
Mitigation Factors for Multi-domain Resilient Networked Distributed Tessellation 
Communications  

Steve Chan  
Decision Engineering Analysis Laboratory, VT 

San Diego, USA 
e-mail: schan@dengineering.org 

Abstract—Numerous technical calls have converged upon an 
overarching goal of Resilient Networked Distributed Tessellation 
Communications (RNDTC) so as to provide long-range 
communications through the notion of “tessellation” antennas, 
which are comprised of spatially distributed low Size, Weight, 
Power, and Cost (SWaP-C) transceiver “polygons.” At its core, 
this approach supplants higher powered amplifiers and large 
directional antennas with various tessellations of spatially 
dispersed transceiver polygons.  In essence, the transmit power is 
spatially distributed amongst the polygons, and  gain is achieved, 
via signal processing rather than the use of, by way of example, an 
antenna aperture so as to concentrate energy. Therefore, signal 
processing functions enable the various polygons to self-form into 
an array and enable beamforming, among other techniques, 
thereby enhancing the desired signals and somewhat obviating 
intentional/unintentional interference. However, the algorithmic 
approaches to date have varied pros and cons (e.g., the attainment 
of reduced sidelobes at the expense of the mainlobe, wherein 
interference suppression is achieved at the cost of the resolution of 
the signals). There are promising interference mitigation factor 
pathways, such as adaptive weight shifting, during the analyzing, 
transforming, and synthesizing of such signals. However, despite 
the advantages of adaptive weighting techniques, the 
computational complexity is extremely high, and the ensuing 
complexity reduction processes are subject to adversarial 
exploitation. Accordingly, this paper proposes mitigation factors 
by way of Artificial Intelligence (AI)-centric Genetic Algorithm 
(GA) approaches amidst the analysis, transformation, and 
synthesis amalgam. In particular, preliminary experimental 
results (to be furthered in future work) indicate promise for the 
auto-tuning of the Steady State Genetic Algorithm (SSGA) 
compression factor 𝜻 for more optimal convergence. 

Keywords—Transceiver polygons; Signal processing; 
Beamforming; Non-permissive cyber electromagnetic environment; 
5G networks; Smart grids; Covariance matrix; Spatial filtering 
algorithms; Convex optimization problems; Semidefinite 
programming solvers; Space-Time Adaptive Processing; Heuristical 
vulnerability. 

I. INTRODUCTION 
Traditional long-range communications are achieved by 

using high-powered Radio Frequency (RF) communications. 
However, the static RF footprint exposes these long-range 
oriented communications nodes to adversarial jamming, 
eavesdropping, and other Advanced Persistent Threat (APT) 
vectors. This problem is especially compounded amidst an Anti 
Access/Area Denial (A2/AD) environs. To mitigate against this 
exposure, the notion of a more agile and Resilient Networked 
Distributed Tessellation Communications (RNDTC) has been 
proposed by a variety of agencies and organizations. One of the 
challenges, among others, is to achieve distributed 
beamforming without the benefit of apriori information as 

pertains to the involved constituent nodes. To date, spatial 
diversity has been assumed and relied upon for clustering 
purposes. However, practically speaking, as information is 
obtained in real-time, hitherto heuristically designated single 
clusters may actually turn out to be comprised of multiple 
distinct and disparate clusters, and in some cases, the 
constituent clusters may even represent adversarial 
organizations (e.g., “blue” units have been engulfed by “green” 
units, thereby making cluster identification much more 
complex). Given these nuances of cluster identification, the 
complexity of interference suppression also greatly increases. 

Clearly, operating within contemporary cyber 
electromagnetic environments necessitates incorporating 
various Electronic Warfare (EW) countermeasures, and 
transceiver polygons must contend with interference intrusions 
amidst a non-permissive environs. The envisioned signal 
processing (and constituent self-forming array), as construed by 
many, segues into the promulgation of nulls in the direction of 
interference so as to effectuate a suppression/mitigation 
mechanism in the spirit of anti-jamming. Practically speaking, 
particularly in a battlefield environment, the involved continual 
relative motion results in a constantly shifting interference 
direction. To further complicate matters, jamming typically 
involves dynamic interference source(s). Hence, the null 
promulgated by a spatial filtering algorithm may not be able to 
sufficiently suppress the interference. Given the constantly 
shifting arrival angle of the interference signal and the 
dynamism involved, computing the pertinent anti-jamming 
vector from simply a sample covariance matrix derived from a 
sampled signal, for most cases, proves to be an ineffectual 
approach vector. This is particularly pertinent in the realm of 
multi-domain cyber electromagnetic spectrum vulnerabilities 
for fifth generation (5G) technology standard for cellular 
networks. Consequently, mitigation factors for the realm of 
multi-domain RNDTC (e.g., 5G) might be apropos, particularly 
as several technical calls (e.g., Defense Advanced Research 
Projects Agency or DARPA) have converged upon an 
overarching goal of RNDTC so as to provide long-range 
communications through the notion of tessellation antennas, 
which are comprised of spatially distributed low Size, Weight, 
Power, and Cost (SWaP-C) transceiver polygons. 

