
Poisoning Attack Data Detection with Internal Coefficient Displacement
for Machine Learning Based NIDS

Hajime Shimada
Information Technology Center, Nagoya University

Nagoya, Japan
Email: shimada@itc.nagoya-u.ac.jp

Takuya Kuwayama
Grad. Sch. Informatics, Nagoya University

Nagoya, Japan
Email: kuwayama@net.itc.nagoya-u.ac.jp

Hirokazu Hasegawa
Center for Strategic Cyber Resilience R&D, NII

Tokyo, Japan
Email: hasegawa@nii.ac.jp

Yukiko Yamaguchi
Information Technology Center, Nagoya University

Nagoya, Japan
Email: yamaguchi@itc.nagoya-u.ac.jp

Abstract—Due to the improvement of Machine Learning (ML)
techniques, ML has been used extensively in the cyber security area
and Machine Learning based Network-based Intrusion Detection
Systems (ML-NIDS) is a one of those examples. However, arising
methods to attack ML systems are becoming new threats to
them. A poisoning attack is one of those threats and has adverse
effects on the classification performance. As a threat on ML-NIDS,
we are concerned about a threat where an attacker distributes
manipulated traffic session data as a new dataset, aiming at a
poisoning attack on ML-NIDS. In this paper, we try to identify
whether newly added training data is poisoning attack data or
not based on the displacement of an internal coefficient of a
classifier. This research utilizes Support Vector Machine (SVM)
as a classifier so that the internal coefficient vector is represented
as a gradient coefficient vector of hyperplane in SVM classifier.
We assumed that manipulated traffic session data for poisoning
attack will largely confuse the internal coefficient vector. Thus, if
the internal coefficient vector displaces largely after retraining
with newly added data, we estimate that the newly added data is
a poisoning attack data. We also propose a method to define a
threshold value that distinguishes poisoning attack data and clean
data. We evaluated our proposal with SVM based NIDS with an
open traffic session dataset and poisoning attack with Biggio’s
SVM poisoning algorithm. We confirmed that our proposal can
detect poisoning attack data and achieves 0.9838 F1 score at 8%
poisoning rate (ratio of newly added poisoning attack training
data to existing clean data), which is better performance compared
to the existing poisoning attack data detection method.

Keywords–poisoning attack detection; machine learning based
NIDS.

I. INTRODUCTION

Due to the improvement of Machine Learning (ML)
techniques, machine learning has been used extensively in
the field of cyber security. Machine Learning based Network-
based Intrusion Detection Systems (ML-NIDS) is a one of
those examples. However, many people are proposing new
attack methods to ML systems and they are becoming new
threats in the cyber security area. There is a poisoning attack
that has an adverse effect to the classification performance.
The poisoning attack distributes malicious data in advance and
that malicious data contaminate and pollute training data. As
a threat on ML-NIDS area, we are concerned about a threat
where an attacker distributes manipulated traffic session data

as a new dataset with aiming poisoning attack, and some ML-
NIDS system maintainers wrongly include them in training
data.

Although several methods have been proposed to detect and
exclude poison data from training data, there are few studies
that evaluate the effectiveness of defense methods in machine
learning-based NIDS. In this paper, we try to identify whether
newly added training data is poisoning attack data or not based
on the displacement of an internal coefficient of a classifier.
This research utilizes Support Vector Machine (SVM) for a
classifier so that the internal coefficient vector is represented as
a gradient coefficient vector of hyperplane in SVM classifier.
We assumed that manipulated traffic session data for poisoning
attack will largely confuse the internal coefficient vector.
Thus, if the internal coefficient vector displaces largely after
retraining with newly added data, we estimate that the newly
added data is a poisoning attack data. This method requires a
threshold value to distinguish poisoning attack data and clean
data. We also proposed how to define the threshold value
from existing clean data. Our proposed method creates the
threshold value by dividing existing clean data into baseline
data, additional clean data, and additional local poisoning attack
data which is generated by some poisoning attack algorithm
from existing clean data. By comparing internal coefficient
vector displacements between additional clean data learning
result and additional local poisoning attack data learning result,
we can obtain the threshold value. We assume that ML-NIDS
system maintainer perform such an evaluation of additional data
to exclude poisoning attack data comes from some attackers.

