
Security Requirement Modeling for a Secure Energy Trading Platform

Yasamin Mahmoodi∗, Christoph Groß∗, Sebastian Reiter∗, Alexander Viehl∗, Oliver Bringmann†

∗FZI Forschungszentrum Informatik †Universität Tübingen
Haid-und-Neu-Str. 10-14 Sand 13

D-76131 Karlsruhe, Germany D-72076 Tübingen, Germany
email: [mahmoodi, cgross, sreiter, viehl]@fzi.de bringman@informatik.uni-tuebingen.de

Abstract—The Internet of Things (IoT) paradigm has become
important in many domains, ranging from smart home to medical
and industrial applications. However, besides the outstanding
advantages, comprehensive networking raises new security chal-
lenges. To benefit from IoT, secure embedded systems and
resilient architectures are mandatory. Security-by-design is a
cost efficient approach to accomplish this objective. Security
requirement analysis as the first step of security-by-design plays
an important role to design, develop and test secure embedded
systems. This paper presents a case study to demonstrate security
requirement modeling at three abstraction levels with the focus
on the CIA triad (Confidentiality, Integrity, Availability). The
methodology is demonstrated by applying the proposed approach
to a use case from the energy domain.

Keywords: Security analysis; IoT; Security requirement;
Security-by-design.

I. INTRODUCTION

The Internet of Things (IoT) evolved into a mature tech-
nology and is nowadays used in a wide variety of applica-
tion domains. Besides the numerous advantages offered by
connected embedded systems, new security challenges and
threats have been reported over the last years [1] [2]. The
underlying embedded systems store sensitive information, such
as financial data, medical data and passwords. Therefore,
security issues are a critical concern.

The introduction of the IoT paradigm into the energy market,
offers the opportunity to restyle the centralized energy market.
This offers the opportunity to substitute centralized main
energy producers with distributed decentralized small-scale
energy providers. Households can install a photovoltaic system
on the roof to produce their own energy and sell the rest
to their neighbors. One efficient approach to sell the extra
energy, which is beneficial both for seller and buyer, is the
utilization of the IoT paradigm to create an automated local
energy trading market. EnerDAG [3] is a platform, which
provides local energy trading among neighbors employing a
tangle data structure and smart contracts.

Decentralized systems are based on autonomous systems
that operate on local information and work together to realize
a complex task. Each system can therefore change specific
information, issue non-expected transactions or try to com-
promise the system by other malicious behavior. Authorized
nodes may try to manipulate the system in order to get
financial benefits or to prevent other nodes from trading energy.

Figure 1. Secure System Development Life Cycle (SSDLC)

On the other hand, unauthorized nodes, which penetrate the
system, may be able to keep nodes off the network or to use
network data in order to make a Denial of Service (DoS)
attack to make services non-available. Another aspect that
should be considered is the anonymity of the participants.
If the neighbors have access to the energy balance of other
nodes, malicious neighbors can determine when people left for
a vacation to break into their house. Accordingly, to get the full
benefit of the comprehensively networked systems, considering
security measures along the system design is inevitable.

To consider vulnerability assessment and penetration testing
only on the final embedded system - security after the fact
- is not an effective approach and the elimination of weak
points could cost a lot of time and money. Integrating security
aspects in all phases of system design - security by design - is
a promising approach that lets system designers consider secu-
rity from the requirements phase over the development phase
to the final integration phase. The Secure System Development
Life Cycle (SSDLC) [4] defines tasks, such as the definition of
security requirements and assessing their risks, the planing of
the security architecture, the actual design and implementation
as well as task regarding testing and security assessment. An
exemplary SSDLC is shown in Figure 1.

Security requirements are the foundation to design a se-
cure system and execute security tests for each phase of
the system design [5]. The better the security requirements

80Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

are defined, categorized and refined, the more efficient tests
can be designed and performed. Security requirements may
come from different sources in various formats and abstraction
levels. Managing these requirements is difficult, especially
considering the fact that they may change during the system
development life cycle [6].

