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Abstract—The increasing sophistication and evolving nature
of cyber threats pose significant risks to critical infrastructure
systems. This research introduces GenAttackTracker, a novel
algorithmic framework designed for real-time detection and
interpretation of cyber threats in Supervisory Control and Data
Acquisition (SCADA) systems. By integrating dynamic anomaly
scoring with hierarchical Bayesian modeling, GenAttackTracker
enhances situational awareness for identifying potential security
breaches in operational technology environments. This robust
mechanism contributes directly to enhancing cyber resilience by
improving threat detection in critical infrastructure systems, an
essential component of ensuring the continuity and security of
mission-critical processes. The framework leverages primary data
from SCADA systems and secondary contextual data sources,
termed Suspicious Activity Markers (SAMs). Through Bayesian
inference, the model continuously updates its understanding of
the system’s security status, allowing informed decision-making.
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I. INTRODUCTION

Cyber threats continually evolve, exerting new capabilities
and enhancing their metamorphic nature to evade detection
by legacy antivirus products. With evermore sophisticated
threats, such as malware-free intrusions and zero-day exploits
targeting Critical Infrastructure (CI), cybersecurity breaches
become more inevitable—leaving infrastructures on which we
all depend at high risk of global threat activity [1]. This reality
amplifies fears of catastrophic events tailored to incapacitate
CI systems in key infrastructure sectors.

The research project presented here aims at enhancing CI
protection by reinforcing security and resilience of mission-
critical Operational Technology (OT) against advanced cyber
threats. OT is vital to industrial process automation as used
for many types of CI facilities, which are often highly inter-
connected, mutually dependent systems [2]. In manufacturing
and production, process automation frequently hinges on OT
to interoperate with the physical environment, where Industrial
Control Systems (ICS) monitor and control physical processes,
devices, and infrastructures. Most prominently, Supervisory
Control and Data Acquisition (SCADA) architectures allow
large-scale processes to span multiple sites and work over large
distances. A SCADA-based OT system is a Cyber-Physical
System (CPS) that enables supervisory process control by

capturing real-time data of the infrastructure’s operational
status. Industry sectors using SCADA include manufacturing,
oil and natural gas, electrical generation and distribution,
maritime, rail, and utilities [3].

With the paradigm shift to Industry 4.0, intelligent process
control aims at even tighter integration of digital control loops
powered by AI, embedded computing, robotics, and Internet
of Things (IoT) with technical processes in the physical en-
vironment. This trend inevitably increases fragility of process
automation, making OT more vulnerable by amplifying the
risk of cascading and escalating failures. Beyond extensive
disruptions of critical services, highly orchestrated attacks
can result in disastrous physical damage caused by triggering
cascading malfunctions to overload mission-critical system
components.

Considering that complete security of network technology
may be unattainable, the focus shifts to risk mitigation and
remediation. Our work aims at proactive measures that reduce
the likelihood and the potential impact of severe cyberattacks.
Traditional risk mitigation methods are often inadequate for
addressing advanced cyber threats due to their highly so-
phisticated and evolving nature. The gravity of this situation
calls for advanced analytical models and algorithmic methods
to ensure that cyber situational awareness keeps pace with
the evolving threat landscape. Artificial Intelligence (AI) is
instrumental in detecting and interpreting abnormal OT system
behavior by continuously analyzing supervisory control data
streamed from system operations. Abnormal behavior patterns
can signal imminent threat activity after a security breach.
A timely response launching countermeasures is critical to
contain any intrusion before it can spread laterally across
wider networks. The dynamics and anatomy of intricate attack
scenarios requires advanced analytical models and algorithmic
methods for turning cyber situational awareness into actionable
intelligence in real-time.

Research Question. For OT systems relying on supervisory
control system architectures, such as SCADA, we consider the
following research question: how can contextual data and infor-
mation from secondary threat intelligence sources substantiate
evidence of changes in the system’s security status derived from
online analysis of control data? Fusing data and information
from a number of causally related events may arguably result
in more accurate situational awareness as baseline for online
inference and decision-making processes.
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Methodology. Inevitable uncertainty due to lack of ground
truth is problematic for the reliable detection and interpretation
of unexpected behavior patterns relevant a system’s security
status and also increases the rate of false positives. A Bayesian
modeling approach can significantly improve the outcome.
Bayesian inference promotes frequent updating of conditional
probabilities as new information becomes available, providing
a dynamic perspective of security threat levels. Thus, the more
technical question is: how can Bayesian inference and the inte-
gration of contextual data and information, termed Suspicious
Activity Markers (SAMs), enhance situational awareness of
cyber threat activities targeting the operation of CI systems?

Contribution. The novel contribution of this paper is
GenAttackTracker, a generic analytical framework for online
detection and interpretation of abnormal behavior patterns in
supervisory control data streamed from a mission-critical OT
system. Combining dynamic attack scoring with Bayesian in-
ference to fuse results from control data analysis with real-time
contextual information into actionable threat intelligence, the
model uses an end-to-end pipeline for stream-based anomaly
detection with three phases: behaviour prediction, inference
and interpretation. Our earlier work [4] outlines the concept,
while this work describes the technical realization and presents
experimental results.

The remainder of the paper is organized as follows. Section
II explains basic concepts and discusses related work, while
Section III defines the technical problem. Next, Section IV
describes the methodological development of the algorithmic
framework and explains the core model of GenAttackTracker.
Section V presents the experimental setup and the resulting
insights, and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Automation enables stable operation of OT: the devices
and the machinery that monitor and control physical pro-
cesses [2][3]; it enhances efficiency, quality of service delivery,
productivity and safe operation of critical assets. Supervisory
control of the cyber-physical system status is critical for
issuing alerts and initiating an emergency shutdown operation
when abnormal behavior patterns approach or violate defined
safety margins.

A. Online Anomaly Detection

Supervisory control data is time series data to be interpreted
as streamed real-value measurements taken at regular time
intervals. Discordant patterns that do not match the expected
normal system behavior but appear to occur “out of place” are
called anomalies or outliers. Online detection of anomalous
behavior in time series data streamed from the operation of
an OT infrastructure can be a very challenging problem:

• Identifying anomalous behavior patterns requires learning
normal behavior to train a robust machine learning model
that not only fits previously observed data but also carries
over to unobserved data. Developing such a model is
usually not a trivial task.

• Anomalous patterns generally occur for various reasons,
such as equipment failures, manual control intervention,
and unauthorized tampering with control settings. Thus,
an even more intricate problem is to differentiate the
typically few anomalies of interest—above all, suspicious
abnormal behavior indicating a potential security threat—
from the vast majority of anomalies caused by noise,
seasonality or other trends that are irrelevant to security.

Real-world physical processes are notoriously liable to
difficult to predict “external” factors, such as fluctuations in
demand and supply, technical instabilities, component failures
et cetera. These phenomena result in hard to predict variance
in the data—commonly referred to as “noise”.

B. Suspicious Activity Markers

Indicators of Compromise (IOCs) are traditionally used in
digital forensics to identify artifacts left behind by attack-
ers, such as malware signatures, unusual traffic patterns, or
file hashes. These are crucial in post-incident investigations,
helping to trace and understand the extent of a breach [5][6].
IOCs are typically reactive, meaning they are often identified
postmortem after the damage has already occurred [7].

In contrast, we present Suspicious Activity Markers (SAMs)
as a concept aiming at real-time detection of threat activity
before a cybersecurity compromise fully manifests. SAMs are
akin to Indicators of Attack (IOAs), which have been promoted
in industry contexts—originally by CrowdStrike—but with a
distinct emphasis. IOAs generally focus on recognizing the
Tactics, Techniques, and Procedures (TTPs) used by attack-
ers. These indicators aim to detect cyberattacks at an early
stage, potentially before significant harm is done and it is
observable before the attack is fully unfolded. An IOA security
strategy focuses on detecting the attacker’s intent, enabling
early intervention. Such indicators can assist security teams in
intercepting even unknown types of attacks [7]–[9]. However,
the definition of IOAs is vague and overlaps with IOCs,
leading to potential confusion [10]. Examples of IOAs include
but are not limited to [7]:

• Communication between public servers and internal
hosts, indicating possible unauthorized data transfer;

• Connections through non-standard ports;
• User logins from multiple locations, potentially indicating

stolen credentials.
• Unusual spikes in SMTP traffic;
• Internal hosts communicating with countries the business

does not serve;
• Numerous honeytoken alerts from a single host.
Our specific focus here is on using SAMs as a secondary

data source to corroborate findings from the primary source,
i.e., supervisory control data. We define SAMs as follows:

Definition of SAM: A SAM is a contextual observation that
provides additional insight into the operational security status
of an SCADA system. SAMs are not intended to identify an
attacker’s intent directly, but rather to refine the understanding
of potentially anomalous activities detected in supervisory

39Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems



control data. By integrating SAMs with the primary data
source, we aim to reduce false positives and improve the
accuracy of detecting anomalies of interest, i.e., cyber threats
to mission-critical infrastructures.

In previous works like [11]–[15], the integration of sec-
ondary auxiliary metrics into anomaly detection frameworks
has been explored. Our approach differs significantly though
in terms of generalization and method integration. Our focus
is on using SAMs as secondary data sources to dynamically
update our belief systems. This approach allows for a more
refined and contextually aware detection mechanism.

C. Bayesian Analysis
Integrating contextual information from multiple sources

can improve the effectiveness of cyberattack detection [16].
Bayesian modeling offers effective solutions for security threat
detection and information fusion under uncertainty [4]. These
methods can integrate heterogeneous data sources, including
sensor networks and soft information, to improve anomaly
detection in cybersecurity [17][18]. Bayesian models are par-
ticularly suitable for cyberattack detection due to their ability
to update probabilities as new evidence is observed in addition
to incorporating uncertainty. The continuous updating process
makes Bayesian analysis and inference ideal for dynamic
environments where attack patterns evolve over time [17].
Hierarchical Bayesian models, in particular, are well-suited
for this context as they allow for multi-level aggregation of
information, which is crucial for systems with distributed
components and diverse data sources [19].

D. AttackTracker Framework
Attack Tracker is a distributed analytic framework designed

for real-time detection of cyber threat activities in supervisory
control system data [20][21]. By employing a scalable hierar-
chical network of detector agents to monitor various levels
of the control system, the orchestration of threat detectors
naturally matches the organization of SCADA architectures.
Local detectors focus on identifying anomalies within subsys-
tems, while higher-level detectors aggregate this information
to detect and assess threats in different system components.

The framework consists of several key components. The
Behavior Predictor learns and predicts normal subsystem be-
havior to identify any deviations or anomalies. The Inference
Engine processes observations, assigns attack scores, and ag-
gregates results from lower-level detectors to enhance system-
wide threat detection. The Dynamic Scoring method adjusts
detection thresholds dynamically based on the current system
state and historical data, effectively handling contextual noise
and reducing false positives.

Attack Tracker has been successfully applied to the Secure
Water Treatment (SWaT) testbed [22] (see also Sect. V-A),
demonstrating its capability to detect a wide range of cyber
threats in SCADA-based CI systems.

III. PROBLEM DEFINITION

This section defines the problem of identifying anomalous
behavior linked to a cyberattack in the supervisory control data

streamed from the operation of a SCADA-based OT system.
Henceforth, SCADA data is simply referred to as control data.

A. Primary and Secondary Data Sources

We categorize available data and information sources into
a primary source and multiple secondary sources:

• Primary Source: Control data, formally represented as a
multivariate time series X = (xt)

T
t=1, for T ∈ N, consists

of discrete multivariate measurements xt from sensors
and actuators monitoring and controlling the system at
time t, where t refers to logical rather than physical time.
This data is the foremost anomaly detection input, provid-
ing insights into the operational state of the infrastructure.

• Secondary Sources: A given collection of SAMs is char-
acterized as a set of 3-tuples, SAM = {SAMj}Nj=1, where
each SAMj has three attributes, (typej , pj , weightj).
Here, typej denotes the type of suspicious activity;
weightj indicates the importance or impact of SAMj ;
and pj represents the probability value indicating the
likelihood of an attack being in progress. SAMs provide
contextual information that can enhance the detection
capabilities by highlighting potential threat indicators.

In order to effectively utilize both primary and secondary
sources, we must establish a systematic approach that inte-
grates multiple data streams, allowing for a comprehensive
assessment of potential threats within the SCADA system.

At any time step i > l, with i, l ∈ N, the supervisory
control data to be analyzed at time i is given by Xi, for
Xi = (xi−l, . . . , xi), while the corresponding activity marker
values to be considered at time i are given by SAM i,
with SAM i = {(typei,j , pi,j , weighti,j)}Nj=1. The invariable
length of the sliding observation time window is l + 1.

Objectives:
• Calculate the Anomaly Score ASi at step i for Xi, relative

to the estimated behavior X̂i, to assess any deviations of
the actually observed from the expected normal behavior:

ASi = f(Xi, X̂i),with f : X×X 7→ R+,

where the real-valued function f quantifies the result.

• Update the posterior probability of an attack in progress,
given the observed supervisory control data and the
values of contextual markers (SAMs) at timestep i:

P (Attacki|Xi,SAMi) =

P (Xi|Attacki) ·
∑N

j=1 (pi,j × weighti,j) · P (Attacki)

P (Xi) · P (SAMi)
(1)

where:
– P (Xi|Attacki) is the likelihood of observing the

control data given an attack, informed by the
Anomaly Scores ASi,

– P (Attacki) is the prior probability of an attack,
– P (Xi) and P (SAMi) are the marginal probabilities

of the control data and SAMs, respectively.
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The challenge lies in effectively integrating control data and
additional contextual information to provide a comprehensive
and real-time assessment of the threat level. A key difficulty
is determining the extent of deviation from normal behavior
that should be considered indicative of an attack, rather than
a benign anomaly. This challenge of selecting the appropri-
ate threshold for deviation is critical, as setting it too low
may result in false positives (incorrectly identifying normal
behavior as an attack), while setting it too high could lead
to missing true positives (failing to detect actual attacks).
Hence, developing a methodology that accurately analyzes
these deviations and updates the likelihood of an attack based
on new data and contextual markers is essential for more
reliable threat detection. Figure 1 provides an overview of
such a methodological framework. It depicts how primary
supervisory control data Xi are processed by a machine
learning model to generate an anomaly score. This score is
compared against a threshold, with secondary data SAMi

integrated via a Bayesian model to refine the final attack
likelihood score. The Bayesian analysis and inference are
explored in detail in Sections IV and V.

B. Levels of Abstraction

To ensure a clear and structured approach, we consider
different levels of abstraction in our problem definition:

• For the primary source (control data), we focus on
detailed technical aspects, analyzing the data to compute
Anomaly Scores ASi. These scores reflect deviations
between observed system behavior and the predicted
normal behavior at timestep i. In this context, ASi is
used to assess the likelihood of the observed control data
under different scenarios (attack vs. no attack).

• For the secondary sources (SAMs), we adopt a higher
level of abstraction, where SAMs and their associated
probabilities are assumed to be derived from external
sources or specialized tools, which are integrated into our
framework via APIs or similar interfaces. This approach
allows us to efficiently incorporate diverse and potentially
complex information into the decision-making process.

IV. METHODOLOGICAL DEVELOPMENT OF THE
ANALYTICAL FRAMEWORK

While the dynamic scoring system of AttackTracker [20]
achieves effective real-time anomaly detection on the SWaT
testbed (see Sect. V-A), integration into a more comprehensive
model enhances the inference process. Specifically, adding a
hierarchical Bayesian module to the Inference Engine com-
ponent broadens the scope of situational awareness to help
reducing the rate of false positives. This extension allows for
the inclusion of multiple secondary data sources and a more
accurate assessment of the likelihood of cyberattacks.

A. GenAttackTracker

Our extension of the original AttackTracker model results in
a generic model, named GenAttackTracker, which integrates
dynamic anomaly scoring with a hierarchical Bayesian model.

This dual approach leads to a more robust model for real-time
anomaly detection by providing broader and deeper situational
awareness for decision-making.

The main purpose of the hierarchical Bayesian model within
the GenAttackTracker framework is to enhance the accuracy
and reliability of cyberattack detection by integrating multiple
sources of data, such as control data Xi and Suspicious
Activity Markers (SAMs). The model continuously updates
inferred beliefs about the likelihood of an attack in the light
of new information becoming available.

1) Local Detectors: At the local detector level (Level 1),
each detector monitors control data Xi to detect anomalies.
Anomaly scores (ASi) are computed here using modified z-
scores [20], where the modified z-score (Zs) is calculated as:

Zs =
Xi − median(Xi)

MAD(Xi)
, (2)

with Xi representing the observed data point at time i, and
MAD is the median absolute deviation. The anomaly score
ASi at time i is defined as:

ASi = |Zs| (3)

This score indicates the degree of deviation from expected
behavior.

The prior distribution, representing the initial belief about
the likelihood of an anomaly being an attack, is modeled based
on historical SCADA data and the distribution of anomalies.
Let θ1i represent the prior belief at the local detector level:

θ1i ∼ Normal(µH , σ2
H) (4)

where µH and σ2
H are the mean and variance derived from

historical SCADA data anomalies.
Bayesian inference is then applied to update these prior

beliefs with new data, including the current SCADA data Xi

and SAMs. The likelihood function incorporates the anomaly
score ASi and the SAMs, and modifies the prior distribution
θ1i to form the posterior distribution:

P (Attacki|Xi,SAMi) ∝ P (Xi,SAMi|Attacki)·P (Attacki|θ1i )

Expanding the likelihood function:

P (Xi,SAMi|Attacki) = P (Xi|Attacki) · P (SAMi|Attacki)

= P (Xi|Attacki) ·
N∏
j=1

(pi,j × weighti,j) (5)

Plugging in the likelihood defined in Equation 5 and the
prior P (Attacki|θ1i ), we obtain the posterior in Equation 6 as:

P (Attacki|Xi,SAMi) =

P (Xi|Attacki)×
∏N

j=1 (pi,j × weighti,j)× P (Attacki|θ1i )
P (Xi,SAMi)

(6)

where P (Xi,SAMi) is the marginal likelihood, ensuring
that the posterior distribution sums up to one. The prior
P (Attacki|θ1i ) reflects the initial belief about the likelihood
of an attack, influenced by θ1i .
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Figure 1. Integration of primary supervisory control data and secondary contextual data (SAMs) to compute anomaly and attack likelihood scores through a
combined machine learning and Bayesian model.

2) Intermediate Levels: At the intermediate levels (Level
l ≥ 2), the information from multiple local detectors at the
lower level l − 1 is aggregated to refine the estimate of the
attack likelihood at timestep i.

Each intermediate level l begins with a prior belief θ
(l)
i ,

informed by the posteriors from Level l − 1 as follow:

Prior(l)i = P (Attack(l)i |θ(l)i ) ⇒

Prior(l)i = f
(
{P (Attack(l−1)

i |X(l−1,k)
i ,SAM(l−1,k)

i )}Nk=1

)
(7)

Equation 8 represents the likelihood aggregated from the
underlying detector k at timestep i from Level l − 1. N is
the number of detectors contributing to the detector at the
intermediate level l, and w(l−1,k) is the weight for the amount
of contribution of each lower detector. In addition, we this
weight normalized such that the sum of all weights ensures
that the combined likelihood remains a valid probability.

Likelihood(l)i =

N∑
k=1

w(l−1,k)[P (X
(l−1,k)
i |Attack(l)i ) ·P (SAM(l−1,k)

i |Attack(l)i )]

(8)
The aggregated posterior at each detector in the intermediate

level l is then computed as:

P (Attack(l)i |X(l)
i ,SAM(l)

i ) =
Prior

(l)
i × Likelihood

(l)
i

P (X
(l)
i ,SAM(l)

i )
(9)

3) Global Detector: At the global level, the final assess-
ment of the system’s security status is made by aggregating
information from the immediately preceding intermediate level
L. The global detector can be seen as the final detector in the
hierarchical structure, where it integrates all the aggregated
information from the last intermediate level. In the following
equations, (g) is the short form of global.

The prior distribution at the global level, denoted as θ(global)
i ,

or θ
(g)
i for short, is informed by the posteriors from the last

intermediate level L at timestep i. This prior is formulated as:

Prior(g)
i = P (Attack(g)

i |θ(g)i ) (10)

The likelihood at the global level is derived from the
aggregated likelihood from the last intermediate level L, which
has already integrated all the information from lower levels.
P (X

(L,k)
i |Attack(global)

i ) is the likelihood of the SCADA data
from detectors contributing to the global level at time i. The
likelihood is expressed as:

Likelihood(g)
i =

NL∑
k=1

w(L,k)
[
P (X

(L,k)
i |Attack(g)

i )× P (SAM(L,k)
i |Attack(g)

i )
]
=

NL∑
k=1

w(L,k)

P (X
(L,k)
i |Attack(g)

i )×
N∏
j=1

(pL,k
i,j × weightL,k

i,j )


(11)

Here, w(L,k) represents the weight assigned to the contribution
of each detector k from the last intermediate level L.

The posterior probability at the global level at timestep i is
then computed by combining the prior from Equation 10 and
the likelihood from Equation 11:

P (Attack(g)
i |X(g)

i ,SAM(g)
i ) =

Prior(g)
i × Likelihood(g)

i

P (X
(g)
i ,SAM(g)

i )
(12)

where:
• X

(g)
i represents the aggregated SCADA data relevant to

the global level at timestep i.
• SAM(g)

i includes all SAMs to the global level at time i.
This approach ensures that the global level threat assessment

integrates all available evidence at the current time step, taking
into account the data and SAMs from all intermediate levels in
the hierarchy. By continually updating the posterior probability
P (Attack(global)

i ) at each time step, the system maintains a
comprehensive and accurate evaluation of potential threats,
even when different detectors process different portions of the
data.

Promoting a structured and methodical approach based on
a hierarchical Bayesian model, GenAttackTracker integrates
control data and SAMs at each time step i, thereby enhancing
the detection and assessment of cyber threat activity. The
result is a robust tool for improving situational awareness and
decision-making in real-time.

42Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems



V. EXPERIMENTS

In this section, we evaluate the performance of GenAttack-
Tracker against the baseline AttackTracker framework using
the SWaT dataset. The experiments aim to demonstrate the
effectiveness of the enhanced dynamic scoring mechanism
combined with Bayesian inference for real-time SCADA-
based cyber-threat detection. We use Monte Carlo simulation
for abstractly modeling externally determined SAM values as
secondary inputs in the calculation of the posterior distribution.

A. Dataset

The SWaT dataset is derived from a Secure Water Treatment
(SWaT) testbed, a scaled-down water treatment facility that
simulates the operations of a real-world critical infrastructure
system [22]. The dataset includes 11 days of continuous data,
with the first seven days representing normal operations and
the last four days containing multiple attack scenarios.

The dataset comprises 51 variables, including sensor read-
ings (e.g., flow rates, water levels, pressure) and actuator
states (e.g., pump statuses, valve positions), recorded at 1-
second intervals. The result is a high-dimensional multivariate
time series that serves as the basis for our analysis. Among
these variables, the most critical for anomaly detection include,
FIT201 (Flow Indicator Transmitter), LIT101 ( Level Indicator
Transmitter), PIT501 ( Pressure Indicator Transmitter) and
AIT502 (Analyzer Indicator Transmitter). These variables are
particularly important due to their direct influence on the
operational state of the water treatment process, making them
key indicators of potential anomalies.

The dataset includes 36 distinct attack scenarios spread
across the last four days, ranging from single-point disruptions
to coordinated attacks affecting multiple components simul-
taneously. These scenarios are designed to simulate various
real-world TTPs, such as tampering with sensor readings,
manipulating actuator states, and disrupting communication
between control components.

B. Implementation

The implementation of the GenAttackTracker framework
was carried out in a Python-based tool environment, leveraging
widely adopted libraries, such as TensorFlow for deep learning
and Scikit-learn for statistical modeling. We used the PyMC3
library to implement the Bayesian inference process, allowing
for efficient posterior estimation using Markov Chain Monte
Carlo (MCMC) sampling. The implementation follows the
steps outlined in Figure 2. For the experiments we used an
Apple M1 Max chipset, featuring a 10-core CPU (3.2 GHz)
and 32-core GPU, with 64GB of unified memory shared
between CPU and GPU.

C. Data Analysis

In this analysis, we demonstrate how the hierarchical
Bayesian model enhances and provides an experimental tool to
study the effect of secondary data updating the probability of
an attack with new observations. Figure 3 shows the combined
likelihoods from four SCADA variables and SAMs. The spike

Figure 2. Bayesian Inference Engine Algorithm in GenAttackTracker.

Figure 3. Combined Likelihood from four variables.

in the likelihood of LIT101 around 10:01:14 AM suggests a
potential anomaly, possibly indicating an attack.

Figure 4 illustrates the evolution from prior belief to pos-
terior distribution as new data is incorporated. Initially, the
prior distribution reflects a low probability of an attack. As
the anomaly in LIT101 and relevant SAMs are observed,
the first posterior distribution shifts rightward, indicating an
increased belief in the likelihood of an attack. A second
posterior update further refines this belief, sharply increasing
the probability and reducing uncertainty. These updates, in-
formed by SAMs (summarized in Table I, demonstrate how
integrating additional contextual data can enhance decision-
making. The tighter confidence intervals in the global posterior
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Figure 4. Updating the prior belief about the system security status.

TABLE I
SUMMARY OF SUSPICIOUS ACTIVITY MARKERS (SAMS)

SAM Type Probability (pi) Weight (weighti)
SAM1 type 1 0.7 0.30
SAM2 type 2 0.6 0.20
SAM3 type 3 0.8 0.25
SAM4 type 4 0.5 0.15
SAM5 type 5 0.9 0.10

reflect a higher certainty in detecting actual attacks. The re-
duced variance demonstrates that GenAttackTracker can more
confidently assess security threats in real-time by incorporating
SAMs as secondary source of data.

VI. CONCLUSION

In this paper, we introduce GenAttackTracker, an innova-
tive framework for enhancing real-time detection of cyber
threats targeting SCADA-based critical infrastructure systems.
By integrating dynamic anomaly scoring with hierarchical
Bayesian models, GenAttackTracker addresses the complexi-
ties of identifying and interpreting cyber threats within highly
interconnected operational technology environments. A key
contribution of this framework is its ability to incorporate
SAMs as secondary contextual data, providing a more assured
threat detection process. This integration not only reduces the
likelihood of false positives but also allows the framework
to serve as a powerful experimental tool by evaluating the
effects of secondary input data on the overall system status,
using Monto Carlo simulation in the calculation of posterior
distributions. By doing so, it enhances decision-making pro-
cesses and improves situational awareness. The experimental
results confirm that the inclusion of contextual information
refines threat assessment, making this approach a valuable
addition to the cybersecurity domain. While putting a spotlight
on SCADA, the strategies we discuss here do likely apply to
a much broader range of industrial process control systems.

In our continued work, we plan to further generalize the
GenAttackTracker model, going beyond analyzing isolated
OT infrastructures, to analyze cyber threat activities across
ecosystems of linked critical infrastructures as outlined in [4].
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