This section introduced the problem space. Section II 
discusses some of the related work in the literature, the 
operating environment, such as a potentially contested and non-
permissive battlespace, and the state of the challenge. Section 
III discusses the signal processing intent of various RNDTC 
initiatives and provides some background information 
regarding a true adaptive beamforming approach. Section IV 
discusses the selective updating of the Adaptive Weight Vector 
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(AWV), the platform utilized for the involved high-
performance Semi-Definite Programming (SDP) solvers, and 
the strategy for transforming optimization problems to convex 
form so as to reduce the complexity class from Non-
deterministic Polynomial-time Hardness (NP-Hard) to 
polynomial time, such as for Signal-to-Interference-plus-Noise 
Ratio (SINR)-related computations.  Section V discusses 
enhancing the maximized SINR, via multi-dimensional Space-
Time Adaptive Processing (STAP). Section VI discusses 
structure exploitation of the covariance interference matrix. 
Section VII highlights a potential STAP heuristical 
vulnerability exploitation and posits an experimental mitigation 
factor for the STAP vulnerability of RNDTC. Section VIII 
presents some preliminary experimental results. Section IX 
concludes with some observations, and the acknowledgements 
close the paper. 

II. RELATED WORK IN THE LITERATURE, THE OPERATING 
ENVIRONMENT, AND THE STATE OF THE CHALLENGE 

As part of a resilient communications paradigm, 
particularly for the upcoming 5G paradigm, Ultra Reliable 
Communication (URC) is construed to constitute a core gauge 
for performance metrics. The studies available in the corpus of 
literature tend to examine dependability in the time domain, and 
only select studies scrutinize dependability in the space domain. 
Yet, the communications service demand is heterogeneous, 
non-uniformly distributed, and highly dynamic; axiomatically, 
the ensuing networks have irregular topologies, and while the 
majority of the literature focuses upon the adaptation of the 
network to time-varying conditions, the treatment of the 
reduction of computational complexity, particularly as pertains 
to the non-uniformity of the service demand in the spatial 
domain, has been less prevalent [1].  

A. Related Work in the Literature 
Certain studies in the literature certainly contend with the 

issue, via a proxy domain (e.g., electrical grid domain), whose 
Radio Frequency Interference (RFI) and communications 
performance characteristics are more clearly discernible [2]. 
The probabilistic availability of URC in such a proxy network 
are generally analyzed “cell-wise and/or system-wise,” and 
Poisson point process and Voronoi tessellation tend to be 
utilized in the modeling of the spatial characteristics of cell 
deployment in both homogeneous and heterogeneous networks 
[3][4]. By way of example, several approaches involve the 
notion that for a node n that is a constituent element of a set S, 
the set of all nodes closer to node n than to any other node of S 
is the interior of a bounded convex polytope (a special case of 
a polytope with the property that it is also a convex set 
contained in the d-dimensional Euclidean space Rd) Voronoi 
cell for n, and the set of such Voronoi cells is the Voronoi 
tessellation corresponding to S. This approach, among others, 
treats resiliency inherently, as it presumes node failures. 

B. The Operating Environment 
 To highlight some of the complexities of these networks, 
among a variety of sources, the U.S. Army Cyber Warfare Field 
Manual (FM) 3-38 [5], “Cyber Electromagnetic Activities” 

(supplanted by FM 3-12 “Cyberspace and Electronic Warfare” 
and others) contends that “Cyber Electromagnetic Activities” 
encompasses not only the conventional activities involving 
electronic warfare and spectrum management operations, but 
also elements of cyberspace operations. The various involved 
domains of the potentially contested and non-permissive 
battlespace can be recast as in Figure 1 below. 
 

 
Source: FM 3-38  

Fig. 1. Potential Non-permissive Domains 

Accordingly, the envisioned transceiver polygons can be recast 
for the applications alluded to, among others, in Figure 2 below. 

 
Fig. 2. Potential Transceiver Polygon Applications 

The resolution of the challenge for transceiver polygon 
applications has far-reaching implications for a variety of 
sectors (e.g., defense, intelligent transportation systems, etc). 
The cascading effects on the related supply sectors (e.g., 
semiconductor industry for the implementation of these 
applications) are quite profound.   
C. The State of the Challenge 

The nature of the challenge centers upon a core need to 
reduce computational complexity when considering the myriad 

67Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems



of  system parameters interplaying into the achievable link 
availability. While existing approaches may touch upon 
complexity reduction processes during the analyzing, 
transforming, and synthesizing of such signals, to date, they 
have not robustly addressed adversarial exploitation of the 
complexity reduction processes. Although some exploration of 
unbounded polytopes has been conducted, principally, the 
research has been constrained to that of bounded convex 
polytopes. 