This paper proposes three layers of abstraction for security
requirements of embedded systems, which starts with general
questions about security considerations at the most abstract
layer and continues to explain them in more detail and finally
puts them into several defined categories and deploys them to
system entities. The third, most concrete security information
is applied to an Unified Modeling Language (UML) model of
the system with several predefined stereotypes. This procedure
helps to guide the user, to keep track of the security require-
ments and offers the possibility to integrate them into the actual
design environment. By using a well-defined interface, even
an automated processing of security requirement information
is possible. The paper is structured as follows: Section II-A
highlights the importance of security requirement analysis in
designing secure embedded systems. It mentions the three
main principles that guide the information security modeling.
Section III introduces the approach we applied for security
requirement analysis and modeling of embedded systems.
The following Section IV demonstrates the application of the
methodology on enerDAG, a framework for energy trading.

II. V-MODEL FOR DESIGNING SECURE SYSTEMS

The SSDLC can be mapped to the traditional V-model
[7], which provides a testing phase associated with each
development phase. In Figure 2, the blue diagram represents
the traditional V-model, with the system development on the
right side. It starts with requirements, then it goes into the
design of the system, the architecture and finally each module.
Each step on the left side is directly associated with a testing
phase on the right side. The V-model proposes a hierarchical
perspective, which lets the designer start with a very abstract
system specification and gradually add more design details. By
mapping the SSDLC to the V-model design flow, the iterative
nature of the SSDLC should be applied to the traditional V-
model. Resulting in a repeated adjustment and refinement of
the system and a repeated execution of the overall V-model.

Integrating security features and the associated validation to
the overall system development process helps to discover and
reduce vulnerabilities and design flaws at early stages, hence
saves time and reduces costs. In Figure 2, the gray diagram
depicts the SSDLC inspired, security-based V-model alongside
the traditional V-model. At the right side of the diagram,
security requirements alongside the other requirements of the
system enable the security experts to get a comprehensive
system view. As system designers go further in the devel-
opment process, e.g., deriving the security architecture, more
details both with regard to the design as well as to the test
phases can be added. In this process, the security requirements
should be refined too, and associated with components of the
system design. Today’s system design processes often apply
a set of models, based on the UML, to specify the system

Figure 2. Security-Based V-Model

architecture as well as software features. For that reason,
we propose a UML model augmented with security features
as a security profile [8]. This enables the designer to refine
security requirements in the same development environment
as the system design. Our proposed security modeling ap-
proach provides models for security requirements and helps to
discover the inherent weak points of the system architecture
or chosen implementations by specifying the protection goals
of the system, potential attack points, as well as additional
security related documentation. Furthermore, by providing a
well-defined profile the users are guided in specifying attack
scenarios as well as protection goals. The UML security profile
can be attached to the UML models to entitle the information
about protection goals and assets, weak points and attack
surfaces, as well as documentation-based information such
as security mechanism and software version. These models
can later on be beneficial for validation, e.g., with static
analysis and vulnerability assessment. In addition, the model
simplifies manual analysis, such as penetration testing, by
boosting the documentation and helps identifying underlying
potential design flaws, e.g., by enabling an automatic lookup
in well-known security vulnerability databases.

A. Security Requirements of Embedded Systems
The requirement specification is the entry point of a sys-

tem development process. It specifies the goals, functions
and constrains of the system, and the relationship of them
[9]. Requirement engineers should communicate frequently
with stakeholders, system designers, developers and system
analysts. A precise requirement description of the system is
the basis to ensure stakeholders interests and manage the
development process and budget. Bringing up security aspect
into the system development process necessitates the need to
integrate security requirement analyses in the first phases of
the development process. Security requirement analysis is an
essential step in today’s system development processes, which
should become the standard between stakeholder’s require-
ment validation, development and testing. Defining security
requirement categories and standards, which are pragmatic
for both developers and testers, play a fundamental role.
The Federal Information Processing Standard (FIPS) (The
National Institute of Standards and Technology (NIST), 2010)

81Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

Figure 3. CIA Triad

offered three security core principles that guide the information
security area:
• Confidentiality: ensures that access to the critical data is

available only for authorized users.
• Integrity: assures the correctness and completeness of

the data over its entire life cycle.
• Availability: makes sure that data and services are avail-

able for authorized users.
The CIA triad is shown in Figure 3.

Breaking any of the triad security principles (CIA) may lead
to a level of impact, which endanger resources, information or
individuals. The impact severity is define with the following
three levels:
• Low: leads to limited adverse effect.
• Medium: generates serious or critical damage effect.
• High: occurs severe or catastrophic damage effect.

A security requirement modeling, which covers the CIA triad
can offer a desirable standard for security requirement analysis.

