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Abstract—Wireless communications have traditionally relied on
the content of the message for authenticating the sender. In
protocols relying on the IEEE 802.15.4 standard, such as Zigbee,
it is possible for an attacker with the right knowledge and tools
to emit crafted packets that will be interpreted by the receiver
as being properly identified and thus, inject arbitrary data. One
way of protecting oneself from this type of attack is the use of
radio frequency fingerprinting through a technique called Radio
Frequency Distinct Native Attribute (RF-DNA). This approach
has been demonstrated to be efficient for wireless devices of
different models but still lacks accuracy when trying to identify a
rogue device of the same model as the lawful emitter. This is even
more of a challenge when attempting to conduct the fingerprinting
using a low-cost yet flexible software defined radio. To address
this challenge, the current work-in-progress attempts to train a
convolutional neural network in order to be able to discriminate
a legitimate device from a rogue device. Initial results show
promising performance but a larger dataset of devices is required
to be conclusive, which will be the focus of future work.
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I. INTRODUCTION

A tide of electronic devices traditionally used in isolated
small-scale hard-lined networks were augmented with full
networking capabilities in the recent years. This mass of newly
connected devices comprises industrial controllers, Internet
Protocol (IP) cameras, sensors, actuators, and many others
collectively forming what is called the Internet of Things (IoT).
It is known for some of those devices to rely on wireless
communications to operate. Protocols using the standards IEEE
802.15.4 [1] and IEEE 802.11 [2] are popular choices in the
IoT [3].

Wireless communications can be used as an entry point
to a private and/or restricted network where a malicious actor
may interfere with the proper functioning of a system from
a distant location. Moreover, attacks have been demonstrated
(e.g., [4], [5]) with potential impacts including denial-of-
service (DoS), impersonation attacks and Man-in-the-Middle
(MitM) amongst others. Implementations of security measures
(e.g., Wired Equivalent Privacy (WEP), Wireless Protected
Access (WPA) and WPA2 [6]) usually rely on network layers
at or above the data-link (MAC) layer of the open systems

interconnection (OSI) model [7]. Those layers have been
known to be susceptible to manipulations coming from an
attacker, sometimes requiring only open-source tools (e.g.,
Aircrack-ng [8] or KillerBee [9] for IEEE 802.11 and IEEE
802.15.4 respectively) with commercial-off-the-shelf (COTS)
wireless adapters that behave as rogue devices. A rogue device
can be defined as an illegitimate device that behaves outside
of what the communication protocol normally states in order
to inject arbitrary traffic into a wireless network and forge data
packets to contain misleading data intended to interfere with
other devices or the communication itself.

A countermeasure to this problem is to implement security,
and more pointedly, authentication at the physical (PHY)
layer itself of the OSI model. It has been demonstrated that
devices generating radio-signals involuntarily alter the desired
theoretical signal due to the physical limitations of the device
characteristics that are not part of the communication protocol
but rather are due to the electronics of the device itself [10].
Those imperfections are usually within the normal threshold
tolerated by a given protocol and do not interfere with the
communication itself and constitute the RF fingerprints of a
device. The RF fingerprints can be used to authenticate the
emitter of a message as they differ across devices.

Also, forging the RF fingerprints of a victim is a challenge
in itself for an attacker. Indeed, it requires identifying and
mimicking those fingerprints. This in itself is not a trivial
problem as the attacking device would also need to prevent its
own RF fingerprints from leaking into the resulting signal. This
adds a layer of protection that relies on an intrinsic property of
the emitter itself (what it is) rather than a preshared secret key
(what is known) or an authentication token (what is possessed).
As those informations have been known to be stolen, cracked
or guessed, they may come short for critical infrastructure
protection. Thus, the approach is complementary to the other
methods and can strengthen the confidence in the authenticity
of the identity of an emitter.

Ramsey et al. [11] used an approach called the Radio
Frequency Distinct Native Attribute (RF-DNA) to the Zig-
bee protocol which uses the IEEE 802.15.4 standard. This
approach relies on calculating statistics (i.e., variance (σ2),
skewness (γ) and kurtosis (κ) on physical characteristics
(instantaneous phase (φi), frequency (fi) and amplitude (ai))
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of subregions of an incoming signal.

