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Abstract—Capture devices rise large scale trajectory data from
moving objects. These devices use different technologies like
global navigation satellite system (GNSS), wireless communica-
tion, radio-frequency identification (RFID), and other sensors.
Huge trajectory data are available today. In this paper, we use an
ontological data modeling approach to build a trajectory ontology
from such large data. This ontology contains temporal concepts,
so we map it to a temporal ontology. We present an imple-
mentation framework for declarative and imperative parts of
ontology rules in a semantic data store. An inference mechanism
is computed over these semantic data. The computational time
and memory of the inference increases very rapidly as a function
of the data size. For this reason, we propose a two-tier inference
filters on data. The primary filter analyzes the trajectory data
considering all the possible domain constraints. The analyzed
data are considered as the first knowledge base. The secondary
filter then computes the inference over the filtered trajectory data
and yields to the final knowledge base, that the user can query.

Keywords–Trajectory ontology modeling; Ontology inference;
Domain rules; Temporal rules; Data filter algorithm.

I. INTRODUCTION

Advances in information and communication technolo-
gies have encouraged collecting spatial, temporal and spatio-
temporal data of moving objects [1]. The raw data captured,
commonly called trajectories, traces moving objects from a
departure point to a destination point as sequences of data
(sample points captured, time of the capture). Raw trajectories
do not contain goals of traveling nor activities accomplished
by the moving object. Large datasets need to be analyzed
and modeled to tackle user’s requirements. To answer user’s
queries we also need to take into account the domain knowl-
edge.

This paper deals with marine mammals tracking applica-
tions, namely seal trajectories. Trajectory data are captured
by sensors included in a tag glued to the fur of the animal
behind the head. The captured trajectories consist of spatial,
temporal and spatio-temporal data. Trajectories data can also
contain some meta-data. These datasets are organized into
sequences. Every sequence, mapped to a temporal interval,
characterizes a defined state of the animal. In our application,
we consider three main states of a seal: hauling out, diving and
cruising. Every state is related to a seal’s activity. For example,
a foraging activity of seal occurs during the state diving.

Our goal is to enrich trajectory data with semantics to
extract more knowledge. In our previous work [2], we tackled
trajectory data connected to other temporal and spatial sources
of information. We directly computed the inference over these
data. The experimental results addressed the running time and
memory problems over the ontology inference computation.

Furthermore, we tried to solve these problems by defining
some domain constraints, time restrictions in [3] and inference
refinements in [4]. The proposed refinements enhanced the
inference computation, however, they did not fully solve the
problems.

In the present work, we introduce two-tier inference filters
on trajectory data. In other words, two distinct operations are
performed to enhance the inference: primary and secondary
filter operations. The primary filter is applied to the captured
data with the consideration of domain constraints. The primary
filter allows fast selection of the analyzed data to pass along
to the secondary filter. The latter computes the inference over
the data output of the primary filter. The global view of this
work is detailed as the following steps:
• Semantic trajectory data is an RDF dataset based on an

ontology trajectory;
• For analyzing the data, filtering or indexing could be

applied. In our case, we carry out a place-of-interest
process to analyze data. The analyzed data are stored in
a knowledge repository;

• The secondary filter computes inferences over the data
with the consideration of domain knowledge;

• The semantic trajectory data and the new data inferred
are stored in the knowledge repository.

This paper is organized as follows. Section II summarizes
recent work related to trajectory data modeling using ontology
approach and some introduced solutions to tackle the problem
of the inference complexity using data filtering. Section III
illustrates an overview of the ontological modeling approach
used. This trajectory ontology contains temporal concepts
mapped to W3C OWL-Time ontology [5] in Section IV.
Section V details the implementation of the trajectory ontology,
the domain ontology rules and the temporal rules. Section VI
addresses the complexity of the ontology inference over the
domain and temporal rules. Section VII introduces the primary
filter over trajectory data based on a place-of-interest process.
Section VIII evaluates the ontology inference over the filtered
data. Finally, Section IX concludes this paper and presents
some prospects.

II. RELATED WORK

Data management techniques including modeling, index-
ing, inferencing and querying large data have been actively
investigated during the last decade [4][6][7]. Most of these
techniques are only interested in representing and querying
moving object trajectories [2][4][8]. A conceptual view on
trajectories is proposed by Spaccapietra et al. [9] in which
trajectories are a set of stops, moves. Each part contains a set of
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semantic data. Based on this conceptual model, several studies
have been proposed, such as [8][10]. Yan et al. [8] proposed a
trajectory computing platform that exploits a spatio-semantic
trajectory model. One of the layers of this platform is a data
preprocessing layer which cleanses the raw GPS feed, in terms
of preliminary tasks such as outliers removal and regression-
based smoothing. Alvares et al. [10] proposed a trajectory
data preprocessing method to integrate trajectories with the
space. Their application concerned daily trips of employees
from home to work and back. However, the scope of their
paper is limited to the formal definition of semantic trajectories
with the space and time without any implementation and
evaluation. Trajectory filtering visualises a subset of available
trajectories [11]. This is useful to view interesting trajectories
and discard uninteresting ones. Trajectory filtering can be run
in two modes: soft, hard filtering.