We evaluated our proposal with Kyoto 2016 Dataset [1][2]
which is a traffic session dataset with malicious/benign ground
truth label. We created SVM classifier and performed the
poisoning attack with Biggio’s SVM poisoning algorithm
[3] for baseline. Then, we evaluated our internal coefficient
displacement based detection with Euclidean distance and
compared it with existing SVM poisoning attack detection
method Curie [4]. We confirmed that our proposal can detect
poisoning attack data effectively in many poisoning rate (ratio
of newly added poisoning attack training data to existing clean
data) and it achieves 0.9838 F1 score at 8% poisoning rate
as a best score. On the other hand, Curie gives moderate
performance because Curie evaluates in individual traffic session

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

sample level so that it cannot exclude a poisoning attack traffic
session sample that have quite similar characteristic to existing
clean data samples.

The rest of the paper is organized as follows. Section
II introduces related works about ML-NIDS, traffic datasets,
poisoning attacks, and poisoning attack data detection. Section
III introduces our proposal that distinguishes poisoning attack
data with the displacement of the internal coefficient vector
before and after retraining. We also propose a method to define
the threshold value to distinguish poisoning attack data and
clean data. Section IV shows evaluation setups, evaluation
results of our proposal, and evaluation results of Curie as a
comparison target. Finally, we conclude and introduce future
works in Section V.

II. RELATED WORK

A. Network-based Intrusion Detection Systems and Researches

Network-based Intrusion Detection Systems (NIDS) are
widely used for observing malicious network traffic and some
of them are working as Network-based Intrusion Protection
Systems (NIPS). Nowadays, we equip NIDS not only at a
border, like the Internet gateway, but also some observation
points in intranet. The detection method is largely separated
into signature based detection and behavior based detection and
ML (ML-NIDS) is widely used for behavior based detection.

Researches on ML-NIDS start from comparatively ancient
age. For example, Mukkamala et al. proposed ML-NIDS using
Neural Network and support vector machine in 2002 [5].
Currently, there are too many successor researches in ML-NIDS.
Nowadays, ML-NIDS is already used in commercial security
appliances and many companies consider that ML technologies
are effectively working in their security appliances. For example,
Sophos Ltd. is applying deep learning protection in their
Sandstorm UTM (Unified Threat Management) appliance or
software [6].

B. Traffic Dataset

To promote NIDS research, we have to obtain traffic data
including malicious/benign traffic data. However, it is hard for
many researchers to create own experimental network which can
generate both malicious/benign traffic so that many researcher
use traffic dataset to promote their own research.

KDD (Knowledge Discovery and Data mining) Cup 1999
Data is one of the most famous traffic dataset [7]. It summarizes
traffic data of 1999 DARPA Intrusion Detection Evaluation
Dataset [8] into traffic session level so that it can list many
traffic data with small file size. It is also famous for adding
statistical data as a feature of a traffic session mainly derived
from relationships among sessions.

Kyoto 2006+ dataset is a dataset which is generated by Song
et al. [9]. The data source is honeypot at Kyoto University
and they generate KDD Cup 1999 Data like traffic session
level dataset with malicious/benign ground truth label given
by security appliances. It equips not only statistical features
existing in KDD Cup 1999 Data but also newly generated
statistical features. Kyoto 2016 dataset [1][2] is an extension
of Kyoto 2006+ dataset. The duration of Kyoto 2006+ dataset
is 3 years, but the duration of Kyoto 2016 dataset is 9 years.

Kyoto 2016 dataset also gives much more session data even in
Kyoto 2006+ duration because PC and software advancement
makes additional interpretation to pcap file which could not be
interpreted in Kyoto 2006+ age.

C. Poisoning Attack Data Generation

Several researchers touch poisoning attack data generation
and its performance.

Biggio et al. proposed SVM poisoning attack algorithm that
generates poisoning attack data [3]. It is one of a gradient ascent
methods and similar to a gradient descent method on Neural
Network. An outlined algorithm is shown as Algorithm 1. It
updates L to maximizing loss function in SVM. In this research,
we use this algorithm for poisoning attack data generation.

Apruzzese et al. evaluated a poisoning attack to ML-NIDS
in an experimental network with normal traffic and malware
originated attack traffic [10]. They generated poisoning data
with randomly increasing feature vector values from clean attack
traffic data and confirmed dramatic degradation of True Positive
Rate (TPR) in Random Forest, Multiple Layer Perception, K-
Nearest Neighbor methods.

Algorithm 1 Biggio’s SVM poisoning attack[3].
Input: training data Dtr, validation data Dval, feature vector
and ground truth label of initial attack point {x(0)

c , yc}, step
size t

Output: Feature vector of one adversarial training data xc

1: Train SVM with Dtr

2: Current iterations k ← 0.
3: repeat
4: Train SVM again with Dtr ∪ (x

(k)
c , yc)

5: Calculate gradient of loss function dL
du with Dval

6: Let u to parallel vector to dL
du

7: Update adversarial training data by k ← k + 1, x(k)
c ←

x
(k−1)
c + tu

8: until L
(
x
(k)
c

)
− L

(
x
(k−1)
c

)
< ϵ

9: return: xc = x
(k)
c

D. Countermeasure to Poisoning Attack Data

There are two directions on countermeasures to poisoning
attack data. The one is a hardening a classifier training algorithm
not to be affected by poisoning attack data and the other one
is a method to detect and exclude poisoning attack data.

Zhou et al. have promoted research in the hardening the
classifier training algorithm [11]. They proposed AD-SVM
(ADversarial Support Vector Machine) which has additional
constraints that is designed for considering poisoning attack
data may try to maximize hinge loss. However, it gives some
adversarial affect to classification performance because a typical
SVM tries to minimize hinge loss.

There are several researches in the method to detect and
exclude poisoning attack data. Steinhardt et al. have proposed a
method to detect poisoning attack data by combining estimating
a barycenter of data class and outlier detection algorithm

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

[12]. They also confirmed resistance to poisoning attack data.
They find that MNIST-1-7 dataset and Dogfish data have high
resistance to poisoning attack data but IMDB Sentiment dataset
has low resistance. Taheri et al. have tried to estimate an original
ground truth label which is flipped when generating poisoning
attack data [13]. They utilized Neural Network for estimation
and rated data as poisoning attack data if ground truth label is
differed from an estimated label.

Laishram et al. proposed Curie that is an algorithm to
exclude poisoning attack data generated by SVM poisoning
attack [4]. An outlined algorithm of Curie is shown as
Algorithm 2. Curie also exploits flipped label similar to
Taheri’s method. Curie firstly compresses training data to two
dimensions and performs clustering with DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). Then,
Curie adds class label that is weighted with constant and treated
as 3rd dimension. Fianlly, Cuirie calculates an average distance
between samples in a same cluster. If a sample is a clean data,
the distance tend to become small. If a sample is a poisoning
attack data, distance tend to become large. Curie detects and
excludes poisoning attack data with an above criterion.

Algorithm 2 Algorithm of Curie [4].
Input:Data = (F,C) for inspection. (F is a set of feature
vector, C is a set of class label)
Output:Set of vector M which has excluded poisoning attack
data

1: PcaData ← PCA(Data.F) {Compress data to two
dimension}

2: Clusters ← DBSCAN(PcaData) {Clustering data by
DBSCAN}

3: for point ∈ Data do
4: point.F ← Append(point.F, point.C × ω) {Add

weighted ground truth label as 3rd dimension of feature}

5: cls← GetCluster(point, Clusters)
6: sample← Sample(cls, count)
7: for s ∈ sample do
8: s.F ← Append(s.F, s.C × weight)
9: d← EucledianDistance(point.F, s.F)

10: Dist.point← Dist.point+ d
11: end for
12: Dist.point← Dist.point/Size(cls) {Calculate average

distance from randomly selected 10 samples in same
cluster}

13: Dist← ZScore(Dist) {Normalization with Z value}
14: end for
15: for point ∈ Data do
16: if Dist.point ≤ θ then
17: Result← Append(Result, point)
18: end if
19: end for{Choose samples that have over θ reliability}
20: return: Result

III. PROPOSAL OF INTERNAL COEFFICIENT
DISPLACEMENT BASED DETECTION

A. Assuming Poisoning Attack Scenario

Figure 1 shows an assumed scenario of poisoning attack
threat. A company working on security measures is working

fig1
3

Polluted
Dataset

Train classifier
(Generation of

polluted classifier)

Poisoning
Attack
Model

Poisoning
Attack
Data Publish

polluted update

Malicious/benign traffic
datasets in the world

Company
Working for
Security
Measure

Attacker side

Publish as a traffic dataset to the world

Interfusion

Obtain a part of
data and use for
poisoning attack
data generation

Figure 1. Assuming scenario: perform poisoning attack by distributing
poisoning attack data.

for updating a classifier of ML-NIDS to catch up with
latest cyber attacks. To update classifier, the company gathers
traffic data including malicious and benign traffic data from
published traffic dataset. Some attacker considers attacking
some organization that is using ML-NIDS of the company
and the attacker try to weaken ML-NIDS to pass through
attack traffic (considering backdoor attack). The attacker tries
to generate poisoning attack data from an existing traffic dataset
and publish it as a new traffic dataset. If the company includes
the poisoning attack data to ones training dataset, the company
creates classifier from polluted dataset and it may generate a
polluted classifier that have a backdoor. If the polluted classifier
has been published, an intention of the attacker has succeeded.

B. Idea of Internal Coefficient Displacement Based Detection

To detect a block of poisoning attack data, we assumed
“Poisoning attack data are designed to confuse classification
criterion (e.g., hyperplane) so that it may largely displaces an
internal coefficient of a classifier” so that we considered to
detect the poisoning attack data from the internal coefficient
distance between before and after retraining with additional data.
Based on above assumption, we also assumed “The internal
coefficient distance between before and after retraining may
become large value if the additional data contain poisoning
attack data. On the other hand, if the additional data is only
clean data, internal coefficient distance becomes moderate
value.” so that we created a following procedure to detect
poisoning attack data.

Figure 2 represents a poisoning attack data detection method
based on an above assumption. Firstly, we create a classifier
from reliable datasets O. Then, we add some additional training
data A to O. We obtain classifier CO and COA from both data
blocks and obtain internal coefficient vectors vO and vOA from
them. Then, we calculate Euclidean distance D between vO
and vOA and compare with threshold value Dth. If D is larger
than Dth that means classifier has largely displaced, we judge
the data block A as poisoning attack data or the data block A
contains some poisoning attack data. Otherwise, the data block
A becomes clean data.

As shown in Section IV, we choose SVM for a classifier
so that the internal coefficient becomes a gradient coefficient
vector of SVM classifier. So, we evaluated the distance of the

21Copyright (c) IARIA, 2024. ISBN: 978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

fig2
4

Additional!

Training
data A

Training
data O

Train classifier

Training
data O

Classifier CO

Calculate vector
distance D

Train classier

Classifier COA

yes

no

A is clean data.A contains poisoning attack data.

Coefficient
vector vO

Coefficient
vector vOA

D > Dth?

Figure 2. Proposal of internal coefficient distance based detection.

gradient coefficient vector in Section IV. But we think that
many of ML algorithms have internal coefficient vectors so
that this method can easily to be adopted into versatile ML
algorithms.

C. Method to Define Threshold from Existing Data

To define threshold value Dth in Figure 2, we propose a
method that generates Dth from existing clean data. To obtain
displacement when we retrain the classifier with poisoning
attack data, we generate poisoning attack training data from a
part of the existing clean data.

Figure 3 shows an outlined flow of the proposal. Firstly, we
divide existing clean training data O to following data blocks.

• Large size data block O0 which is used for generating
baseline classifier CO0.

• Small size data blocks Ox which is used for generating
classifier with additional clean data CO0Ox(x = 0, ..., n−
1).

• Small size data blocks Oy which is used for generating
classifier with additional poisoning attack training data
CO0Py(y = 0, ..., n− 1).

To generate poisoning attack training data, Oy is converted
to Py with an existing poisoning attack model in a poisoning
attack detecting organization (e.g., security measure company).

The classifier generation part is similar to Figure 2. The
baseline classifier CO0 is generated by training with training
data O0 and obtain coefficient vector vO0. The classifier CO0Ox

is generated from merged data of training data O0 and training
data Ox and obtain coefficient vector vO0Ox. The classifier
CO0Py is generated from merged data of training data O0 and
training data Py and obtain coefficient vector vO0Py. Then,
we calculate distances between vO0 and vO0Ox. We repeatedly
calculate distances with different data blocks with varying x
and y for n times and get an average. This average becomes
an average coefficient perturbation when the classifier retrains
with additional clean data. Similarly, we calculate distances
between vO0 and vO0Py and get average. This average becomes
an average coefficient perturbation when the classifier retrains

Poisoning
attack
training
data Py

Train classier
Classifier CO0Ox

Coefficient vector vO0Ox

Calculate vector distances DO0Py

Train classifier
Classifier CO0Py

Coefficient vector vO0Py

Poisoning
attack model

Partial
training
data O0

Partial
training
data Ox

Partial
training
data Oy

Training
data O

Train classifier
Clasifier CO0

Coefficient vector vO0

Calculate vector distances DO0Ox

Define (avg(DO0Ox)+ avg(DO0Py)) / 2 as Dth

fig3
Figure 3. How to generate threshold value.

with poisoning attack data as additional data. We defined that
the Dth is a middle of both averages.

In next section, we evaluate an adequacy of Dth definition
with cross validation and compare it with an existing poisoning
attack data exclusion method.

The method is partially introduced in domestic conference
with malware binary feature classification [14]. This proposal
extends the method with extending the method to NIDS
including a time series update operation of the classifier.

IV. EVALUATION

A. Experimental Setup

Before presenting the experimental results, we introduce
an experimental setup. As a classifier to realize NIDS that
classifies traffic session data into malicious or benign, we
created a classifier with SVM. To generate poisoning attack
data, we used Biggio’s SVM poisoning algorithm [3] which is
introduced Section II-C.

We used Kyoto 2016 [1][2] traffic dataset which is in-
troduced Section II-B as a session level traffic dataset with
malicious/benign ground truth label. We randomly picked up
malicious/benign traffic sessions from November 2015 month
of Kyoto 2016 dataset with keeping malicious:benign ratio to
1:1. We used 12 numeric parameters (duration, source bytes,
destination bytes, same destination count, same service rate,
SYN error rate, same service SYN error rate, same destination
host count, same destination host and service count, same
source port rate in same destination host count, SYN error
rate in same destination host count, SYN error rate in same
destination host and service count) of session data to generate
SVM classifier.

To generate poisoning attack data, we choose 10,000
traffic session samples and generated poisoning attack data
samples with Biggio’s SVM poisoning algorithm [3] using
Adversarial Robustness Toolbox library [15]. We confirmed
that the generated poisoning attack data degrades SVM based
ML-NIDS classification accuracy and classification accuracy
degrades dramatically if poisoning attack data occupies more

22Copyright (c) IARIA, 2024. ISBN: 978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

TABLE I. HYPER-PARAMETER OF CURIE OBTAINED WITH BAYESIAN OPTIMIZATION.

Parameter Value Definition
omega 1030.6 Coefficient when adding ground truth to 3rd dimension (in step 4 of Algorithm 2)
theta 0.581 Threshold to distinct poison/clean based on average distance from cluster member (in step 16 of Algorithm 2)
sample_size 36 Sampling amount from the same cluster (in step 6 of Algorithm 2)
eps 0.732 Distance to define the same cluster (in step 2 of Algorithm 2)
min_samples 15 Distinct as noise if a number of samples in eps distance is smaller than this value (in step 2 of Algorithm 2)

TABLE II. RESULTS OF INTERNAL COEFFICIENT DISPLACEMENT
METHOD.

Poisoning rate
(num of data blocks) Accuracy Precision Recall F1 score

1% (303 blocks) 0.8861 0.8104 0.9551 0.8768
2% (147 blocks) 0.9592 0.9592 0.9592 0.9592
3% (96 blocks) 0.9430 0.9641 0.9250 0.9441
4% (72 blocks) 0.9510 0.9583 0.9446 0.9514
5% (57 blocks) 0.9421 0.9553 0.9308 0.9429
6% (45 blocks) 0.9500 0.9667 0.9355 0.9508
7% (39 blocks) 0.9558 0.9500 0.9611 0.9555
8% (33 blocks) 0.9841 0.9682 1.0000 0.9838
9% (30 blocks) 0.9825 1.0000 0.9662 0.9828

10% (27 blocks) 0.9639 0.9833 0.9465 0.9646
15% (15 blocks) 0.9500 0.9700 0.9327 0.9510
20% (12 blocks) 0.9625 0.9625 0.9625 0.9625

TABLE III. RESULTS OF CURIE METHOD.

Poisoning rate Accuracy Precision Recall F1 score
0.0% 0.7830 NaN 0.0000 NaN
2.5% 0.7902 0.8400 0.0905 0.1634
5.0% 0.7909 0.7692 0.1613 0.2667
7.5% 0.8039 0.8272 0.2528 0.3873

10.0% 0.8047 0.7838 0.3107 0.4450
12.5% 0.8074 0.7676 0.3682 0.4977
15.0% 0.8121 0.7614 0.4281 0.5481
17.5% 0.8152 0.7311 0.4814 0.5805
20.0% 0.8176 0.7400 0.5316 0.6187

than 20% of training data. These 10,000 poisoning attack data
samples are treated as Py. We choose different 12,960 traffic
session samples as clean training data O. Data O is separated
into 3,240 O0 samples and 9,720 Ox samples. Data Ox and
Py are divided into 3 groups (around 3,000 samples per each
group) to perform cross validation in our proposal. So, when we
define threshold value Dth, from 1st group of Ox and Py , we
evaluate Dth with 2nd and 3rd group of Ox and Py . Similarly,
when we define Dth from 2nd and 3rd groups of Ox and Py ,
we evaluate Dth with another groups. In this way, we achieve
cross validation of Dth and obtain classification performance
metric values.

As a comparison target to our proposal, we implemented
Curie [4] from scratch. To tune hyper-parameter of Curie
for traffic session samples, we used Bayesian optimization
in Scikit-Optimization library [16]. Table I shows obtained
hyper-parameters of Curie.

B. Evaluation results

Table II shows detection performance of our proposed inter-
nal coefficient displacement method under different poisoning
rate. Poisoning rate means a rate of additional (poisoning) data
block amount compared to original training data. If a number of
original training data is 3,000 and additional (poisoning) data is
30, the poisoning rate becomes 1%. If additional training data
is poisoning attack data and Dth distinguishes it as poisoning
attack data, the result becomes True Positive. If additional
training data is clean data and Dth distinguishes it as clean
data, the result becomes True Negative. False Positive and

False Negative classes are defined as similar. We can obtain
multiple additional training data blocks from Ox and Py so
that we evaluate with many additional training data blocks as
possible. For example, in 1% poisoning rate, we can create 101
additional data blocks from each group of Ox and Py so that
we evaluated with 303 times trial (101 additional data blocks
per group times 3 groups) in 1% poisoning rate. The number
of data blocks are noted beside individual poisoning rates in
Table II.

As shown from Table II, our proposal achieves good
performance because it achieves 88% accuracy even in 1%
poisoning rate and achieves more than 94% accuracy at more
than 2% poisoning rate. The performance of the proposal
increases in proportion to the poisoning rate and it achieve
quite high distinguish performance at 8% and 9% poisoning
rate. At greater than 10% poisoning rate, one outlier dominated
data block has generated and the outlier dominated data block
degrades performance at greater than 10% poisoning rate
area. We think that an advantage of our proposal comes from
evaluating with data block level. In practical additional training,
we add data at block level and not at individual sample level so
that distinguishing at data block level may become a moderate
assumption in practical viewpoint.

Table III shows detection performance of Curie under
different poisoning rates. Poisoning rate 0% means “all data
are clean data” so that precision becomes not a number due to
both no True Positive and False Positive samples. Compared to
our proposal shown in Table II, Curie increases its performance
in proportion to the poisoning rate especially in a precision
viewpoint, but an increment of accuracy is comparatively slow.
This characteristic comes from that Curie perform detection in
each sample granularity but our proposal performs detection in
block of data granularity. So, there is a possibility that Curie
increases performance if we treat each block of data as one
sample (e.g., set a virtual averaged sample that represents the
block of data). We also confirmed that Curie cannot distinguish
a poisoning attack traffic session sample that have quite similar
characteristic to existing clean data samples.

V. CONCLUSION AND FUTURE WORK

This paper proposes a method to identify whether newly
added training data is poisoning attack data or not based on the
displacement of the internal coefficient vector before and after
retraining. We assumed that manipulated traffic session data for
poisoning attack will largely confuse the internal coefficient
vector which is an internal state of ML classifier. Thus, if the
internal coefficient vector displaces largely after retraining with
newly added data, we estimate that the newly added data is
the poisoning attack data. We also proposed how to define the
threshold value from the existing clean data.

We evaluated our proposal with SVM classifier, Biggio’s
SVM poisoning algorithm, and Kyoto 2016 Dataset and

23Copyright (c) IARIA, 2024. ISBN: 978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

compered with the existing method Curie. By utilizing SVM
for classifier, the internal coefficient vector is represented as
the gradient coefficient vector of hyperplane in SVM classifier.
We confirmed that our proposal can detect poisoning attack
data effectively and achieves 0.9838 F1 score at 8% poisoning
rate in best case. This performance may come from our method
treat and evaluate additional training data at data block level.
On the other hand, Curie gives moderate performance because
Curie evaluates at individual traffic session sample level so that
it cannot distinguish the poisoning attack traffic session sample
that have quite similar characteristic to an existing clean data
samples.

For the future extension, our proposal may give good
performance in the other ML algorithms so that we want
to evaluate this method with different ML-NIDS algorithms.
Furthermore, we want to apply this method to some other cyber-
security area such as malware detection/classification, spam
detection/classification, process activity detection/classification,
and so on.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Numbers 23K28086 and 24K14959.

REFERENCES

[1] R. Tada, R. Kobayashi, H. Shimada, and H. Takakura, “Gener-
ating Kyoto 2016 Dataset for NIDS Evaluation (in Japanese)”,
Journal of Information Processing, vol. 58, no. 9, pp. 1450–
1463, Sep. 2017.

[2] “Traffic Data from Kyoto University’s Honeypots”, [Online].
Available: https://www.takakura.com/Kyoto_data/.

[3] B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks
against Support Vector Machines”, in Proceedings of the 29th
International Conference on Machine Learning (ICML ’12),
Jul. 2012, pp. 1807–1814.

[4] R. Laishram and V. V. Phoha, “Curie: A method for protecting
SVM Classifier from Poisoning Attack”, in arXiv e-prints,
arXiv:1606.01584, Jun. 2016.

[5] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion Detection
Using Neural Networks and Support Vector Machines”, in
Proceedings of the 2002 International Joint Conference on
Neural Networks (IJCNN’02), vol. 2, May 2002, pp. 1702–1707.

[6] Sophos Ltd., “Sophos UTM / Deep Learning Protection”,
[Online]. Available: https://www.sophos.com/en-us/products/
unified-threat-management.

[7] The UCI KDD Archive, “KDD Cup 1999 Data”, [Online].
Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html.

[8] MIT Lincoln Laboratory, “1999 DARPA Intrusion Detection
Evaluation Dataset”, [Online]. Available: https://www.ll.mit.
edu/r-d/datasets/1999-darpa- intrusion-detection-evaluation-
dataset.

[9] J. Song et al., “Statistical Analysis of Honeypot Data and
Building of Kyoto 2006+ Dataset for NIDS Evaluation”, in Pro-
ceedings of the First Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS

’11), Apr. 2011, pp. 29–36.
[10] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti,

“Addressing Adversarial Attacks Against Security Systems
Based on Machine Learning”, in Proceedings of 11th Interna-
tional Conference on Cyber Conflict (CyCon 2019), May 2019,
pp. 1–18.

[11] Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Ad-
versarial Support Vector Machine Learning”, in Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Aug. 2012, pp. 1059–1067.

[12] J. Steinhardt, P. W. Koh, and P. Liang, “Certified Defenses
for Data Poisoning Attacks”, in Proceedings of 31st Neural
Information and Processing Systems (NIPS ’17), Dec. 2017,
pp. 3520–3532.

[13] R. Taheri et al., “On Defending Against Label Flipping
Attacks on Malware Detection Systems”, Neural Computing
and Applications, vol. 32, pp. 14 781–14 800, Jul. 2020.

[14] H. Shimada, S. Su, H. Hasegawa, and Y. Yamaguchi, “Gra-
dient Variation based Poisoning Attack Data Detection for
Poisoning Attacks Targeting SVM based Malware Detection
(in Japanese)”, Information Processing Society Japan, Technical
Reports 2022-CSEC-98, Jul. 2022, pp. 1–8.

[15] M.-I. Nicolae et al., “Adversarial Robustness Toolbox v1.0.0”,
Nov. 2019, [Online]. Available: https://github.com/Trusted-
AI/adversarial-robustness-toolbox.

[16] T. Head, K. Kelly, and A. C. Mayes, “scikit-optimize: v0.5.1.”,
Mar. 2018, [Online]. Available: https : / / github. com / scikit -
optimize/scikit-optimize.

24Copyright (c) IARIA, 2024. ISBN: 978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

https://www.takakura.com/Kyoto_data/
https://www.sophos.com/en-us/products/unified-threat-management
https://www.sophos.com/en-us/products/unified-threat-management
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize

	Introduction
	Related Work
	Network-based Intrusion Detection Systems and Researches
	Traffic Dataset
	Poisoning Attack Data Generation
	Countermeasure to Poisoning Attack Data

	Proposal of Internal Coefficient Displacement Based Detection
	Assuming Poisoning Attack Scenario
	Idea of Internal Coefficient Displacement Based Detection
	Method to Define Threshold from Existing Data

	Evaluation
	Experimental Setup
	Evaluation results

	Conclusion and Future Work