Additionally, Ramsey et al. [11] demonstrated that it is
possible to use a COTS software-defined radio (SDR) to
obtain satisfactory results for discriminating an impersonator
from a legitimate device. A SDR is a device capable of
acquiring a radio-signal in a wide range of frequencies and
which delegates the processing of this signal to a software
implementation rather than using specialized hardware to do
so. This allows a user to have access to a wide range of
protocols and frequencies using a single device. It requires
a software implementation of the protocol stack and that
the communication occurs within the SDR frequency range
and bandwidth. SDR vary greatly in terms of price range
but some solutions, such as the USRP B200mini from Ettus
Research [12] are fairly low-cost when compared to high-end
lab equipment and have a smaller size factor. One concern of
using a SDR for acquiring the signal to extract its RF-DNA
is to ensure sufficient bandwidth can be achieved to capture
the hardware-specific variations. The results obtained in [11]
supported that a low-cost SDR, such as the B200mini, was
enough to discriminate devices based on the comparison of
their RF-DNA. The true verification rate (TVR) (i.e., how often
a packet was accepted when it came from a legitimate device)
neared 100% while the rogue acceptance rate (RAR) (i.e., how
often the spoofing devices were accepted as legitimate ones)
dropped to 0% for devices that were of different models. To
maintain a TVR of >90% in the case where the devices were
of the same model, the RAR ranged between 32% and 54%.

The current work seeks to lower the RAR while main-
taining or increasing the TVR in the event of a rogue device
using the same model as a legitimate one to communicate
with another station using the IEEE 802.15.4 standard. The
proposed approach seeks to improve the performance of the
decision model from [11] that combined a multiple discrim-
inant analysis/maximum likelihood (MDA/ML) process for
dimensionality reduction and Bayesian decision criteria for
classification. Instead, it is proposed to train a convolutional
neural network (CNN) [13], [14] to recognize the devices
without requiring that the dimensionality be reduced.

A CNN is a machine learning model that works by attempt-
ing to train a set of filters used for convolutions on the input
signal to highlight the most discriminant features that can be
spatially distributed in that signal. The response to the input
signal of each filter at each location across the signal is the
output of a convolutional layer (CL). This output is then passed
to a subsampling layer which is responsible of reducing the
number of outputs by pooling a given region together using a
given function (e.g., maximum value or the average of values).
One or more fully-connected layer make for the last layers of
network and are responsible for the classification itself.

CNNs have been demonstrated to be robust to data transla-
tion and are able to take into account a level of spatial distri-
bution of a dataset [15], [16], [17], [18]. This may constitute
an advantage in the context of RF fingerprinting as signals are
distributed in time and slight spatial translations may occur in
the captured data. The ongoing work and preliminary results
aim at validating the use of CNN in that context.

The next section presents the methodology used for ac-
quiring RF signals for analysis and the extraction of features
following the RF-DNA methodology and the structure of

the CNN used for analysis. Section III describes preliminary
results obtained in the ongoing work. Section IV summarizes
the preliminary results, discuss implications and research con-
cerns. Finally, section V presents future work and next steps.

II. METHODOLOGY

The emitting devices were 4 Atmel RZUSBStick, or RZ for
short. This device is capable of sending Zigbee packets con-
taining arbitrary data and is also able to communicate through
the Zigbee protocol [9]. Arbitrary data was sent periodically at
a frequency of 40 packets/sec on channel 26 (i.e., 2.480 GHz).
The acquisition was conducted through a USRP B200mini
from Ettus Research at a center frequency of 2.480 GHz with
a bandwidth of 20 MHz. The data collection was conducted
in a RF shielded box to prevent outside interferences with
the measurements. Each device was placed at the exact same
location for each data collection.

The raw signal from the IEEE 802.15.4 preambles of each
communication was extracted. Following the work done by
Ramsey et al. [11], the preambles were split into 32 equal
regions, each comprising 80 samples per region plus the full
preamble itself of 2560 samples, for a total of 33 subregions
per preamble captured. For each sample, the instantaneous
phase (φi), instantaneous frequency (fi) and instantaneous
amplitude (ai) were evaluated. Their variance (σ2), skewness
(γ) and kurtosis (κ) were calculated for each subregion. This
amounted to a total of 297 features per preamble composed
of 33 subregions × 3 RF characteristics × 3 statistics. The
number of preambles collected is presented in Table I.

TABLE I. SAMPLES PER DEVICE.

RZUSBStick1 RZUSBStick2 RZUSBStick3 RZUSBStick4

Preambles 7148 7094 6832 7086

Extracted features were standardized following (1). Stan-
dardization is required to constrain values of features within a
comparable range.

zi =
xi − x

s2
(1)

zi is the standardized score, xi the input value, x the mean
and s2 the variance. To apply the standardization, the features
are structured along a 3 × 33 × 3 matrix as presented in (2)
for each collected preamble.
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The values s2 and x are calculated along all collected
preambles for the 33 subregions. The result is two matrices
containing the s2 and x values for the 33 subregions across
all collected preambles. The resulting matrix is shown in (3)
for x. s2 follows the same structure.σ2

φ σ2
f σ2

a

γφ γf γa
κφ κf κa

 (3)
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The set of features for each of the 33 subregions per pream-
ble was standardized according to its RF characteristics and
statistics.

A. Convolutional Neural Network

The 297 standardized features were passed on to a CNN
constituted of 2 CL with 32 3 × 1 filters and 64 3 × 1
filters. Each CL output was connected to a subsampling layer
(3× 1 average pooling function with 2-step strides). The last
subsampling layer was followed by a fully connected layer
of 1024 neurons trained with a 0.75 dropout chance before
connecting to the output layer. Optimization was conducted
using the adaptive moment estimation (ADAM) optimizer with
a learning rate of 0.01. Batch size was set at 128 preambles per
mini-batch. The implemented model is presented in Figure 1.

III. PRELIMINARY RESULTS

Collected results were analyzed according to two scenarios.
Scenario 1 explored training a CNN to discriminate between
the 4 known devices. This scenario is meant to demonstrate
the general performance of a CNN in the context of RF-DNA.
Scenario 2 seeks to replicate the case where an algorithm is
trained to be specialized in recognizing if a given preamble
belongs to a specific device.

A. Scenario 1: Differentiation

The collected preambles were randomized. The full dataset
was divided with 80% used for training, 10% for validation and
10% for testing. The output layer has 4 classes, one for each
known device. The resulting confusion matrix is reported in
Table II. The calculated accuracy is 95.86%.

TABLE II. CONFUSION MATRIX FOR INTERDEVICE
CLASSIFICATION.

Input Labels

RZ1 RZ2 RZ3 RZ4

Predicted

RZ1 0.947 0.006 0.002 0.037

RZ2 0.013 0.951 0.018 0.007

RZ3 0.002 0.031 0.975 0.004

RZ4 0.038 0.012 0.006 0.953

The high accuracy obtained for this task demonstrates
that CNNs are especially well adapted for ingesting RF-DNA
inputs for device classification. Work is still in progress to
establish a baseline based on current literature to achieve
a comparison between the proposed approach and the one
described in [11]. However, the represented case in Scenario 1
is valid only if an algorithm can be trained on all known
devices and is expected to find the correct match in a pool of
devices that was used during training. In practice, this method
is ineffective in the context of rogue device identification as the
attacking device is usually not known before the attack occurs.
This nullifies the chances that the model can be trained with all
expected devices in a certain area. This problem is addressed
in the next scenario.

B. Scenario 2: One vs All

This scenario aims at filling the gap from the previous one
where a model was trained to identify if a preamble originates
from one unique device or not. 80% of the dataset was used
for training, 10% for validation and 10% for testing. In the
first phase, all preambles from one device were considered as
being ”Good” (approx. 25% of the total dataset) and preambles
from the remaining devices were considered as ”Bad” (approx.
75% of the total dataset), generating an output layer of 2
classes. During training, labels were balanced according to the
proportion of the dataset they represented to compensate for
the unbalanced dataset. Results are reported in Table III.

TABLE III. CONFUSION MATRIX FOR ONE-VS-OTHERS
CLASSIFICATION.

Others RZ1 Others RZ2

Others 0.986 0.063 Others 0.991 0.080

RZ1 0.013 0.937 RZ2 0.009 0.920

Acc = 0.973 Acc = 0.972

Others RZ3 Others RZ4

Others 0.994 0.046 Others 0.977 0.046

RZ3 0.006 0.954 RZ4 0.023 0.954

Acc = 0.984 Acc = 0.987

As the training set contained samples from each device, it
has been postulated that the predictor would be confused if a
new device was introduced and requested predictive measures,
showing proof of overfitting. To test this hypothesis, a test was
conducted by training the expert systems on the dataset but
withholding all data from RZ4. The test dataset was evaluated
using inputs only from RZ4. If the system did not overfit,
attribution would show nearly only others attribution. During
a subsequent phase of the ongoing work, the results will be
compiled for test cases where RZ1, RZ2 or RZ3 is excluded
instead of RZ4. Results are presented in Table IV.

TABLE IV. CONFUSION MATRIX FOR ONE-VS-OTHERS WITH A
NEW DEVICE (RZ4) EXCLUDED FROM TRAINING SET.

RZ4 RZ4

RZ4 0.168 RZ4 0.878

RZ1 0.832 RZ2 0.122

Acc = 0.168 Acc = 0.878

RZ4

RZ4 0.955

RZ3 0.045

Acc = 0.955

As the results show, the trained model is achieving an
accuracy of 95.5% for RZ3 but lower than 87.8% for RZ2 and
is very poor (16.8%) for RZ1. The results from introducing a
new device during the test phase demonstrate that the model
has trouble differentiating devices that may have a more similar
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Figure 1. CNN structure.

RF-DNA such as RZ1 and RZ4. At this stage, more data from
more devices is required before a conclusion can be achieved.

IV. DISCUSSION

Firstly, when it comes to differentiating between known
devices onto which data exists and can be used for training,
results show that CNN with standardization from features
presented in [11] are effective, achieving a 95% accuracy.
Moreover, results have shown that an approach of training a
system to recognize itself from other systems performs well
in the case where all other systems are known.

However, when exposed to devices which were never part
of the learning process, results become unreliable. It is likely
that to perform better, the model would need to train on a
dataset with more devices. Also, the problem defined in this
research specifically targets devices of the same model and
manufacturer. It is possible that it is sufficient for categorizing
devices from different manufacturers and future work will
investigate this.

Also, Table IV shows that some devices may be more alike
than others. For instance, it is possible that RZ1 may be more
alike to RZ4 and thus, is harder to discriminate when the latter
is excluded from the learning process but used only for testing.
This supports the hypothesis that more devices are needed for
a better predictive model.

Also, when attempting to conduct the learning process on
different combinations of RF characteristics, it was noted that
statistics on the amplitude lead to better predictive results. This
differs from Ramsey et al. [11] whom instead pointed to phase
and frequency as being the most useful for categorization.
More data collection is required to determine if this could
be due to environmental conditions that might have altered the
transmissions in-between acquisition campaigns.

V. CONCLUSION

This work-in-progress has demonstrated the potential of
using CNN in the context of RF fingerprinting while using
affordable and flexible SDRs. Also, RF-DNA provides promis-
ing results when used to provide features to a CNN. More
work will be carried on to tweak the hyperparameters of the
model to achieve better results and collect more preambles
from new devices. Also, baseline measures based on the state-
of-the-art are being generated and will be used for assessing
the success of the current approach. New features based on the
scientific literature need to be identified and extracted from
the RF signal. This would allow to have more elements on
which devices from the same manufacturer and of the same
model could be discriminated. Finally, ongoing work focuses
on trying to compute the RF-DNA in real time on an embedded
system in order to optimize the signal processing component.

This would ensure a real-time computation and minimize the
impact of the implementation of this method on a wireless
communication itself.
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