III. THE SIGNAL PROCESSING INTENT OF RESILIENT 
NETWORKED DISTRIBUTED TESSELLATION COMMUNICATIONS 
(RNDTC) AND A TRUE ADAPTIVE BEAMFORMING APPROACH 

Among the core specifications of various transceiver 
polygon approaches, and temporarily setting aside Size, 
Weight, Power, and Cost (SWaP-C) considerations, the overall 
intent is scrutinized. The asserted “Big Idea” for the various 
transceiver polygon approaches (such as delineated by the 
Defense Advanced Research Projects Agency or DARPA) 
center upon the following goal — enhanced robustness against 
failure/attack and enhanced stealthiness.  

A. The Signal Processing Intent of Resilient Networked 
Distributed Tessellation Communications (RNDTC) 
This translates, technically, into the following signal 

processing tasks, among others, for the approach vector 
delineated herein (all the following six signal processing tasks 
should be advanced to Technology Readiness Level or TRL 
3+): (1) Advance an adaptive beamforming algorithm that will 
enhance the beamforming and endeavor to mitigate against 
interference morphological adjustments, (2) Advance a 
hybridized Adaptive Weight Vector (AWV) algorithm 
conjoined with a decomposition-based evolutionary algorithm 
(a.k.a. Genetic Algorithm or GA), which are both supported by 
an Artificial Intelligence (AI)-based prioritization algorithm for 
selective continual updating of the AWV, (3) Advance a Semi-
Definite Programming (SDP) algorithm, which can transform 
the AWV derivation, via maximizing a recast Signal-to-
Interference-plus-Noise Ratio (SINR) criterion subject to a 
similarity constraint, that can be recast as a convex optimization 
problem, (4) Advance a Quadratically Constrained Quadratic 
Programming (QCQP) step-down algorithm, which will 
compute the QCQP special class convex optimization problem 
in polynomial time, (5) Advance, via a multi-dimensional 
Space-Time Adaptive Processing (STAP) algorithmic solution 
set, an enhancement of the maximized SINR, and (6) Advance 
a structural exploitation of the covariance interference matrix 
so as to leverage SDP Solvers and ascertain optimal pre-
processors. 

B. True Adaptive Beamforming Approach 
For this discussion, beamforming will refer to the self-

forming adaptive array. Axiomatically, the simplistic notion of 
beam steering (i.e., mechanical positioning to alter the antenna 
orientation, fixed phase offsets, etc.) will be bypassed, and the 
discussion shall proceed to true adaptive beamforming. The 
first priority of an adaptive beamforming algorithm is signal 
extraction while concurrently suppressing interference as well 

as noise. The differentiation between the involved 
methodological approach, as contrasted to conventional 
approaches (which often experience non-graceful performance 
degradation) is that of hybridizing, via a prioritization engine, 
signal-subspace projection (eigenspace-based beamformers, 
via orthogonal projection of signal subspace, can reduce a 
substantive portion of noise), diagonal loading (incongruity 
between the posited and actual array response can be mitigated, 
via automatic computations), and other methodological 
approaches to reduce noise, interference, and performance 
degradation. Collectively, these methods will be selected 
(based upon the time involved) to enhance the beamforming 
and endeavor to mitigate against interference morphological 
adjustments (e.g., propagation channel varying, interference 
dynamism, etc). 

IV. SELECTIVE UPDATING OF THE ADAPTIVE WEIGHT VECTOR, 
A HIGH-PERFORMANCE SEMI-DEFINITE PROGRAMMING (SDP) 

SOLVER, AND REDUCTION FROM NON-DETERMINISTIC 
POLYNOMIAL-TIME HARDNESS (NP-HARD) TO POLYNOMIAL 

TIME FOR SIGNAL-TO-INTERFERENCE-PLUS-NOISE RATIO 
(SINR) COMPUTATIONS 

A particular triumvirate approach has been shown to be 
effective in prosecuting the task of achieving the described 
intent: (1) selective updating of the adaptive weight vector, (2) 
utilizing a high-performance SDP Solver, and (3) reducing the 
complexity class from NP-Hard to polynomial time for the 
involved SINR computations. 