III. PROPOSED APPROACH

The following section explains the proposed approach for
a consistent, guided security requirements modeling. Con-
sidering the importance of security requirement analysis in
designing secure embedded systems, we provide a three-level
requirement modeling, which follows the sequential abstrac-
tion layers principle of the V-model. It starts with general
security aspects of the system and concludes with a detailed
specification of protection goals assigned to single entities in
the system. The revealed information in last level is advanta-
geous for architectural analysis as well as penetration testing.
Because this last level should ensure a seamless transition into
the system development process, we applied it to a traditional
UML modeling approach by proposing a security profile.

The first abstraction level brings up general questions about
security issues regarding the system. The stakeholders discuss
about their desire system with the system designers and
security experts to make a security checklist. Here is a list
of the most important questions, which should be answered
during security requirement analysis:
• What are the important parts of the system, which should

be protected from attackers?

• Who are the potential attackers?
• Which parts are potential entry points for attackers?
• What are the effects of potential attacks on the critical

data?
• Which security measures are needed?
• What is the network topology of the system and which

security mechanisms will be applied to the system?
• How secure are the chosen hardware, software and

technologies?
• What is required security level for the system?
• How are software updates handled?

The answers to these questions give an overall perspective
about the security aspects of the system. However, this infor-
mation is qualitative and subjective and in order to apply this
knowledge, well-defined classifications and security metrics
are needed.

In the second abstraction level, the protection goals of the
system will be derived and categorized in the three classes
of the CIA triad: confidentiality, integrity, availability. From
this informal specification, all relevant information will be
extracted in the next step.

The last abstraction level maps the information from the
second layer about security requirements to a well-defined
schema. The layer defines entries such as protection goal
confidentiality, protection goal integrity and protection goal
availability, and offers parameters to assign more details to
each entry. No security mechanism by itself can protect the
system completely and layered security defenses based on the
nature of the protected information and weaknesses of the
system are required. Untangling this issue, security experts and
system designers require detailed information about the entities
of the system, which should be protected, and the potential
vulnerabilities and entry points. Therefore, this layer not only
specifies the protection goals as well as the attack surface in a
well-defined manner, it also associates each specified security
entry with a system component or a sub-system. The specified
data of this level should be used to decide about the design and
integration of security mechanism as well as the specification
of security tests. Several approaches such as [10] are already
using the CIA classification to provided security mechanisms
dedicated to each class and therefore integrate seamlessly into
the proposed procedure.

To structure the information on the third layer in a well-
defined manner, we propose to specify detailed information
about protection goals, attack surfaces and documentation-
based information in form of a security profile for the UML.
A detailed description of the profile is present in [8]. Our
security profile proposes stereotypes, which can be attached
to UML modeling elements and are advantageous for both
documentation and threat modeling. For security requirement
modeling, we employ the protection goal category offered in
our security profile. The protection goal category proposes
the stereotype�PG.DataConfidential� (PG.C), which defines
that the associated property should be protected against reading
or predicting by an attacker. This stereotype implies confiden-
tiality from the CIA triad. A parameter for the severity level
can be added, specifying the criticality of the potential damage,
if the protection goal is violated. The second stereotype of

82Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

Figure 4. Three Abstraction Level Of Proposed Security Analysis Model

this category, �PG.DataModify� (PG.M) indicates that the
property should be protected against modification. A severity
level also mentions how severe a violation of the goal is.
�PG.DataDelete� (PG.D) characterizes the data that should
not be deleted by an unauthorized transaction. Also a severity
level was added. The stereotype �PG.DataAdd� (PG.A)
indicates with its severity that this property should be protected
against adding new data by an attacker. The stereotypes PG.C,
PG.A and PG.D refer to the integrity of the CIA triad. The last
stereotype�PG.ServiceAvailability� (PG.Ava) indicates that
the stereotyped operation must be available and should not be
stopped. Availability from the CIA triad is mingled with this
stereotype. Figure 4 illustrates the three abstraction levels of
security requirement modeling for embedded systems.

IV. USE CASE

As a use case to demonstrate the security requirement
analysis and modeling, we consider enerDAG (energy Directed
Acyclic Graph) a local energy trading platform offered [3].
enerDAG offers an expandable platform for households to
trade energy with their neighbors efficiently and securely using
the tangle directed acyclic graph data structure. It is a highly
distributed computing system, which applies smart contracts
and majority voting for energy trading. Every household has
a smart meter to measure the energy balance and a enerDAG
software to communicate with other nodes and operate the
contract. Each node in the neighborhood market may have
a positive energy balance as energy producer or prosumer.
Prosumers are households that produce energy, e.g., with
photovoltaic, and also consume energy. Similarly each node
can have a negative energy balance for consumer households
or prosumers, if they consume more energy than they produce.

Energy trading will take place in five-minutes intervals.
At the beginning of each time frame, the nodes will send
their energy balance and their proposed maximum selling or
minimum buying price to the network. Then, they receive the
same offers from other nodes and based on an algorithm each
node calculates the trade results of this contract for this time
period. The contract results will then be sent to the tangle data
structure and based on a majority voting will be part of the
tangle. For security reasons, all the transactions are encrypted
with a public encryption key of the neighborhood market as
well as the private encryption key of the individual nodes.

A maintainer node registers the nodes, assembles the neigh-
borhood and manages the market if it is necessary, as well

Figure 5. Model Of A Neighborhood With Different Types Of Nodes

as calculates the amount of traded energy and issues bills.
Figure 5 represents a model of a neighborhood with different
types of nodes.

enerDAG applies the tangle data structure, which is a
directed acyclic graph that consists of transactions and their
references. Each node can add transactions to the tangle and
receive transactions from other nodes over the gossip protocol
and insert the transactions in its view of the Tangle structure.
In order to insert transactions in the tangle, the nodes have
to follow the rules, e.g., by referencing at least two older
transactions called tips and then publishing it to its neighbors.
The enerDAG daemon, which is installed on each node, first
establishes a database connection before running the main
async loop forever that includes the following parts:
• contractEngine(): This part runs every minute and search

for available contracts for execution. If it determines that
a contract needs to be run, it loads and executes it via
the contactExecuter() function. The result of a contract
will be sent to the node itself for transaction handling.

• connectionEngine(): This part starts a server that will
listen on a port for incoming messages via the handleIn-
comingEvent() function. When a transaction is received,
it is processed and the correct action is taken.

A. Security requirement analysis of enerDAG
The following section highlights the proposed method ap-

plied to a security requirement analysis of enerDAG. Espe-
cially the three abstraction levels will be motivated.

1) Level one: The first abstraction level summarizes the
stockholder’s demand or general security needs in an informal
way. Exemplary security demands of enerDAG are:
• Secure energy trading.
• Transparent transactions.
• Anonymity of the participants should be ensured.
• Non repudiation.
• The amount of energy that each node produces or

consumes should be secret.
• The offered price from nodes should remain secret.
• Unauthorized user should not be able to participate in

the market.
• Authorized users should not be able to cheat.
• A potential attacker may be both an unauthorized or an

authorized user.

83Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

2) Level two: In the following abstraction level, the security
requirements will be categorized into the three classes of the
CIA triad (Confidentiality, Integrity and Availability).
• Confidentiality:

◦ Energy balances of the participants.
◦ Offered prices of participants.
◦ The bids offered by participants.
◦ Private key of the household nodes.
◦ Public key of the neighborhood.
◦ The transactions.
◦ The seed sent by the maintainer to the household

nodes.
◦ List of neighbors.

• Integrity:
◦ Energy balances of the participants.
◦ Offered prices of participants.
◦ The bids offered by participants.
◦ Contract execution.
◦ Majority voting.
◦ The tips (least two older transactions in tangle data

structure).
◦ List of neighbors.

• Availability:
◦ The server listening for new transaction
◦ Transaction handling
◦ Contract execution

3) Level three: In the last level of abstraction, we go through
the software, respectively the corresponding UML model, and
tag parts of the system with our proposed stereotypes, e.g.,
the five stereotypes to specify the protection goals of the
system. This information extends the traditional UML model
with security features and guides the architectural analysis and
penetration testing later on. Additionally it is a good starting
point for the identification of the required security mechanisms
to achieve the protection goals.

The enerDAG software running on household nodes com-
prises of several functions, e.g., for receiving the list of
neighbors from the maintainer node, handling the incoming
transactions, sending the bids to the market, executing the
contract and adding transaction to the tangle data structure.
The maintainer node offers functions such as setting up a
new node, assembling the neighborhood, sending the list of
neighbors and calculating the bills for participants. With regard
to the space limitations, it is not possible to explain all of the
functions in detail. Therefore, we picked a few of the functions
to demonstrate the utilization of the last abstraction level.