Based on a space-time ontology and events approach,
Boulmakoul et al. [12] proposed a generic meta-model for
trajectories to allow independent applications. They processed
trajectories data benefit from a high level of interoperability,
information sharing. Their approach is inspired by ontologies,
however the proposed resulting system is a pure database
approach. Boulmakoul et al. have elaborated a meta-model
to represent moving objects using a mapping ontology for
locations. In extracting information from the instantiated model
during the evaluation phase, they seem to rely on a pure
SQL-based approach not on semantic queries. Taking these
limitations into account, we defined and implemented two
tier inference filters over trajectory data to clean and ana-
lyze the data and solve the inference computation problem.
Baglioni et al. [13][14] are based on the conceptual model
on trajectories [9]. They represent annotated trajectories in an
ontology encompassing geographical and application domain
knowledge. They consider different kinds of stops and tempo-
ral knowledge to discriminate among them. Afterwards, they
use ontology axioms to infer behavior of patterns using Oracle
and OWLPrime to test the axioms. Moreover, Perry et al.
in [15] apply an inference mechanism over their ontology. This
inference is based on several domain specific table functions
and only on RDFS rules indexes. They use a military applica-
tion domain and apply complex queries require sophisticated
inference methods. In their implementation, they use Oracle
DBMS and demonstrate the scalability of their approach with
a performance study using both synthetic and real-world RDF
datasets.

III. TRAJECTORY ONTOLOGY MODELING

A. Trajectory Domain Ontology

This paper considers trajectories of seals. The data are
provided by LIENSs [16] laboratory in collaboration with
SMRU [17]. These laboratories work on marine mammals’
ecology. Trajectory data of seals between their haulout sites
along the coasts of the English Channel or in the Celtic and
Irish seas are captured using GNSS systems.

From the analysis of the captured data, we define a seal
trajectory ontology that we connect to the trajectory domain
ontology. The trajectory domain ontology is our model used in
many moving object applications. Details of the modeling ap-
proach is discussed by Mefteh [18]. Figure 1 shows an extract
of the seal trajectory ontology, called owlSealTrajectory.

Table I gives a dictionary of its concepts and their relation-
ships.

Zone

SequencePosition

Trajectory

Specific 
SequenceGeoSequence

Deployment

Sensor

Mobile 
Object

Thing

hasTrajectory

startPosition

endPosition

hasSensor

hasDeploy

Moving Object Domain Ontology Trajectory Domain Ontology

Seal Domain Ontology

Haulout CruiseDive Summary CTD

rdfs:subClassOf
owl:objectProperty

Seal

Seal Trajectory Ontology

Figure 1. Overview of the seal trajectory ontology

B. Seal Trajectory Ontology
In this work, we propose a Semantic Domain Ontology

(Figure 2) based on activities organized as general ones linked
to trajectory, and a hierarchy of basic activities linked to
sequences of the trajectory domain ontology.

Sequence

Trajectory

Thing

Trajectory Domain Ontology

Activity

BaseActivity

hasActivity

hasBaseActivity

Seal Trajectory Ontology

Resting Traveling Foraging Traveling
Foraging

Semantic Domain Ontology

Seal Domain Ontology

Figure 2. Overview of Seal Trajectory Ontology

The Seal Domain Ontology (Figure 2) is dealing with
seal’s activities. According to the domain expert, four activities
(resting, traveling, foraging and traveling-foraging) are related
to the three states of a seal. The seal trajectory ontology
sequences are associated with these main activities.
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Table I. Seal Trajectory Ontology Dictionary

IV. TIME ONTOLOGY

The seal trajectory ontology includes concepts that can be
considered as temporal. For example, the concept Sequence
is a temporal interval. To integrate temporal concepts and
relationships in the seal trajectory ontology, we choose a
mapping approach between our ontology and the OWL-Time
ontology [5] developed by the World Wide Web Consortium
(W3C). This mapping is detailed in our previous work [2].
An extract of the declarative part of this ontology is shown in
Figure 3 described in detail by Jerry and Feng [5].

TimeZone Instant

TemporalEntity ProperIntervalInterval

January

DurationDescription

DateTimeDescription

Thing

TemporalUnit

DateTimeInterval

DayOfWeek

Year

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

Figure 3. A view of the OWL-Time ontology

We are mainly interested in the ProperInterval con-
cept and its two properties hasBeginning and hasEnd.

V. IMPLEMENTATION OF ONTOLOGIES

A. General Framework Implementation
For the implementation of the ontologies, we use Oracle

Semantic Technologies. These technologies have evolved since
Oracle DBMS version 10g, 11g and take the name of "Oracle
Spatial and Graph - RDF Semantic Graph" in Oracle DBMS
version 12c. This system provides support for persistence,
inference and querying ontologies through implementation of
RDF, RDFS and a large part of OWL standards. The DBMS
defines a core in its metabase to support technologies related
to ontological data. It stores the ontology declaration with data
as RDF triples in the system under the scheme MDSYS. Each
triple {subject, predicate, object} is handled as a basic data
object. Detailed description of this technology can be found
in Oracle Semantic Technologies Developer’s Guide [19]. To
create declarative and imperative parts of the seal trajectory
and time ontologies, we:

1) Create the declarative parts of the ontologies;
2) Create instances and population of the ontologies;
3) Consistency checking of the ontological instances;
4) Create the imperative parts of the ontology (seal trajectory

ontology rules and temporal rules).