A. Selective Updating of the Adaptive Weight Vector 
Fortunately, the computational availability of Field 

Programmable Gate Arrays (FPGAs) can facilitate the selective 
updating of the optimal adaptive weight vector (AWV). 
Concurrently, derivative null broadening algorithms (the 
imposition of nulls toward the regions of the nonstationary 
interference, predicated upon the reconstruction of the 
interference-plus-noise covariance matrix) offset the need for 
continuous updating and can move the paradigm towards 
selective updating. In essence, the AWV can be derived, via 
maximizing a recast SINR criterion subject to a similarity 
constraint. On a parallel pathway, the AWV can be validated, 
and more finely-tuned, via a decomposition-based evolutionary 
algorithm coupled with AWV, for normalized as well as scaled 
cases, amidst a multi-faceted non-permissive environs. 

B. High-Performance Semi-Definite Programming (SDP) 
Solver 
The described pathways converge for a constrained 

paradigm, which can be transformed into a convex optimization 
problem, via SDP solvers. The SDP solvers utilized to date have 
been implemented on a GNU Octave platform; signal 
processing and fuzzy logic packages were obtained, via Octave 
Forge, for use on GNU Octave. As a numerical computation 
platform, GNU Octave is mostly compatible with the likes of 
MATLAB. However, as GNU Octave is released under a GNU 
GPLv3 license, the source code was modified in the lab 
environment so as to take advantage of Compute Unified 
Device Architecture (CUDA) multi-threaded parallel 
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computing accelerants for the involved SDP solvers to quickly 
address the various involved convex optimization problems 
described herein. It should also be noted that GPLv3 avoids the 
issue of tivoization (the instantiation of a system that 
incorporates software under the terms of a copyleft software 
license but leverages hardware restrictions or digital rights 
management to prevent users from running modified versions 
of the software on the involved hardware). 

C. Reduction from Non-deterministic Polynomial-time 
Hardness (NP-Hard) to Polynomial Time for Signal-to-
Interference-plus-Noise Ratio (SINR) Computations  
Once in the convex form, which constitutes a special class, 

the computational complexity of the involved QCQP can be 
reduced from Non-deterministic Polynomial-time Hardness 
(NP-hard) to the desired optimality in polynomial time. 
Historically, this had been tested in Ilog Cplex Optimizer (a 
commercial software package for optimization); however, 
contemporary testing has migrated to AD Model Builder 
(ADMB) (an open source software package for non-linear 
statistical modeling) and Interior Point OPTimizer (IPOPT) (a 
software package for large-scale nonlinear optimization). 
Preliminary results have delineated maximized SINR for the 
signal detection processors (amidst interference – including 
narrowband jamming signals – and noise). 

V. ENHANCING THE MAXIMIZED SIGNAL-TO-INTERFERENCE-
PLUS-NOISE RATIO (SINR), VIA SPACE-TIME ADAPTIVE 

PROCESSING (STAP) 
Prior experimentation with STAP had been undertaken on 

the Phased Array System Toolbox. However, the performance 
of the involved complex simulations, which was essential for 
subsequent analysis, was suboptimal for the involved cases. As 
discussed above, preliminary experiments on MATLAB & 
Simulink segued to a Modified GNU Octave (M-GNU-O) 
platform. On this customized high performance, multi-threaded 
platform, certain insights could be quickly gleaned when testing 
various algorithms with regards to spatial multiplexing. For 
example, as transceiver polygons were removed, thereby 
simulating various scenarios (e.g., destroyed transceiver 
polygons), the array was re-formed and optimal re-
configurations were re-computed in quasi-real time; this 
requisite software-defined paradigm — axiomatic, given the 
Software-Defined Radio (SDR) rubric of the various 
transceiver polygon approaches — underscored a fundamental 
point. If the utilized algorithm and platform exhibited sub-
optimal performance, the associated processes would be too 
immature for subsequent implementation onto a programmable 
System-on-Chip (SoC) paradigm. Hence, the algorithmic 
testing on the M-GNU-O proved invaluable. 

Indeed, the application of STAP can greatly enhance 
performance of the posited Resilient Networked Distributed 
Tessellation Communications (RNDTC) application paradigm, 
via identification of diversity paths, so as to mitigate against the 
multipath interference phenomenon as well as more intrusive 
interference measures. The determination of the diversity paths 
were formulated, via certain elastic functions. Furthermore, the 
diversity paths were validated by an AI prioritization engine 

[6], and exemplar Diversity Paths (DPs) can be seen in Figure 
3 below [7]. 

 

 
Fig. 3. Exemplar Diversity Paths (DPs) 

A key factor to a robust STAP interference suppression 
paradigm, in addition to an advanced SDR emulation 
environment platform, resides in the determination of the 
covariance matrix, and a successful exploitation of the structure 
of the covariance interference matrix is addressed below. 

VI. STRUCTURE EXPLOITATION OF THE COVARIANCE 
INTERFERENCE MATRIX 

A. Pre-Processing 
Measurement uncertainty and inaccuracy precludes success 

by detection processors. Let us take a given signal, which for 
baselining purposes is construed to be a sequence of infinite 
duration in the positive and negative directions (i.e., two-sided 
sequence), of x = {xt, t=0, ±1, ±2, …} on the time horizon 0, 
1, …, N-1 in accordance with (1): 

 y = xoN-1 + x (1) 

where ξ ∼𝒩(0, IN) can be representative of simple white 
Gaussian noise and zoN−1 = [zo; ... ; zN−1]; y is utilized to 
distinguish between two criterion: (1) nuisance noise, wherein 
x ∈ H0, and H0 is comprised of all linear combinations of dn 
factors of known frequencies (i.e., the gamut of nuisance 
noises), and (2) intended signal plus nuisance noise signals, 
wherein x ∈ H1(ρ), and H1(ρ) is the set of all sequences x 
representable as s + u with the nuisance noise component u 
belonging to H0 and the signal component s equating to at most 
ds factors (frequency agnostic), such that the uniform distance, 
on the time horizon in question, from x to all nuisance noise 
signals, is at least ρ, such as is shown by (2) [8]: 

 min	
!∈#$

	|| xoN-1 - zoN-1 ||∞≥ 𝜌  (2) 
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The principal goal of the pre-processing algorithm is to 
distinguish, with a given confidence 1 − α, between (1) and (2) 
for as small ρ as possible. Given the sample y, a convex 
optimization problem is solved, and the resultant is compared 
with a threshold qN(α), which is a valid upper bound of the 1 – 
α quantile of (3) of a given tolerance, as further delineated in 
(4),  
 
 ||FN x||∞, α ∈	(0,1) (3) 
                Probx∼ N(0, IN){||FN x||∞ > qN(α)} ≤α (4) 
 
and if Opt (y) <= qN(α), the nuisance noise pathway is taken and 
further pre-processing must occur [8]. Conversely, if the 
nuisance noise has been successfully winnowed, such as shown 
in Figure 4 below [7], and the signal plus pathway is adopted, 
then the pre-processing phase advances to an initial processing 
phase for STAP.  

 
Fig. 4. Nuisance Noise Winnowing for the Diversity Paths (DPs) 

It is generally accepted that the optimal STAP filter is often 
designed based upon being able to discern the known 
covariance matrix and the known Doppler angle. The principal 
challenge of STAP is resolving and inverting the unknown 
interference covariance matrix. 

B. Initial Processing 
Under ideal conditions, given a rescaled matrix, wherein the 

variables are rescaled, the referenced inversion is numerically 
stable. Under non-ideal conditions, given an ill-conditioned 
matrix, the inversion is numerically unstable. Presuming this 
non-ideal state of varied scaled variables, a viable approach 
vector would be to have the individual variable scales be kept 
distinct and disparate from the correlation matrix. Otherwise, 
the covariance matrix might be adversely impacted with an ill-
conditioned number simply because of the varied scaled 
variables. As an ill-conditioned covariance matrix may amplify 
estimation error, an ongoing matrix regularization strategy, 
among other methodologies, is adopted [9]. 

C. Ongoing Processing 
The real-time performance of STAP techniques often 

undergo a non-graceful degradation in heterogeneous environs 
due to the inaccurate estimation of the interference covariance 
matrix (RI) from secondary data [10]; oftentimes, this 
degradation vulnerability is addressed by endeavoring to 
suppress the associated noise or clutter. In many cases, the 
overall STAP effectiveness is determined by the assumed 
relative homogeneity of the secondary data {ys, s=1, 2, …, Ns}, 
and generally speaking, given the availability of Ns ≥ 2MN 
homogeneous secondary data, the sample covariance matrix Rs    
≜	 (1/ Ns) ∑ 	%&

&'( ysysH yields a satisfactory estimate of RI. 
However, for a fully adaptive STAP, the requisite secondary 
data constitutes such a large corpus that the associated requisite 
homogeneity property, amidst the intrinsic non-stationarity of 
the interference, is acknowledged to be impractical. To 
overcome such pragmatic constraint limitations, partially 
adaptive STAP approaches may be employed, which assume 
that the dominant interferences are constrained to a low-
dimensional subspace; various Dimensionality Reduction (DR) 
STAP algorithms are available, and they are typically classified 
by the type of pre-processor utilized. By way of example, 
[beamspace] beamforming (rather than leveraging the spatial 
statistics of the array elements to differentiate among the signal 
and interference matrices, the spatial statistics of orthogonal 
beams — which are formed in different directions — are 
leveraged; this represents a shift from the higher dimension 
element space to the lower dimension beamspace while still 
achieving comparable performance) algorithms typically 
leverage spatial pre-processing, whereas post-doppler 
algorithms might leverage  temporal [Doppler] pre-processing. 
In yet other scenarios, the structure of the clutter can be 
exploited to design pre-processors, which might yield the 
optimal minimal acceptable rank (i.e., Rank Minimization 
Problem or RMP) of the clutter covariance matrix [11]; the rank 
of the clutter covariance matrix provides insight into the 
expanse of the clutter paradigm as well as indicates the number 
of Degrees-of-Freedom (DoF) needed to achieve an effective 
clutter cancellation. In many cases, the involved dimensionality 
reduction is achieved, via various matrix rank reduction 
methods (wherein the approximating matrix, the optimization 
variable, has reduced rank compared to the given matrix, the 
sourced data), and the resultant lower rank matrix 
decomposition-based solution necessitates  twice the secondary 
measurements as that of the rank of the clutter covariance 
matrix so as to achieve optimal STAP performance. In contrast 
to the rank reduction approach, the spatio-temporal sparsity 
recovery approach needs a substantially even smaller corpus of 
secondary data [12].  

 
1) Rank Reduction Approach 
 Generally speaking, matrix decomposition problems 

involve a sample covariance matrix being decomposed into the 
sum of a low rank positive semidefinite matrix and a diagonal 
matrix. This equates to computing 𝑅2 I = 𝑅2c + 𝑅2n, where 𝑅2c and 𝑅2n 

are examined, via resolving the following Rank Minimization 
Problem (RMP): 
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 (𝑅2)   , 𝑅2*) = arg  min
+!	,+"

	 rank (𝑅2)  ), (5) 

   subject to 3
𝑅) +	𝑅* =	𝑅&

𝑅) 	≥ 0
𝑅*	diagonal

 

The RMP cannot be solved directly as the rank function is 
nonconvex and discontinuous. Hence, to make the problem 
convex, the rank function is replaced with the trace function and 
resolved by treatment as a Trace Minimization Problem (TMP):  

 (𝑅2), 𝑅2* ) = arg  min
+!	,+"

	 tr (𝑅2)  ), (6) 

   subject to 3
𝑅) +	𝑅* =	𝑅&

𝑅) 	≥ 0
𝑅*	diagonal

 

Since the rank function tallies the number of nonzero 
eigenvalues, and the trace function computes the sum of the 
involved eigenvalues, the equation can be reconstrued as an 
equivalent SDP: 

 (𝑅2), 𝑅2* ) = arg  min
+!	,+"

	 tr (𝑅2)), (7) 

   subject to 

⎩
⎪
⎨

⎪
⎧ ?

𝑊( 𝑅)
𝑅.# 𝑊/

A

𝑅) +	𝑅* = 	𝑅s
𝑅𝑐	 ≥ 0

𝑅*	diagonal

 

    
Once in this form, there are numerous SDP solvers (e.g., 
SDPT3, which is a MATLAB/GNU Octave Semi-Definite 
Programming or SDP software package) available for these 
types of problems, and as previously discussed in Section IVB, 
the M-GNU-O platform has readily supported various high-
performance SDP solvers. 
 

2) Spatio-Temporal Sparsity Recovery Approach 
Generally speaking, the spatio-temporal sparsity recovery 

approach is analogous to the rank reduction approach; in 
essence, the involved l0-minimization problems are Non-
deterministic Polynomial-time Hardness (NP-Hard). However, 
under certain conditions, such as described in Donoho’s 
“Compressed Sensing,” convex relaxation methods may be 
applied, wherein the l0 norm is replaced by the l1 norm, thereby 
maintaining the sparsity while also being a convex function 
[13][14]. There are numerous convex relaxation methods, and 
once again, as previously discussed in Section IVB, the M-
GNU-O platform has readily supported various high-
performance SDP solvers. 

D. Post-Processing 
As a semblance of analytical scrutinization, by way of post-

processing, it is noted that while sidelobe interferences can be 

sufficiently suppressed by adaptive beamforming, countering 
interference in the mainlobe area segues to other issues, such as 
pattern distortion and decreased output signal with regards to 
the Signal-to-Interference-plus-Noise Ratio(SINR). Among 
others, various adaptive Kalman filter algorithms have been 
experimented with for coping with the unknown interference 
covariance matrix, which can involve [measurement] noise 
covariance matrices estimation (which is based upon state 
estimation techniques) [15]; these provide an approximation of 
the noise in the involved system [16]. In essence, a lower 
covariance value would segue to higher confidence in the 
detection result at time t, whereas a higher covariance value 
would segue to a higher confidence in the prior detection result 
at time t-1 rather than that of time t. 
 

Overall, this Section VI has articulated the leveraging of 
SDP solvers (and the further leveraging of optimal pre-
processors). As discussed, the known structure of the clutter can 
be exploited to design pre-processors, which might facilitate the 
resolving of the clutter covariance matrix, via RMP. With 
regards to the known structure of the clutter, in many cases, this 
can be baselined over time. For example, diplomatic facilities 
(e.g., embassies) and their associated military annexes are 
relatively static; acknowledging that there is ongoing 
construction, renovation, and activities in the abutting areas, the 
structure of the clutter at relatively static locations can be better 
discerned with time (i.e., baselining). Accordingly, pertinent 
hyper-locale pre-processors can be devised. 

VII. SPACE-TIME ADAPTIVE PROCESSING (STAP) HEURISTICAL 
VULNERABILITY EXPLOITATION AND AN EXPERIMENTAL 
MITIGATION FACTOR FOR THE STAP VULNERABILITY OF 

RESILIENT NETWORKED DISTRIBUTED TESSELLATION 
COMMUNICATIONS (RNDTC) 

A. STAP Heuristical Vulnerability Exploitation  
The described heuristic (lower covariance value → higher 

confidence in the detection result at time t; higher covariance 
value → higher confidence in the detection result at time t-1) 
constitutes a configuration parameter, which can be exploited, 
particularly when time-sensitive real-time detection systems 
are central to the system (e.g., You Only Look Once or YOLO 
v3) and Adversarial Machine Learning (ML) attacks (AMLA) 
are involved. The AMLA can target from among pre-
processing, initial processing, ongoing processing, and post-
processing (e.g., manipulation of doppler has already long been 
an issue [16]). Some would construe this to constitute a long-
range, precision non-lethal effect, in accordance with the U.S. 
Army’s “America’s Army: Ready Now, Investing in the Future 
(FY19-21 Accomplishments and Investment Plan)” Multi-
Domain Task Forces (MDTFs), which are “tailorable units that 
join Intelligence, Information, Cyber, Electronic Warfare, and 
Space (I2CEWS) capabilities with fires and other capabilities 
to deliver long-range, precision non-lethal, and as appropriate, 
lethal effects across joint and multi-national platforms.” In the 
described scenario, the “Long-Range Precision Effect” is 
shown to be potentially operative on the STAP processing of 
what could be part of a mission-critical communications 
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apparatus (as a target node). A real-world example of the import 
centers upon is U.S. Secretary Pompeo’s announcement on 29 
April 2020 that the U.S. Department of State will “require a 
clean path for all 5G network traffic coming into and out of U.S. 
diplomatic facilities at home and overseas.” The described 
STAP heuristical vulnerability exploitation is part of that cyber-
physical supply chain consideration. 

B. Experimental Mitigation Factor for the Space-Time 
Adaptive Processing (STAP) Vulnerability of Resilient 
Networked Distributed Tessellation Communications 
(RNDTC)   
The optimal filter is a unique member among an infinite set 

of consistent filters [17]. The configuration parameter or 
parameter tuning of the optimal filter, even after it is 
ascertained, can be manipulated. Tuning typically employs two 
approaches: Statistical Consistency Tests (SCT) (which 
employs statistical hypothesis testing to determine the 
consistency of the filter), and True Covariance Analysis (TCA) 
(which facilitates a computable true estimation error 
covariance). However, neither SCT nor TCA seem to suffice 
for ascertaining the true performance of the filter. Hence, AI-
centric automated tuning approaches have been experimented 
with. 

Fundamentally, Genetic Algorithms (GAs) are optimization 
algorithms. GAs tend to be quite efficient when a large search 
space is involved, the involved optimization computation can 
readily be parallelized, and they are of zero order (i.e., 
independent of the prior). GAs treat each parameter set, within 
the parameter space, individually. The fitness function for a 
given individual entity is generated by SCT, and if the 
individual entity is found to be consistent, its fitness is the 
estimated covariance norm. Alternatively, the fitness is 
comprised of the consistency values J. This is presented in (6) 
below [18]. 

 fitness = E ∥ 𝑃 ∥ 			𝐽 < 0.05
−𝐽										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6) 

The approach utilized was that of a GA subset entitled “Steady-
State GA” (SSGA), wherein: (1) if two filters are inconsistent, 
their fitness value is negative, and the closer one to zero is more 
optimal; (2) if only one filter is consistent, the fitness value is 
positive, and it is construed as more optimal than the other 
inconsistent filter with the negative fitness value; and (3) if both 
filters are consistent, the more optimal filter is that with the 
smaller fitness value. Consequently, this re-evaluation of the 
filter performance enhances the reliability by removing filters 
that do not perform well in a consistent fashion [18][19]. In 
essence, the SSGA can be construed as a discrete-time dynamic 
system non-generational model. The value-added proposition 
for the experimental mitigation factor for the STAP 
vulnerability of RNDTC is a compression factor 𝜁 that, in some 
instances, serves to squeeze the steady-state population towards 
an accelerated convergence. A larger compression factor 𝜁 is 
indicative of a compressed convergence and corresponds to a 
higher magnitude jump size for the fittest proportion from one 
generation to the successor generator; conversely, a smaller 

compression factor 𝜁 is indicative of an elongated convergence 
and corresponds to a lower magnitude jump size. To avoid 
issues of local minima (e.g., random noise), dynamically 
turning the compression factor 𝜁 may provide an invaluable 
methodology to adjust convergence, thereby resulting in a 
tunable parameter that obviates the problem of premature 
convergence and non-optimality. In summary, the SSGA 
approach can indeed effectuate auto-parameter tuning so as to 
minimize the window for exploitation as pertains to the 
identified STAP heuristical vulnerability exploitation. The 
described work was performed in an experimentation-
innovation lab in Orlando, Florida; other labs (a.k.a. “living 
labs”) for exploring 5G-enabled defense applications and use 
cases are starting to emerge and multiply [20]. 

VIII. PRELIMINARY EXPERIMENTAL RESULTS 
Simulations run atop the M-GNU-O platform have indicated 

that statistical consistency tests are not reliable for discerning 
an optimal filter. Rather, the tests yield an infinite set of 
consistent filters within which the optimal filter is a unique 
member. Preliminary experimental results indicate promise for 
the auto-tuning of the Steady State Genetic Algorithm (SSGA) 
compression factor ζ for more optimal convergence of an 
optimally tuned filter (or a set of near optimally tuned filters). 
Indeed, auto-tuning is central to this capability, and the 
compression factor 𝜁 is instrumental in dictating the rate of the 
steady state towards convergence. Large 𝜁 values may be 
indicative of earlier (i.e., premature) convergence, thereby 
segueing to specious solutions that have keyed in on local 
minima and/or noise, thereby precluding a more optimal 
convergence. Accordingly, one observation centers around the 
fact that the ability to re-tune the compression factor 𝜁	to a 
lower value (i.e., <1) seems to be critical. Another observation 
centers around the Principal Tuning Result (PTR) for an 
exponentially bounded fitness, given the characteristic time 𝜆 
for an overall time dependent population fitness F, which 
satisfies the convergence condition in (7): 

 PTR = [𝐹01( − 𝐹0] < 𝐹0	(𝑒2	30 − 1) (7) 

In essence, the PTR allows for an SSGA optimization estimate 
for the convergent approach of the time dependent population 
fitness F in a quasi-analytical fashion prior to a given numerical 
iteration, and this is consistent with other research in the field, 
such as that conducted at the Sante Fe Institute [21]. Field 
experiments were conducted in environments, wherein the 
involved electrical grids (in these cases, “Smart Grids”) were 
generating Radio Frequency Interference (RFI), via faulty 
electric equipment, that went beyond the prototypical radiation 
emissions of the usual powerlines and electric utility-related 
equipment (classified as “incidental radiators” by the Federal 
Communications Commission or FCC in the U.S.). 

IX. CONCLUSION 
In many cases, prototypical weighting techniques are 

utilized to attain reduced sidelobes at the expense of a more 
expansive and robust mainlobe [22]. In essence, some 
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interference suppression is achieved by sacrificing the resolution 
of the signals. For example, the introduction of self-induced 
white noise (signals that mitigate against/mask other signals) 
could mitigate adversarial-introduced attack vectors; the white 
noise is generated, via receiver-based nullification endeavors, 
wherein the weights and phase shifts associated with a receive 
node or cluster of receive nodes dynamically adapt in a coalition 
fashion to create directional nulls. Along the vein of weight 
shifts, adaptive weighting techniques utilize time-varying 
weights so as to achieve more robust interference suppression as 
well as relatively higher resolution signals. Despite the 
advantages, adaptive techniques are computationally intensive 
(e.g., matrix inversion), and a variety of processing tasks are 
required to reduce this computational complexity. At the core, 
transforming problems into convex optimization problems, 
which can be resolved in polynomial time, and leveraging SDP 
solvers is a common thematic. However, the involved processes, 
such as STAP, reveal heuristical reliances that are subject to 
adversarial exploitation. Accordingly, these heuristics (i.e., 
configuration parameters) need to be sufficiently annealed and 
optimized. Accordingly, this paper proposes mitigation factors 
by way of AI-centric GA amidst the analysis, transformation, 
and synthesis amalgam. Section VIIB discussed the SSGA 
approach to effectuate auto-parameter tuning so as to minimize 
the window for exploitation as pertains to the identified STAP 
heuristical vulnerability exploitation. Proxy use cases (e.g., 
electrical grid sector) proved useful for auto-tuning 
experimentation as pertains to the compression factor 𝜁, which 
dictates the efficacy of the convergence upon an optimally tuned 
filter (or a set of near optimally tuned filters). Future work will 
involve furthering the exploration of the SSGA compression 
factor 𝜁 and conducting more in-depth research into the SDP 
solver(s) atop the customized M-GNU-O platform. 
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