In household nodes, each time frame is five minutes. The
first event in each time frame is to check if the result of
the previous market execution has already been posted to the
tangle and if so, to receive and to save it into the state file of
the contract. Then the energy balance and the proposed price
will be extracted and the bid will be structured. Afterwards, the
bid will be encrypted first with the private key of the node then
with the public key of the neighborhood and will be inserted
into a transaction. The transaction is sent to the tangle using the
neighborhood market contract’s address as the receiver address.
Meanwhile each node also receives the bids from the other

nodes, decrypts the outer layer and puts them into the contract
folder. In a next phase, each node will send its decryption
key to the participating nodes and each node will decrypt the
corresponding bid upon receiving this key. These two phases
happen inside a 5 minute frame. The contract engine will then
execute the smart contract at the end of the five minute time
frame and send the results to the tangle data structure. Here we
focus on the contract engine to illustrate security requirements
and protection goals.

The contract engine searches through available contracts
and if it finds a contract ready for execution, it provides it
to the contractExecutor() function where the result of the
contract execution is gathered, packed into a message of type
contractResult and sent to the node itself. Then based on a
majority voting the contract results will be accepted as the
final results.

For the neighborhood smart contract, the contractExecutor()
starts a loop and searches in all the contracts and find the nega-
tive energy balance (as buyers) and positive energy balance (as
sellers). At the next step, it matches the best seller, sellers with
lowest price, with the best buyers, buyer with highest prices,
and then conduct the trade between them with the average
price of both. The loop will continue until there is no energy
to either sell or buy left. The list of assets and protection goals
in the Contractengine() are represented underneath:
• contractExecutor() as a service should be available.

◦ Asset: PG.Ava
◦ Severity: Medium
◦ Offered Security mechanisms: security policy (re-

stricting sending message), IDS, firewall.
• Contract folder

◦ Asset: PG.M, PG.A, PG.D
◦ Severity: Low
◦ Offered security mechanisms: Verifying integrity

of the data using HMAC (Hash Message Authen-
tication Code), AAA (Authorization, Authentica-
tion, Accounting) and to prevent hackers to be able
to modify contract folder

• Majority
◦ Asset: PG.M, PG.A
◦ Severity: Medium
◦ Offered security mechanisms: Encryption, hashing,

verifying integrity of the data using HMAC, AAA
• Minimum selling/ maximum buying price in database

◦ Asset: PG.C, PG.M, PG.A, PG.D
◦ Severity: Medium
◦ Offered security mechanisms:Pproper separation of

Database, encryption, hashing, verifying integrity
of the data using HMAC, AAA

• Validation key
◦ Asset: PG.C, PG.M, PG.A, PG.D
◦ Severity: High
◦ Offered security mechanisms: Proper separation of

Database, encryption, hashing, verifying integrity
of the data using HMAC, Key management AAA

• Bid

84Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

◦ Asset: PG.C, PG.M, PG.A
◦ Severity: Medium
◦ Offered security mechanisms: Encryption, hashing,

verifying integrity of the data using HMAC, AAA
The decentralized system of enerDAG needs to validate

the nodes, which are allowed to participate in the different
neighborhood markets. Therefore, the energy and infrastruc-
ture providers run a node within each neighborhood that is
called the neighborhood maintainer node. The maintainer sends
hashed Validation Keys to the neighborhood nodes, sends the
neighborhood list to the participants, sets up new nodes and
calculate the amount of traded energy and publishes the bills.
Here we focus on the function of adding a new node to show
our security requirement analysis in level three.