B. Seal Trajectory Ontology Rules
The seal trajectory ontology (Figure 2) is dealing with the

seal’s activities. Each seal activity has both a declarative part
and an imperative corresponding part. The imperative parts of
the activities are defined as rules in the ontology. A rule is
an object that can be used by an inference process to query
semantic data.

Oracle Semantic Technologies is a rule-based system where
rules are based on IF-THEN patterns and new assertions are
placed into working memory. Thus, the rule-based system
is said to be a deduction system. In deduction systems,
the convention is to refer to each IF pattern an antecedent
and to each THEN pattern a consequent. User-defined rules
are defined using the SEM_APIS.CREATE_RULEBASE
procedure in a rulebase. Our rulebase is called
sealActivities_rb. The system automatically associates
a view called MDSYS.SEMR_rulebase-name to insert,
delete or modify rules in a rulebase. Figure 4 gives
the foraging_rule definition based on domain expert’s
conditions. From line 4 to 10 of Figure 4, we construct a
subgraph and necessary variables needed by the IF part of
the foraging_rule. Line 11 gives the THEN part of the
rule. Line 12 defines the namespace of ontology.

Figure 4. Implementation of the foraging rule
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C. Time Ontology Rules

The OWL-Time ontology declares the 13 temporal interval
relationships based on Allen algebra [20]. We implement the
rule base owlTime_rb to hold the interval temporal relation-
ships. For example, Figure 5 presents the implementation of
the imperative part of the intervalAfter_rule based on
operations defined in the table TM_RelativePosition of
the ISO/TC 211 specification about the temporal schema [21].

Figure 5. Implementation of the intervalAfter rule

In Figure 5, line 10 expresses the condition that the
beginning of the reference interval is bigger than the end of
the argument interval, as explained in the following condition.
Line 11 is the consequent of the rule.

sel f .begin.position > other.end.position
where

sel f = tOb j2
other = tOb j1
sel f .begin.position = beginTime2
other.end.position = endTime1

VI. TRAJECTORY ONTOLOGY INFERENCE

Inferencing is the ability to make logical deductions based
on rules defined in the ontology. Inferencing involves the use
of rules, either supplied by the reasoner or defined by the
user. At the data level, inference is a process of discovering
new relationships, in our case, new triples. Inferencing, or
computing entailment, is a major contribution of semantic
technologies that differentiates them from other technologies.

In Oracle Semantic Technologies, an entailment contains
precomputed data inferred from applying a specified set of
rulebases to a specified set of semantic models. Figure 6
creates an entailment over the seal trajectory and time mod-
els. This entailment uses a subset of OWL rules called
OWLPrime [19], the seal trajectory and time ontologies rules.
Other options are also required like the number of rounds
that the inference engine should run. When applying user-
defined rules USER_RULES=T, the number of rounds should
be assigned as default to REACH_CLOSURE.

In our experiment, we measure the time needed to compute
the entailment (Figure 6) for different sets of real trajectory
data for one seal. Its movements are captured from 16 June
until 18 July 2011 and we have got 10 000 captured data.
In this experiment, the seal activity rulebase contains only the
foraging rule. The input data for this entailment are only dives.
Figure 7 shows the experiment results for the computation
time in seconds needed by the entailment. For example, for

Figure 6. Entailment over the owlSealTrajectory and owlTime
ontologies
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Figure 7. Entailment computation time with all temporal rules and the
foraging activity

450 dives, the inference takes around 60 000 seconds (' 16.6
hours).

We notice the huge time taken from the inference mecha-
nism over a small data.

VII. PLACE OF INTEREST OVER TRAJECTORY DATA

We introduce a two-tier inference refinement on trajectory
data. In other words, two distinct operations are performed to
enhance the inference: primary and secondary inference oper-
ations. Figure 8 shows the two-tier inference filter refinement.
The primary filter is applied to the captured data to classify
them into a set of interested places, called Area-Restricted
Search (ARSs). The primary filter allows fast selection of
the classified data to pass along to the secondary inference.
The latter computes the inference mechanism considering the
ARS. Then, instead of annotating each sequence in the model,
we annotate the ARSs with the expert knowledge activity
model. The inference process is computed for each ARS. The
secondary inference yields the final knowledge data that the
user can query.

Our proposal is to analyze the captured data before com-
puting the ontology inference. This analysis is achieved thanks
to our primary filter. This filter considers trajectories that are
segmented by the object positions. These positions change and
remain fixed. Spaccapietra [9] named the former moves and
the latter stops. For this reason, a trajectory is seen as a
sequence of moves going from one stop to the next one.

Definition 1 (Stop): A stop is a part of a trajectory having
a time interval and represented as a single point.

Definition 2 (Move): A move is a part of a trajectory
represented as a spatio-temporal line.
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Figure 8. