage system model and the correspond-
ing parameters considered. In Section III, the distribution of the
number of codewords that entities span is derived analytically
as a function of the entity size distribution when entities are
not aligned with symbols and when entity sizes are either fixed
or variable. In Section IV, the EAFEL and EAFEDL metrics
are derived analytically for the case of random placement
of variable-size entities. Section V presents numerical results
demonstrating the effect of the erasure-coding capability and
of the entity sizes on system reliability, as well as the adverse
effect of an increased symbol size. Finally, we conclude in
Section VI.

II. STORAGE SYSTEM MODEL

The reliability of erasure-coded storage systems was as-
sessed in [6] based on a model that considers codeword
rebuilds for reconstructing lost symbols and assess system reli-
ability when entities (files, objects, blocks) are lost. Maximum
Distance Separable (MDS) erasure codes (m, l) that map l
user-data symbols to codewords of m symbols are employed.
They have the property that any subset containing l of the
m codeword symbols can be used to reconstruct (recover) a
codeword. The MTTDL and EAFEL reliability metrics were
derived analytically for systems that employ a lazy rebuild
scheme.

The corresponding storage efficiency seff and amount U of
user data stored in the system is

seff = l/m and U = seff n c = l n c/m , (1)

where n is the number of storage devices in the system and c
is the amount of data stored on each device. Also, the number
C of symbols stored in a device is

C = c/s . (2)

Our notation is summarized in Table I. The parameters are
divided according to whether they are independent or derived
and are listed in the upper and lower part of the table,
respectively.

To minimize the risk of permanent data loss, the m symbols
of each of codeword are spread and stored in m devices. This

way, the system can tolerate any r̃ − 1 device failures, but r̃
device failures may lead to data loss, with

r̃ = m− l + 1 , 1 ≤ l < m and 2 ≤ r̃ ≤ m . (3)

Two different ways (A and B) for storing user data on
devices were shown in Figure 1 of [6]. According to way
A, user data contained in entities is divided into chunks
with the contents of a chunk stored on different devices,
whereas according to way B, user data contained in entities
is divided into shards with the contents of a shard stored on
the same device. More specifically, according to way B, user
data contained in entities is divided into l shards with each
one being stored on a different device, as shown in Figure
1(a). Entities were assumed to have a fixed size es with the
corresponding shard size ss then obtained by ss = es/l.

The storage space of devices is partitioned into units
(symbols) of a fixed size s and complemented with parity
symbols to form codewords. Each shard was assumed to be
stored in an integer number of J symbols that is determined
by

J =
ss
s

=
es
l s

. (4)

Consequently, the contents of each entity, such as Entity-1
and Entity-2, are stored in J l user-data symbols with these
symbols being stored in an integer number of J codewords.
These codewords also contain J (m− l) parity symbols for a
total number of J m symbols per entity, as shown in Figure
1(a). Note that Sj,i denotes the ith symbol of the jth codeword.
Thus, S1,2, which is the second symbol of codeword C-1,
is the first symbol of the second shard. Successive symbols
of a shard are stored on the same device. To minimize the
risk of permanent data loss, the m symbols of each of the J
codewords are spread and stored successively in a set of m
devices.

The model in [6] considered shards that have a fixed size of
J symbols and are stored aligned with the symbol boundaries,
which are indicated by the horizontal black lines in Figure 1(a).
However, in practice user entities, and in turn shards, do not
have a fixed size and, in the case of tape, are not necessarily
aligned with symbols, because, as discussed in Section I, entity
data is stored in a way that is agnostic to symbol boundaries.
This is demonstrated in Figure 1(b) that shows two entities of
two different sizes, Entity-3 and Entity-4, and the way they
are stored on l devices of the system. For instance, Shard 1
of Entity-3 spans J symbols, i.e., the blue symbols S1,1, S2,1,
· · · , SJ,1, with its data partially occupying the first and last
symbol, S1,1 and SJ,1, respectively. Subsequently, Shard 1 of
Entity-4 spans three symbols, namely, the blue symbol SJ,1

and the two red symbols S1,1 and S2,1, with its data partially
occupying the first and the last symbol, that is, the blue SJ,1

and the red S2,1 symbol. Thus, symbol SJ,1 contains data from
both these entities. More generally, depending on the entity
and symbol sizes, a symbol may contain data from multiple
entities. Clearly, shard and entity sizes do not necessarily
correspond to an integer number of symbols, which implies
that the size J of a shard, expressed in number of symbols by
(4), is in general a real number, which is less than 1 when the
shard size is less than the symbol size. Codewords are formed
by combining symbols containing user-data to generate and
store parity symbols, as shown in Figure 1(b), regardless of
the entities involved.
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(a) Symbol-aligned shards of integer size

(b) Non-symbol-aligned shards of arbitrary size

Figure 1. Data placement of entities and formation of codewords.

As pointed out in [6], the MTTDL metric does not depend
on the entity size. This is due to the fact that the degree to
which permanent data losses occur depends on the capability
of the erasure-coding redundancy scheme employed and the
resulting codeword formation, which in turn is agnostic to the
entity placement and size characteristics. Note that an entity
is lost if any of the codewords that it spans is permanently
lost. Consequently, the EAFEL and EAFEDL metrics, which
consider data loss at the entity level, depend on the number of
codewords that entities span. The corresponding derivation is
performed in Section III.

The reliability of storage systems degrades by the presence
of unrecoverable or latent errors. According to the specifica-
tions of enterprise quality HDDs, the unrecoverable bit-error
probability Pb is equal to 10−15. In practice, however, Pb can
be orders of magnitude higher, reaching Pb ≈ 10−12 [4].
On the other hand, according to Figure 13 in [8], tapes are
more reliable than HDDs with a Bit Error Rate (BER) in
the range of 10−22 to 10−19. Assuming that bit errors occur
independently over successive bits, the unrecoverable symbol
error probability Ps is determined by

Ps = 1− (1− Pb)
s , (5)

with the symbol size s expressed in bits. Moreover, latent
errors are found to exhibit spatial locality and they occur in
bursts of multiple contiguous symbol errors. The degree to
which symbol errors are correlated is captured by the factor
fcor whose value is typically close to 1 [4].

III. CODEWORDS SPANNED BY ENTITIES

Here, we obtain the distribution of the number of code-
words, K, that entities span, which also represents the number
of symbols that shards span. We proceed by considering the
cases of fixed- and variable-size entities (shards).

A. Fixed-Size Entities
Let us consider fixed-size entities, which in turn result in

fixed-size shards, such that J is fixed. Owing to periodicity, it
suffices to study the process within a window of S = J × 10k

symbols, where k represents the number of decimal digits of
J . This window corresponds in a symbol interval [ϵ, S + ϵ]
with 0 < ϵ < 1. This interval contains S symbol boundaries
and stores 10k shards. For example, for J = 4.287, we have
k = 3, and it suffices to consider the process in a window of
S = 4.287× 103 = 4, 287 symbols that store 1000 shards.

Let us now consider the example shown in Figure 2
whereby the shard size is 2.3. In this case, it holds that
k = 1 and therefore it suffices to consider the process within
a window of S = 2.3×101 = 23 symbols that store 10 shards
depicted between the black circles with the symbol boundaries
indicated by the black vertical lines and with the first shard
aligned with the first symbol. However, given that in practice
shards are not aligned with symbols, their actual placement is
indicated between the red circles, with the first shard starting
at position ϵ, as indicated by the green circle.

Owing to periodicity, it suffices to study the process in
the symbol interval [ϵ, 23 + ϵ]. The red integers indicate the
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Figure 2. Number of symbols that shards span. Fixed-size shards of size 2.3 symbols.

Figure 3. Number of symbols that shards span. Fixed-size shards of size 0.3 symbols.

number of symbols spanned by the successive shards. We note
that 7 shards span 3 symbol and the remaining 3 shards span 4
symbols. Therefore, the probability density function (pdf) {pj}
of the number of symbols K that an arbitrary shard spans is

P (K = i) = pi =

{
0.7 , for i = 3

0.3 , for i = 4 .
(6)

Returning to the general case, we note that each shard
can be decomposed into two components. The size of the
first components, as indicated by the horizontal blue lines
shown in Figure 2, corresponds to the number of symbols
determined by the integer part of the shard size J , which is ⌊J⌋
symbols. In the example considered, the integer part is 2. The
size of the second components, as indicated by the horizontal
red lines shown in Figure 2, corresponds to the fractional
part, which is J − ⌊J⌋ symbols. In the example considered,
the fractional part is 0.3. Clearly, to each of the first (blue)
components correspond ⌊J⌋ symbol boundaries, which implies
that each shard spans at least ⌊J⌋+1 symbols. In the example
considered, to each of the first (blue) components correspond
2 symbol boundaries, as indicated by the blue vertical dotted
lines, and, consequently, each shard spans at least 3 symbols.

As there are 10k first components, one for each shard, the
number of the corresponding symbol boundaries is ⌊J⌋×10k,
which, in the example considered, is 2 × 101 = 20, as
indicated by the blue vertical dotted lines. Consequently, there
are S − ⌊J⌋ × 10k = (J − ⌊J⌋) × 10k additional symbol
boundaries that correspond to (J − ⌊J⌋) × 10k out of the
10k second components. In the example considered, there are
23 − 20 = 3 additional symbol boundaries, as indicated by
the red vertical dotted lines at positions 9, 16, and 23, that
correspond to 3 out of the 10 red components. Consequently,
these 3 components are associated with 3 shards, each of
which spans one additional symbol for a total of 4 symbols.
In general, each of the corresponding (J − ⌊J⌋)× 10k shards
spans one additional symbol for a total of ⌊J⌋ + 2 symbols.
Therefore, the percent of shards that span ⌊J⌋+ 2 symbols is
(J − ⌊J⌋) × 10k/10k which is equal to J − ⌊J⌋, that is, the
fractional part of J denoted by fr(J). Consequently, for any
ϵ (0 < ϵ < 1), it holds that

P (K = i) = pi =


1− fr(J) , for i = ⌊J⌋+ 1

fr(J) , for i = ⌊J⌋+ 2

0 , otherwise ,

(7)

where fr(x) denotes the fractional part of the real number x,

fr(x) ≜ x− ⌊x⌋ , ∀x ∈ R . (8)

Let us also consider the case where J < 1 and the example
shown in Figure 3 whereby the shard size is 0.3. Let us
consider the first 10 shards indicated between the black circles
with the first shard aligned with the first symbol. However,
given that in practice shards are not aligned with symbols,
their actual placement is indicated between the red circles, with
the first shard starting at position ϵ, as indicated by the green
circle. Owing to periodicity, it suffices to study the process
in the symbol interval [ϵ, 3 + ϵ]. The red integers indicate the
number of symbols spanned by the successive shards. We note
that 7 shards span 1 symbol and the remaining 3 shards span 2
symbols. Therefore, the pdf {pj} of the number of codewords
(symbols) K that an arbitrary entity (shard) spans is

P (K = i) = pi =

{
0.7 , for i = 1

0.3 , for i = 2 ,
(9)

which is also the result determined by (7).
Next, we consider the case where the shard size is 2.7

symbols, as shown in Figure 4. Owing to periodicity, it suffices
to study the process in the symbol interval [ϵ, 27 + ϵ]. The
red integers indicate the number of symbols spanned by the
successive shards. We note that 7 shards span 4 symbol and
the remaining 3 shards span 3 symbols. According to (7), the
pdf {pj} of the number of codewords (symbols) K that an
arbitrary entity (shard) spans is

P (K = i) = pi =

{
0.3 , for i = 3

0.7 , for i = 4 ,
(10)

which is also the result determined by (7).

B. Variable-Size Entities
We proceed to relax the assumption that all entities have

the same size, by considering entities of L different sizes,
es,1, es,2, · · · , es,L. Without loss of generality, we assume that
es,1 < es,2 < · · · < es,L. Subsequently, let {vj} denote the
corresponding pdf of the entity size, that is,

vj ≜ P (es = es,j) , for j = 1, 2, . . . , L , (11)
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Figure 4. Number of symbols that shards span. Fixed-size shards of size 2.7 symbols.

(a) Shard sequence: {0.3, 2.7, 0.3, 2.7, . . . }

(b) Shard sequence: {2.7, 0.3, 2.7, 0.3, . . . }

Figure 5. Number of symbols spanned by shards. Alternating fixed-size shards of sizes 0.3 and 2.7 symbols, with v1 = v2 = 0.5.

such that the average entity size E(es) is determined by

E(es) =

L∑
j=1

es,j vj . (12)

From (4), it follows that the shard size Jj corresponding
to entity es,j is determined by

Jj =
es,j
l s

for j = 1, 2, . . . , L . (13)

Consequently, the pdf of the shard size J is determined by

P (J = Jj) = vj , for j = 1, 2, . . . , L , (14)

such that the average shard size E(J) is determined by

E(J) =

L∑
j=1

Jj vj
(12)(13)

=
E(es)

l s
. (15)

The preceding discussion begs the following questions. Can
the probability density function {pj} that was theoretically
obtained in (7) for the case of a single fixed shared size
be extended for the case of variable-size entities? Does it
depend on the sequence according to which the variable-size
entities are stored? Next, we address these critical questions.
We shed light on these issues by considering the following
cases regarding the placement and the way according to which
the various shards are stored.

1) Segregated Shard Placement: According to this place-
ment, shards of any given size are stored successively. One
particular realization is to first store the shards of size J1,
followed by the shards of size J2, and so on. For a large
number of shards stored, from (7) and (14) we deduce that

P (K = i) = pi =


[1− fr(Jj)] vj , for i = ⌊Jj⌋+ 1

fr(Jj) vj , for i = ⌊Jj⌋+ 2

0 , otherwise,
for j = 1, 2, . . . , L . (16)

Let us consider the special case of a discrete bimodal
distribution for the shard size, that is, L = 2, and let us assume
that half of the shards have a size of 0.3 symbols and the
remaining half of the shards have a size of 2.7 symbols. In
this case we have J1 = 0.3, J2 = 2.7, and v1 = v2 = 0.5. For
the particular realization where first the shards of size 0.3 are
stored followed by the shards of size 2.7, (16) yields

P (K = i) = pi =



0.7× 0.5 = 0.35 , for i = 1

0.3× 0.5 = 0.15 , for i = 2

0.3× 0.5 = 0.15 , for i = 3

0.7× 0.5 = 0.35 , for i = 4

0 , otherwise.

(17)

2) Alternating Shard Placement: According to this place-
ment, shards of various sizes are stored interleaved by also
considering the vj values. One particular realization in the case
where vj = 1/L, for j = 1, 2, . . . , L, is to first store a shard
of size J1, followed by a shard of size J2, and so on. The
first cycle is completed by storing a shard of size JL and is
followed by a second cycle that begins by storing a shard of
size J1.

We proceed by investigating the special case considered in
Section III-B1 for the discrete bimodal distribution of the shard
size, with the sizes of 0.3 and 2.7 symbols. The alternating
placement of the shards corresponding to these two sizes lead
to two possible sequence realizations, as shown in Figure 5.

The realization for the alternating sequence {0.3, 2.7,
0.3, 2.7, . . .} is depicted in Figure 5(a). Owing to periodicity,
it suffices to study the process in the symbol interval [ϵ, 3+ ϵ].
The red integers indicate the number of symbols spaned by
the successive shards. We note that half of the shards span 1
symbol and the remaining half of the shards span 4 symbols.
Consequently, the pdf {pj} of the number of symbols K that
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(a) Shard of size J with y being the fractional part of J

(b) Random shard placement

Figure 6. Number of symbols that a randomly placed shard of size J spans.

an arbitrary shard spans is

P (K = i) = pi =

{
0.5 , for i = 1

0.5 , for i = 4 .
(18)

On the other hand, the realization for the alternating
sequence {2.7, 0.3, 2.7, 0.3, . . .} is depicted in Figure 5(b). In
this case, half of the shards span 3 symbols and the remaining
half of the shards span 2 symbols. Consequently, the pdf {pj}
of the number of symbols K that an arbitrary shard spans is

P (K = i) = pi =

{
0.5 , for i = 2

0.5 , for i = 3 .
(19)

We now observe that the pdf determined by (19) is different
from that determined by (18). Moreover, both of them, are
different from that determined by (17) for the case of a
segregated shard placement. Therefore, from the above, we
deduce that the pdf {pj} of the number of symbols K that an
arbitrary shard spans not only depends on the percentage of
the various shard sizes in a sequence, as specified in (14), but
also on their actual placement.

3) Random Shard Placement: According to this placement,
successive shard sizes are assumed to be independent and
identically distributed (i.i.d) according to the distribution given
in (14). Let us consider a randomly chosen shard. Let also J
denote its size, as shown in in Figure 6(a), and y its fractional
part, that is, y = J−⌊J⌋. A randomly placed such shard spans
either ⌊J⌋+1 or ⌊J⌋+2 symbols, as depicted by the red and the
blue shards shown in Figure 6(b), respectively. Let X denote
the distance between the starting position of the shard and the
left boundary z of the first symbol that the shard spans. Owing
to the random placement of the shard, the random variable X
is uniformly distributed between 0 and 1. Furthermore, when
X ≤ 1− y, the shard spans ⌊J⌋+ 1 symbols where as when
X > 1 − y, the shard spans ⌊J⌋ + 2 symbols. Consequently,
the probability that the shard spans ⌊J⌋+ 1 symbols is

P (K = ⌊J⌋+ 1) =

∫ 1−y

0

dx = 1− y , (20)

which implies that the probability that the shard spans ⌊J⌋+2
symbols is

P (K = ⌊J⌋+ 2) = 1− P (K = ⌊J⌋+ 1)
(20)
= y . (21)

Therefore, and given that y = J − ⌊J⌋ = fr(J), it holds that

P (K = i) = pi =


1− fr(J) , for i = ⌊J⌋+ 1

fr(J) , for i = ⌊J⌋+ 2

0 , otherwise .

(22)

From (22), and using (8), it follows that the mean number
E(K) of symbols that a shard of size J spans is

E(K) = (⌊J⌋+ 1)P (K = ⌊J⌋+ 1) + (⌊J⌋+ 2)P (K = ⌊J⌋+ 2)

= (⌊J⌋+ 1) [1− fr(J)] + (⌊J⌋+ 2) fr(J) = J + 1 .
(23)

From (14), (22), and (23), it follows that the pdf and the
average number of symbols K that an arbitrary shard spans
are determined by

P (K = i) = pi =


[1− fr(Jj)] vj , for i = ⌊Jj⌋+ 1

fr(Jj) vj , for i = ⌊Jj⌋+ 2

0 , otherwise,
for j = 1, 2, . . . , L , (24)

and

E(K) =

L∑
j=1

( Jj + 1) vj = E(J) + 1 . (25)

Remark 1: For two different shard-size values, say Jm ̸=
Jn, for which it holds that ⌊Jm⌋ = ⌊Jn⌋ = i, the corre-
sponding probabilities of the number of symbols K that these
shards span are determined additively, that is, P (K = i) =
[1 − fr(Jm)] vm + [1 − fr(Jn)] vm and P (K = i + 1) =
fr(Jm) vm+[1−fr(Jn)] vn. Similarly, if ⌊Jm⌋+1 = ⌊Jn⌋+
2 = i, then it holds that P (K = i) = fr(Jm) vm+fr(Jn) vn.

Remark 2: From (16) and (24), it follows that the pdfs of
the number of symbols K that an arbitrary shard spans in the
segregated and the random shard placement cases are the same.
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IV. DERIVATION OF EAFEL AND EAFEDL
The EAFEL and EAFEDL reliability metrics are derived

using the general methodology presented in [1-5], which we
briefly review here. At any point in time, the system is in one
of two modes: non-rebuild or rebuild mode. Note that part of
the non-rebuild mode is the normal mode of operation where
all devices are operational and all data in the system has the
original amount of redundancy. Upon device failures, a rebuild
process attempts to restore the lost data, which eventually leads
the system either to a Data Loss (DL) or back to the original
normal mode by restoring initial redundancy.

The EAFEL metric is obtained by Equation (16) of [6] as
follows:

EAFEL ≈ E(Y )

E(T ) ·NE
, (26)

that is, as the ratio of the expected number E(Y ) of lost
entities, normalized to the number NE of entities in the system,
to the expected duration E(T ), expressed in years, of a typical
interval of normal operation until the rebuild process of failed
devices is triggered, which is determined by Equation (14) of
[6]. The number NE of entities in the system is

NE ≈ U

E(es)

(1)
=

n

m
· l c

E(es)

(15)
=

n

m
· c

E(J) s
. (27)

Similarly to Equation (9) of [5], the EAFEDL is obtained
as the ratio of the expected amount E(Q̆) of lost user data at
the entity level, normalized to the amount U of user data, to
the expected duration of E(T ) expressed in years:

EAFEDL ≈ E(Q̆)

E(T ) · U
(1)
=

m E(Q̆)

n l c E(T )
. (28)

A. Reliability Analysis
The EAFEDL is evaluated in parallel with EAFEL using

the theoretical framework presented in [6]. The system is at
exposure level u (0 ≤ u ≤ r̃) when there are codewords that
have lost u symbols owing to device failures, but there are
no codewords that have lost more symbols. These codewords
are referred to as the most-exposed codewords. Transitions to
higher exposure levels are caused by device failures, whereas
transitions to lower ones are caused by successful rebuilds.
We denote by Cu the number of most-exposed codewords upon
entering exposure level u, (u ≥ 1). Upon the first device failure
it holds that

C1 = C , (29)

where C is determined by (2).
The reliability metrics of interest are derived using the

direct path approximation, which considers only transitions
from lower to higher exposure levels [1-5]. This implies that
each exposure level is entered only once. At any exposure level
u (u = d+ 1, . . . , r̃ − 1), data loss may occur during rebuild
owing to one or more unrecoverable failures, which is denoted
by the transition u → UF. Moreover, at exposure level r̃ − 1,
data loss occurs owing to a subsequent device failure, which
leads to the transition to exposure level r̃. Consequently, the
direct paths that lead to data loss are the following:
−−→
UFu : the direct path of successive transitions 1 → 2 →

· · · → u → UF, for u = d+ 1, . . . , r̃ − 1, and
−→
DF : the direct path of successive transitions 1 → 2 →

· · · → r̃ − 1 → r̃.

1) Entity Loss: We proceed to derive the number of lost
entities during rebuild. Let Y be the number of lost entities. Let
also YDF and YUFu denote the number of lost entities associated
with the direct paths

−→
DF and

−−→
UFu, respectively. Then, it holds

that [6, Equations (37), (38), (41)]

E(Y ) ≈ E(YDF) +

r̃−1∑
u=d+1

E(YUFu
) ≈ E(YDF) + E(YUF) ,

(30)
where YUF denotes the number of lost entities due to unrecov-
erable failures with its mean given by

E(YUF) ≈
r̃−1∑
u=1

E(YUFu
) . (31)

Proposition 1: For u = d+ 1, . . . , r̃ − 1, it holds that

E(YUFu
) ≈ C

E(J)

Pu

u− d

 u−1∏
j=1

Vj

 q̃u , (32)

where q̃u, which denotes the probability that an arbitrary entity
is lost, is determined by

q̃u =

L∑
j=1

q̃s,u

(es,j
l s

)
vj , (33)

with

q̃s,u(x) ≜ 1− [1− fr(x)] q fcor (⌊x⌋+1)
u − fr(x) q fcor (⌊x⌋+2)

u ,
(34)

and qu, which denotes the probability that a codeword that has
lost u symbols can be restored, is determined by

qu = 1−
m−u∑
j=r̃−u

(
m− u

j

)
P j
s (1− Ps)

m−u−j . (35)

It also holds that

E(YDF) ≈ C

E(J)

PDF

r̃ − d

r̃−1∏
j=1

Vj , (36)

where C is determined by (2), Ps is determined by (5), fr(x)
is determined by (8), E(J) is determined by (15), and Pu,
PDF, and Vj are determined by Equations (29), (23), and (60)
of [6], respectively.

Proof: Equation (32) is obtained in Appendix. Equation
(36) is obtained from (32) by setting u = r̃ and recognizing
that qr̃ = 0, q̃s,r̃(x) = 1, ∀x ∈ R, q̃r̃ = 1, and Pr̃ = PDF.

2) Effective Amount of Data Loss: We proceed to derive
the effective amount of lost user data during rebuild. Let Q̆ be
the amount of user data contained in the Y lost entities, which
is permanently lost, too. Let also Q̆DF and Q̆UFu

denote the
amount of lost user data associated with the direct paths

−→
DF

and
−−→
UFu, respectively.

Similarly to (30), it holds that

E(Q̆) ≈ E(Q̆DF) +

r̃−1∑
u=d+1

E(Q̆UFu
) ≈ E(Q̆DF) + E(Q̆UF) ,

(37)
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TABLE II. PARAMETER VALUES

Parameter Definition Values
n number of storage devices 64
c amount of data stored on each device 20 TB
s symbol (sector) size 512 B, 5 MB
λ−1 mean time to failure of a storage device 876,000 h
b rebuild bandwidth per device 100 MB/s
m symbols per codeword 16
l user-data symbols per codeword 13, 14, 15
d lazy rebuild threshold (0 ≤ d < m− l) 0, 1, 2
U amount of user data stored in the system 1.04 to 1.2 PB
µ−1 time to read an amount c of data at a rate

b from a storage device
55.5 h

where Q̆UF denotes the amount of user data lost due to
unrecoverable failures with its mean given by

E(Q̆UF) ≈
r̃−1∑
u=1

E(Q̆UFu) . (38)

Proposition 2: For u = d+ 1, . . . , r̃ − 1, it holds that

E(Q̆UFu) ≈ C

E(J)

Pu

u− d

 u−1∏
j=1

Vj

 q̆u , (39)

where the expected amount q̆u of lost user data of an arbitrary
entity is determined by

q̆u =

L∑
j=1

es,j q̃s,u

(es,j
l s

)
vj . (40)

It also holds that

E(Q̆DF) ≈ C

E(J)

PDF

r̃ − d

 r̃−1∏
j=1

Vj

 q̆r̃ , (41)

where C is determined by (2), E(J) is determined by (15),
q̃s,u(x) is determined by (34), and Pu, PDF, and Vj are deter-
mined by Equations (29), (23), and (60) of [6], respectively.

Proof: Equation (39) is obtained in Appendix. Equation
(41) is obtained from (39) by setting u = r̃ and recognizing
that Pr̃ = PDF. From (40), (12), it follows that q̆r̃ = E(es).

V. NUMERICAL RESULTS

Here, we assess the reliability of the clustered and declus-
tered placement schemes for the system and the parameter
values considered in [6], as listed in Table II. The system is
comprised of n = 64 devices (HDDs), it is protected by MDS
erasure codes with m = 16 and l = 13, 14, 15 and employs
a lazy rebuild scheme with a threshold d = 0, 1, and 2. Each
HDD stores an amount of c = 20 TB with a sector (symbol)
size s of 512 bytes. The parameter λ−1 is chosen to be equal
to 876, 000 h (100 years) that corresponds to an AFR of 1%.
Also, for an average reserved rebuild bandwidth b of 100 MB/s,
the mean rebuild time of a device is µ−1 = c/b = 55.5 h,
such that λ/µ = 6.3 × 10−5 ≪ 1, which is a condition that
ensures the accuracy of the reliability results obtained. Also,
the rebuild time distribution is deterministic and sector errors
are correlated with fcor ≈ 1.

First, we assess the reliability for the declustered placement
scheme (k = n = 64) for the MDS-coded configurations
considered in [6] with m = 16 and varying values of l and
d. These configurations are denoted by MDS(m,l,d) and the
corresponding results are shown in Figures 7 and 8 by solid
lines for d = 0 (no lazy rebuild employed), dashed lines

for d = 1 and dotted lines for d = 2. Six configurations
are considered: MDS(16,13,0), MDS(16,13,1), MDS(16,13,2),
MDS(16,14,0), MDS(16,14,1), and MDS(16,15,0), for each of
the declustered and clustered data placement schemes. In par-
ticular, for the clustered placement scheme, the MDS(16,15,0)
and MDS(16,14,0) configurations correspond to the RAID-5
and RAID-6 systems. The normalized EAFEL/λ reliability
metric corresponding to the declustered data placement scheme
is obtained from (26) and shown in Figure 7(a) for a fixed
entity size of es = 10 GB. In the interval [10−15, 10−12]
of practical importance for Pb, which is indicated between
the two vertical dashed lines, EAFEL is degraded by orders
of magnitude. Note that in the case of fixed-size entities,
the EAFEL and EAFEDL metrics are the same, because the
fraction of lost entities reflects the fraction of lost user data.

Next, we consider the case of a discrete bimodal distribu-
tion for the entity size, with es,1 = 1 MB, es,2 = 1 TB, and
probabilities v1 ≊ 0.99 and v2 ≊ 0.01 chosen such that the
average entity size E(es) is v1 es,1+v2 es,2 = 10 GB, the same
as the entity size es in the fixed-entity-size case considered
previously. From (15), it follows that the average shard size
E(J) remains the same, which, according to (27), implies that
the number NE of entities in the system remains the same as
in the fixed-entity-size case. The resulting EAFEL is shown in
Figure 7(b). Comparing the case of bimodal entity sizes with
that of fixed entity sizes, we observe that, for Pb < 10−14,
reliability remains essentially the same, whereas for higher
values of Pb, EAFEL is reduced. The reason for that is the
following. For very small values of Pb, there can be at most
one codeword lost, which results in one lost entity. Thus, the
fraction of lost entities is 1/NE in both cases. However, the
lost entity in the fixed case has a size of 10 GB which is
different from that of the lost entity in the bimodal case,
which is either 1 MB or 1 TB. In fact, the size of the lost
entity in the bimodal case is almost surely 1 TB, because the
probability of this event is v2 es,2/E(es) ≈ 1. Consequently,
the size of 1 TB of the lost entity in the bimodal case is 100
times larger than that of 10 GB of the entity lost in the fixed
case. This is reflected in Figure 7(c) that shows the EAFEDL
metric. Note that for Pb = 10−15, indicated by the left vertical
dashed line, EAFEDL is about 100 times larger than EAFEL.
Consequently, in the case of variable size entities, it is more
appropriate to consider the EAFEDL rather than the EAFEL
metric, because it captures the amount of lost user data.

Clearly, the vulnerability of entities to loss increases with
their size, which implies that lost entities are most likely
large rather than small. For the case of the bimodal entity
sizes, and for v2 ≊ 0.01, the number of the large 1-TB
entities is significantly smaller than that of the 1-MB entities.
We therefore deduce that the fraction of lost entities in the
bimodal case is smaller than that for the fixed case, and this is
more pronounced for larger values of Pb, as it is reflected
by the EAFEL metric. By contrast, EAFEDL is larger in
the bimodal case compared to the fixed case for the entire
range of bit error rates. We therefore deduce that increasing
the variability of the entity sizes, while keeping their average
constant, results in degraded EAFEDL, but improved EAFEL,
which is misleading. Clearly, the EAFEL metric that assesses
the fraction of lost entities does not account for their size and
the corresponding amount of lost user data and this led us to
introduce the EAFEDL metric.

By observing Figures 8(a), 8(b) 8(c) that show the reliabil-

8Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-172-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CTRQ 2024 : The Seventeenth International Conference on Communication Theory, Reliability, and Quality of Service



(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 7. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, declustered data placement.

(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 8. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, clustered data placement.

(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 9. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 5 MB, declustered data placement.

ity results for the case of clustered placement, we arrive to the
same conclusions. From the above discussion, it follows that
in the case of variable size entities, it is important to consider
the EAFEDL rather than the EAFEL metric.

The effect of symbol size on reliability is assessed by
considering the case of a large 5-MB symbol size. The
corresponding normalized EAFEL/λ and EAFEDL/λ relia-
bility metrics are shown in Figures 9 and 10. As expected,
comparing these results with those shown in Figures 7 and 8,
system reliability degrades compared to the case of a smaller
symbol size. This degradation applies to both the EAFEL and
EAFEDL reliability metrics.

Next, we assess the system reliability for the CERN file
size distribution [9] that was considered in [10] and listed in
Table III. For the file sizes uniformly distributed within the
bins, the mean is equal to 843 MB, the standard deviation

to 2.8 GB and the second moment to 8.9 GB2. It turns out
that the reliability metrics are extremely well approximated
by considering the file sizes es,j to be the bin mean sizes,
such that L = 38. In this case, the mean is equal to 843 MB,
the standard deviation to 2.8 GB and the second moment to
8.5 GB2. The corresponding reliability results are shown in
Figures 11 and 12. In all cases considered, the reliability level
achieved by the declustered data placement scheme is higher
than that of the clustered one.

VI. CONCLUSIONS

The Expected Annual Fraction of Entity Loss EAFEL
metric assesses the durability of data storage systems at an
entity, say file, object, or block level. Contrary to the Mean
Time to Data Loss (MTTDL) metric, EAFEL is affected by the
distribution of the number of codewords that entities span. The
distribution of this number was obtained analytically in closed
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(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 10. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 5 MB, clustered data placement.

form for the segregated and the random entity placement cases
as a function of the size of the entities and the frequency of
their occurrence. It was also demonstrated that, in certain cases
of deterministic entity placements of variable-size entities, this
distribution also depends on their actual placement.

To evaluate the durability of storage systems in the case
of variable-size entities, a new reliability metric was intro-
duced, the Expected Annual Fraction of Effective Data Loss
(EAFEDL), which assesses the fraction of lost user data
annually at the entity level. The EAFEL and the EAFEDL met-
rics were obtained analytically for erasure-coding redundancy
schemes and for the clustered, declustered, and symmetric
data placement schemes. Closed-form expressions capturing
the effect of unrecoverable latent errors and lazy rebuilds were
derived. We established that the reliability of storage systems is
adversely affected by the presence of latent errors and that the
declustered data placement scheme offers superior reliability.
It was demonstrated that an increased variability of entity
sizes results in improved EAFEL, but degraded EAFEDL. We
established that EAFEL and EAFEDL are adversely affected
by the symbol size. The analytical reliability results obtained
enable the identification of erasure-coded redundancy schemes
that ensure a desired level of reliability.

This work has the potential to be applied for further studies
of data storage reliability and it is particularly relevant for tape
storage reliability, which is a subject of further investigation.

APPENDIX

Proof of Propositions 1 and 2.
Upon entering exposure level u (u ≥ d+ 1), there are Cu

most-exposed codewords to be recovered. As a shard size of
ss corresponds to J symbols, an entity size es corresponds
to J codewords. Therefore, the average entity of size E(es)
determined by (12) corresponds to E(J) codewords, with
E(J) determined by (15). Consequently, for the number Eu

of entities to be recovered it holds that

Eu ≈ Cu

E(J)
, for u = d+ 1, . . . , r̃ − 1 . (42)