To add a new node, the maintainer should change the
complete neighbor structure of all nodes randomly in order to
prevent malicious activities, e.g., by a cluster of bad nodes. The
algorithm here takes each node from the database and tries to
randomly assign nodes to the neighborhoods that do not have
enough neighbors already. The limit is set to five neighbor
nodes to allow for nice majority voting while not flooding
the network with messages between nodes. The neighborhood
maintainer node then sends the new neighbor list to all the
nodes. At the next step the neighborhood Validation Seed
will be generated for the new node and together with other
neighborhood information, like the neighborhood encryption
key, neighborhood maintainer node address and neighborhood
contract address, will be sent to the node. The protection goals
and assets of adding new node function are provided below.
• Neighborhood list

◦ Asset: PG.M, PG.A
◦ Severity: Medium
◦ Offered security mechanisms: Hashing, verifying

integrity of the data using HMAC, AAA
• Validation seed

◦ Asset: PG.C, PG.A, PG.M
◦ Severity: High
◦ Offered security mechanisms: Encryption, hashing,

verifying integrity of the data using HMAC, AAA,
key management

• Neighborhood cryptography
◦ Asset: PG.C, PG.M, PG.A
◦ Severity: High
◦ Offered security mechanisms: Encryption, hashing,

verifying integrity of the data using HMAC, AAA
and to prevent hackers to be able to modify con-
tract folder

• Contract address
◦ Asset: PG.C, PG.M, PG.A
◦ Severity: Medium
◦ Offered security mechanisms: Encryption, hashing,

verifying integrity of the data using HMAC, AAA

V. CONCLUSION

Considering the importance of security requirement analysis
in designing secure embedded systems, we proposed three ab-
straction levels for security requirement modeling in this paper,

to enable a guided security consideration. The first abstraction
level answers general question about security needs, consid-
ering stakeholders demands. In the second abstraction level,
protection goals will be distinguished based on the information
derived from the first level. Then the protection goals will be
categorized in three classes, for confidentiality, integrity and
availability. The last abstraction level goes into more details
and classifies the exact assets of the system in five categories
and protection goals: data confidentiality, data modification,
data deletion, data addition and service availability. To foster
the usage, we integrated the information in a classic UML
based design flow, by providing a UML profile with dedicated
stereotypes to specify the information. The applicability of the
approach is demonstrated by modeling and transformation of
security requirements for a energy trading platform (enerDAG)
that enables households to create localized energy markets.
We picked exemplary security requirements, modeled them
on the three abstraction levels and showed the consistency
and guided workflow to generate detailed protection goals and
attack vectors in the use case.

ACKNOWLEDGEMENT

This work has been partially supported by the Federal
Ministry of Education and Research (BMBF) within the project
COMPACT (grant number 01|S17028C).

REFERENCES

[1] J. Viega and H. Thompson, “The state of embeddeddevice security
(spoiler alert: It’s bad),” Security Privacy, IEEE, October 2012, pp. 68–
70.

[2] B. Schneier, “The internet of things’ dangerous future,” Jan 2017
(accessed October 2020), https://www.schneier.com/blog/archives/2017/
02/security and th.html.

[3] C. Groß, M. Schwed, S. Mueller, and O. Bringmann, “enerdag –
towards a dlt-based local energy trading platform,” in 2020 International
Conference on Omni-layer Intelligent Systems (COINS). IEEE, Aug
2020, p. 1–8.

[4] R. Chopra and S. Madan, “Security During Secure Software Devel-
opment Life Cycle (SSDLC),” International Journal of Engineering
Technology Management and Applied Sciences, vol. 3, 2015, pp. 1–
4.

[5] ISO/IEC 15408-3, “Evaluation criteria for IT security – Part 3: Security
assurance components,” ISO, Tech. Rep., 2009.

[6] D. Mellado, E. Fernández-Medina, and M. Piattini, “SREPPLine:
Towards a Security Requirements Engineering Process for Software
Product Lines ,” Security in Information Systems, Proceedings of the
5th International Workshop on Security in Information Systems, vol.
125, 2007, pp. 220–232.

[7] K. Forsberg and H. Mooz, “The relationship of system engineering to
the project cycle.” NCOSE, Chattanooga, Tennessee, 1991.

[8] Y. Mahmoodi, S. Reiter, A. Viehl, O. Bringmann, and W. Rosenstiel,
“Model-guided security analysis of interconnected embedded systems,”
6th International Conference on Model-Driven Engineering and Soft-
ware Development, 2018, pp. 602–609.

[9] S. R. Kourla, E. Putti, and M. Maleki, “Importance of Process Min-
ing for Big Data Requirements Engineering,” International Journal of
Computer Science & Information Technology (IJCSIT), vol. 12, August
2020.

[10] “A Survey of Information Security Implementations for Embedded
Systems,” 2017 (accessed October 2020), URL: https://www.windriver.
com/whitepapers/.

85Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

