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Abstract—For any organization to maintain a strong 

cyber security posture, it is important to test readiness 

and capabilities of cyber security teams and the tools that 

they use. In order to design and conduct experiments to 

assess performance of defensive cyber security teams and 

tools, it is crucial to either ensure the test range accurately 

represents the real environment in which the defensive 

teams or tools normally would operate or to ensure that 

testing is conducted across a suite of test ranges that 

provides comprehensive coverage of the potential real-life 

network environments.  In this paper, we present a novel 

network complexity scoring framework that is designed 

to capture the set of the network attributes that have the 

principal impact on the performance of defenders and 

defensive tools and to differentiate networks according to 

defensive difficulty.   
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I.  INTRODUCTION 

No longer a newly emerging issue, cyber security is a 

continuing and rapidly growing challenge, facing all 

organizations, whether small, large, public, or private.  Thus, 

added to conventional risk management, there is an 

imperative to manage cyber risk by a combination of building 

and maintaining a strong cyber security readiness posture, as 

well as other approaches, such as cyber insurance.   Cyber 

security readiness depends on knowledge skills, regular 

training of cyber security defenders, in addition to the 

organization’s information technology architecture, cyber 

security policies, enforcement of these policies, defensive 

technologies, and many other contributing elements of cyber 

readiness.  To train cyber security staff and develop defensive 

skills, many organizations have initiated regular red-blue 

challenges, with real or automated “red” cyber adversaries 

attacking a virtual organization that “blue” cyber defenders 

are tasked to defend, on cyber ranges that are intended to 

emulate the organization’s real networks.  In addition, cyber 

defensive technology companies validate and demonstrate 

their tools, similarly, on cyber ranges.  In either of these 

emerging applications, it is critical to develop a notion of the 

complexity of the network on which the red-blue gaming or 

performance testing is conducted in order to understand cyber 

defensive performance.   

Many notions of complexity have been explored 

heretofore and Wikipedia, [11], has a nice overview of 

several of these, but an immediate observation from 

examining the Wikipedia page is that there is great variation 

in the definition across applications.  Most specific previous 

descriptions of complexity and research in modeling network 

complexity, such as the research presented in [2][3][7], was 

primarily focused in other application areas either non-

specific to or other than cyber security, so that work could not 

be directly leveraged for our purposes.  In addition, a number 

of the earlier efforts are primarily qualitative in nature, such 

as [1], and therefore did not align with our objectives for this 

research.  Some previous efforts that were closer to the 

computer network application area, like [4], either were 

focused on a different objectives or overly simplified the 

problem, employing tabular approaches to compute network 

complexity scores that were too limited to capture subtleties 

of connectivity between nodes and only allowed a linear type 

of model, so these methods were insufficient for our 

purposes.  Other methods focused only on a narrow sub-set 

of aspects of complexity that impact defensive difficulty, 

ignoring many other important factors, so, again, the 

limitations of other approaches forced us to explore a new 

technique to model network complexity.   However, despite 

the various shortcoming enumerated above, many of these 

antecedent approaches have influenced our efforts.    

This paper introduces a hybrid complexity modeling 

approach that treats the network in a multimodal fashion, 

encapsulating certain parameter like numbers or operating 

systems or number of device types hyper edges of a 

hypergraph, abstracting them as attributes of the associated 

subnets or the network itself, but maintaining flexibility to 

model more complicated network properties.  Many global 

network and subnet-specific single-parameter attributes are 

captured with a tabular method.  Concepts of complexity that 

are distributed in nature, related to connectivity, or describe 

the balance of a specific property across the network are 
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analyzed using information theoretic and related approaches 

that better address those concepts.    For example, certain 

aspects of subnet and router topology are better described 

with information theoretic model and corresponding 

complexity analysis.   

To demonstrate the efficacy and overall utility of our 

complexity model, we developed numerous networks, some 

devised on paper and other actual cyber range networks, each 

emphasizing different network attributes.  By analyzing this 

collection of varied networks, we were able to explore the 

model behaviors as we vary scoring parameters and confirm 

that the model parameters and network properties interact in 

the way that the algorithms were designed.  As one of the 

scored networks, we also examine a virtual, large financial 

network used for cyber range training of cyber security 

defenders. For the large financial network case, we developed 

parsing routines to collect network attribute values from 

configuration files for the cyber range, demonstrating the 

potential for automating the complexity computations.  This 

exercise directly supports a future in which the input 

accumulation, analysis, and complexity scoring can be 

accomplished by automated tools.   

The remainder of this manuscript describes the proposed 

network complexity model in greater detail and is organized 

as follows.  Section II describes the technical details of our 

model and how it describes the complexity of a network that 

pertains to cyber security defensive difficulty. Section III 

describes the performance and provides results of applying 

our network complexity model to multiple networks that 

possess sufficient variety of the values of the attributes that 

we deemed crucial to network complexity. Section V offers 

our conclusions. Finally, the acknowledgment and reference 

sections complete the manuscript. 

II. TECHNICAL DETAILS 

We begin this section by describing the fundamental 
design of the network complexity model and the notations that 
we will be using throughout the manuscript. The primary 
purpose of the network complexity model is to distinguish 
between different networks in a manner that agrees with 
intuitive notions of cyber defensive difficulty.  As mentioned 
previously, we have adopted a hybrid approach that includes 
both tabular and information theoretic components to 
incorporate contributions from both global single-value 
attributes and distributed attributes, such as connectivity.  
Thus, the model is designed with the flexibility to 
accommodate both linear, weighted combinations of attributes 
and as well as more complicated functions to describe 
attribute contributions.   

Attributes were selected based on several primary 
premises. We first considered attributes that describe the scale 
of the network, including numbers of devices and numbers of 
accounts.   Then, we incorporated attributes that capture 
complexity in the structure or topology of the network, 
including organization of subnetworks, router connectivity, 
multiple security zones, and other similar concepts.  Finally, 

we included attributes that directly impact the level of 
defensive effort or increase the attack surface.   

Table 1, below, enumerates the attributes that comprise 
our network complexity model.  It contains a list of network 
complexity attributes that contribute to the network 
complexity algorithm and a rating for the differentiation 
enabled by that attribute.  In addition, table 1 provides a 
differentiation rating for that attribute’s relative contribution 
to the network complexity algorithm.    

 
TABLE I.  NETWORK COMPLEXITY ATTRIBUTES 
 

Attribute Differentiation 

User accounts 1 

Machines 1 

Operating System 2 

Device Types 2 

Firewalls 1 

Protocols 2 

Administrative Domains 2 

Key Business Systems 1 

External Interfaces 1 

Router Connectivity 2 

Subnet Size Distribution 1 

 

The differentiation ratings have 2 values, 1 or 2, and indicate 

the relative differentiation provided by that attribute.   Thus, 

attributes with differentiation rating level 1 contribute to the 

complexity score in a way that distinguishes between 

network to a greater degree than level 2 attributes.  There are 

numerous other potential attributes that were deemed of less 

significance and would provide level 3 or lower of 

differentiation, and therefore not critical to include in this 

stage of the network complexity algorithm design.  

There is no standard accepted definition of cyber 

defensive network complexity, so our fundamental goal was 

simply to design an algorithm that best suits our intended 

applications, in this case the evaluation of cyber defensive 

performance of cyber security teams, operators, or tools 

operating on a network, measured against the complexity of 

the network.  As such, attribute contribution to network cyber 

complexity was designed to match notions of cyber defensive 

impact.   To accomplish this, multiple iterations of functions 

were explored to capture the contribution of each attribute. 

Primarily, three types of functions were utilized to represent 

complexity attribute contributions.  For some attributes, a 

linear, tabular approach best was able to achieve the desired 

contribution.  In other cases, non-linear functions featuring 

the product of 2 attributes was most suited to capture the 

complexity.  For yet other attributes, an information theoretic 

approach is used to map a custom probability function analog 

to information content, which is used to represent 

complexity.  In most cases, a log scale, either base 2 or 10, is 

used to transform raw attribute quantities of very different 

orders of magnitude to similar magnitude ranges and yet 

retain the desired differentiation.   

2Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems



One of our sub-goals is to assess the structural or 

topological complexity of a modern day computer network as 

an element of our overall complexity model.  The density of 

edges or connectivity are concepts that come to mind.  They 

are related to measures of the importance or centrality of the 

nodes.  Centrality measures are commonly used for this 

purpose, as described in [9] and [5].  Degree centrality, 

Bonacich centrality, closeness or path centrality, 

betweenness centrality, eigenvector centrality are well 

known examples.  The degree of nodes in a network is useful 

to describe connectivity but that may not correspond to 

defensive complexity.  Towards that end, we developed 

several new concepts for complexity, including hop 

complexity, subnet complexity, and others.   

To measure hop complexity, we adapted an approach 

utilized in [8].  First, we specify that the hop count 

corresponds to the number of hops for traffic to traverse the 

shortest path of the network between a particular vertex and 

each other vertex in the network.  In this complexity sub-

model, the aforementioned functional is defined as: 

 

 (1) 

 

The router, ri , is one of Nr routers in the network.  The 

parameter beta, ,is selected empirically to help differentiate 

between multiple networks based on hop complexity.  The 

functions Sm(ri), in the exponent, enumerate the number of 

routers that can be reached within m hops of router ri and 

scale each such hop value tally by a corresponding combining 

coefficient, cm. Utilizing the gf function we can construct a 

related function p for router ri as follows:  

 

  (2) 

Thus, for beta greater than one, the value will be greater 

for a router which has more routers that can be reached within 

a certain hop count, all else remaining the same, and we will 

use that function p to compute information content [10] of the 

network, based on the hop complexity, as follows:  

 (3) 

We observe that the protocol complexity is a 

complementary attribute to hop complexity and measures the 

number of types of traffic traversing the network, so we 

combine these two attributes in one measure by forming the 

product.  Our intuition suggests that this contribution element 

is potentially an analog for flow complexity.    

The subnet complexity is computed in a similar manner 

except that the probability function is defined as a simpler 

and more intuitive ratio of the number of nodes in the subnet 

divided by the total number of nodes in the network.   

   (4) 

The information content or associated complexity 

computation is the identical formula as previously used to 

compute the router connectivity.   

 (5)  

Other attributes contribute to our complexity model 

through straightforward, tabular functions.  For example, this 

approach is used to capture the complexity associated with 

the diversity of technology deployed on the network.  The 

distribution of operating systems and device types across the 

subnets are scaled and summed.  A slightly more complicated 

contribution results from pairs of attributes, such as 

administrative domains and user accounts, that contribute as 

a scaled product of the direct values.     

Employing the approaches described above, to capture 

complexity contributions from all the attributes enumerated 

in table 1, we have developed a network complexity model 

that provides strong differentiation between networks to 

enhance scoring of cyber range defensive and offensive 

testing and war-gaming.  In the next section, we will discuss 

the results of applying the model to a variety of networks of 

different size, structure, and technological diversity.   

III. RESULTS 

To explore the ability of the model to distinguish key 

differences in network structure or other attributes that 

impact network complexity, we developed more than 10 

networks that we modeled and analyzed.   The largest 

network, named the large financial network (LFN) has the 

largest size, most intricate structure, and generally the high 

degree of all contributing complexity factors.  Following that 

are three similar networks with 8 routers but differing 

distributions of machines across subnets and router nodes.  

Clearly demonstrated throughout the results in this section, 

the scoring model was designed such that evenly distributed 

networks contribute the most defensive complexity, whereas 

the networks with the greatest degree of clustering of 

machines within fewer subnets pose slightly less defensive 

complexity.  Finally, there are multiple 5 node and 4 node 

networks arranged with three different connection graphs: all 

the routers in a line, all the routers connected in a ring, and 

full connectivity between all the routers.  These example 

networks demonstrate that the networks which require the 

greatest number of hops for traffic to traverse the network 

tend to incur a higher score in our cyber defensive complexity 

model, which matches the design objectives.  

In this section, we explore the attribute contributions to 

the overall cyber network complexity score for each of the 

test networks.  Figure 1 illustrates the hop complexity sub-

score generated by our model, measured for each of the test 

networks.    
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Figure 1: This scatter graph plots the complexity scores, assigned to 

the selected networks based on the network topology, as measured 

by hop counts for the various routers, versus the parameter beta.  

Note that the value 1.2 provides the greatest differentiability.  

Since the hop complexity, shown in figure 1, captures 

topological and structural complexity of the network, 

captured through a measure of router interconnectivity, we 

decided to combine hope complexity with the complexity 

resulting from the number of protocols that must be supported 

on that very network with the described topology.  Thus, 

figure 2 illustrates the product of hop complexity with 

protocol complexity 

 

Figure 2:  This scatter graph plots the complexity derived from the 

hop complexity and the protocol traffic traversing the network.  It is 

plotted versus the parameter beta. Note that a beta value of 

approximately 1.2 provides the maximum differentiability.  

As described in the technical details section, the router 

hop and network protocol derived complexity measures scale 

with the degree of asymmetry in the distribution of hop 

complexity across the network routers as well as directly with 

the number of protocols traversing the network.  This 

relationship is dependent on the parameter beta and as we can 

see the value 1.2 seems to maximize the differentiability of 

this complexity measure.   

In figures 3 and 4, we can see the influence of the 

distribution of device types and operating systems in the 

network.  These complexity measures are directly linked to 

numbers of device types and operating systems, as well as  

the subnet distribution complexity for these quantities. 

 

Figure 3: This bar chart shows how subnet and device type 

complexity impact overall complexity scores for each of the 

different networks.    

 

 

 
 

Figure 4: This chart depicts the complexity due to operating systems 

deployed on the various subnetworks of the network.   

The fifth figure presents the complexity associated with 

firewalls and external interfaces in the network. The subnet 

complexity sub-score generated by our cyber defensive 

complexity model is illustrated in figure 6. Notice how the 
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subnet complexity scores scale with the distribution of 

subnets and machines across the various test networks.   

 

 

Figure 5:  This bar chart shows the complexity derived from 

firewalls and external interfaces of the overall network.   

For example, we see that FPJ 8N NW2 incurs the highest 

complexity score since it has the most nodes by a significant 

factor, and those nodes are distributed fairly evenly.  Then, 

FPJ 8N NW1 has the second highest complexity sub-score 

because it has significantly fewer nodes, but those nodes are 

arranged evenly.  Finally, FPJ 8N NW has the lowest sub-

score, because, although it contains the same number of  

 

 

Figure 6: This plot shows scores generated by the subnet functional 

designed to measure complexity due to topology and machine 

distribution, based on an information theoretic approach.  

nodes as NW1, those nodes are distributed asymmetrically 

across the subnets of the network, reducing the complexity 

slightly relative to NW1.   

 

Figure 7: This scatter plot captures the total complexity of the 

network, summing each of the contributing elements, including 

hops, protocols, device types, operating systems, administrative 

domains, user accounts, administrative domains, subnet 

distribution, and numbers of machines. 

Finally, in figure 7, we see a scatter plot showing the overall 

cyber defensive complexity score computed by superposition 

of all the complexity model attribute sub-scores.  Since the 

overall scoring model retains the parameter beta, utilized in 

the hop and protocol complexity sub-model, the overall score 

is also a function of beta.  However, as discussed earlier, a 

value of approximately 1.2 produced the greatest 

differentiation between the various test networks.   Thus, the 

overall complexity score would be approximately 6.11 for the 

LFN network, 5.45 for the FPJ 8N NW2 network, 5.24 for 

the FPJ 8N NW1 network, 5.19 for the FPJ 8N NW network, 

4.85 for the 5 node line network, 4.81 for the 5 node ring 

network, 4.81 for the 5 node fully connected network, and 

4.68 for the 4 node networks.    

IV. CONCLUSION 

In this research, we have explored the efficacy of using a 
hybrid approach involving network theory, information 
theory, and tabular functions to model the cyber defensive 
complexity of various test networks.   The results presented in 
this paper demonstrate that our model is able to differentiate 
between a selection of networks with varying attributes.   
Future work will involve incorporation of new attributes, such 
as supported applications, inclusion of cloud services, and 
other features that will enhance the model.   
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