Let K (K ≥ 1) denote the number of codewords that an
entity of size es spans or, equivalently, the number of symbols
that a shard of size ss spans. The entity is lost if any of
these K codewords is permanently lost. Therefore, according
to Equation (98) of [4], the probability of recovering the entity
is q fcor K

u , where qu is the probability of restoring a codeword

TABLE III. CERN FILE SIZE DISTRIBUTION

Bins Bin Mean Size pdf
j es,j vj

1 1 B – 2 B 2 B 0.00004559
2 2 B – 5 B 4 B 0.00001275
3 5 B – 10 B 8 B 0.00005533
4 10 B – 22 B 16.0 B 0.00060401
5 22 B – 46 B 34.0 B 0.00018569
6 46 B – 100 B 73.0 B 0.00121244
7 100 B – 215 B 157.5 B 0.00093013
8 215 B – 464 B 339.5 B 0.00174431
9 464 B – 1 KB 732.0 B 0.00675513

10 1 KB – 2.154 KB 1.577 KB 0.00530524
11 2.154 KB – 4.642 KB 3.398 KB 0.00496005
12 4.642 KB – 10 KB 7.321 KB 0.00800625
13 10 KB – 21.544 KB 15.772 KB 0.01174913
14 21.544 KB – 46.416 KB 33.980 KB 0.01738480
15 46.416 KB – 100 KB 73.208 KB 0.01359001
16 100 KB – 215.443 KB 157.721 KB 0.01471745
17 215.443 KB – 464.159 KB 339.801 KB 0.02018806
18 464.159 KB – 1 MB 732.079 KB 0.02566358
19 1 MB – 2.154 MB 1.577 MB 0.06221012
20 2.154 MB – 4.642 MB 3.398 MB 0.07519022
21 4.642 MB – 10 MB 7.321 MB 0.07654035
22 10 MB – 21.544 MB 15.772 MB 0.09501620
23 21.544 MB – 46.416 MB 33.980 MB 0.07847651
24 46.416 MB – 100 MB 73.208 MB 0.07416942
25 100 MB – 215.443 MB 157.721 MB 0.09371673
26 215.443 MB – 464.159 MB 339.801 MB 0.08093624
27 464.159 MB – 1 GB 732.079 MB 0.05399279
28 1 GB – 2.154 GB 1.577 GB 0.04992384
29 2.154 GB – 4.642 GB 3.398 GB 0.08871583
30 4.642 GB – 10 GB 7.321 GB 0.03182476
31 10 GB – 21.544 GB 15.772 GB 0.00452804
32 21.544 GB – 46.416 GB 33.980 GB 0.00146156
33 46.416 GB – 100 GB 73.208 GB 0.00017060
34 100 GB – 215.443 GB 157.721 GB 0.00001375
35 215.443 GB – 464.159 GB 339.801 GB 0.00000206
36 464.159 GB – 1 TB 732.079 GB 0.00000069
37 1 TB – 2.154 TB 1.577 TB 0.00000033
38 2.154 TB – 4.310 TB 3.230 TB 0.00000001

and is determined by (35), and fcor accounts for the correlation
of latent errors and is determined by Equation (29) of [4].
Consequently, the probability q̃u|K of loss of an entity that
spans K codewords is determined by

q̃u|K = 1− q fcor K
u . (43)

Unconditioning (43) on K using (22) yields the probability
q̃s,u(J) that the entity (for the shard size J) is lost, where
q̃s,u(x) is determined by (34). Thus, using (4), the probability
q̃u(es) that the entity is lost is determined by

q̃u(es) = q̃s,u

( es
l s

)
. (44)

For this entity, the expected amount q̆u(es) of lost user data is

q̆u(es) = es q̃u(es) . (45)
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(a) Fixed File Size: es = 843 MB (b) CERN File Sizes; E(es) = 843 MB (c) CERN File Sizes; E(es) = 843 MB

Figure 11. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, declustered data placement.

(a) Fixed File Size: es = 843 MB (b) CERN File Sizes; E(es) = 843 MB (c) CERN File Sizes; E(es) = 843 MB

Figure 12. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, clustered data placement.

From (11), the probability q̃u that an arbitrary entity is lost is

q̃u =

L∑
j=1

q̃u(es,j) vj , (46)

which, using (44), yields (33).
Similarly, from (11), it follows that the expected amount

q̆u of lost user data of an arbitrary entity is determined by

q̆u =

L∑
j=1

q̆u(es,j) vj , (47)

which, using (44) and (45), yields (40).
Let YU be the number of lost entities and Q̆U the amount

of lost user data at exposure level u during the rebuild process
of the Cu codewords. Then it holds that,

E(YU|Cu) = Eu q̃u
(42)
≈ Cu

E(J)
q̃u , (48)

and E(Q̆U|Cu) = Eu q̆u
(42)
≈ Cu

E(J)
q̆u . (49)

Note that E(YU|Cu), as determined by (48), can be ob-
tained from Equation (71) of [6] by replacing the shard size J
with its average value E(J). Consequently, (32) and (36) are
obtained from the corresponding Equations (42) and (44) of
[6] by replacing the shard size J with its average value E(J).

Note also that E(Q̆U|Cu), as determined by (49), can be
obtained from (48) by replacing the probability q̃u that an
arbitrary entity is lost with its expected amount q̆u of lost user
data. Consequently, (39) is obtained from (32) by replacing q̃u
with q̆u.
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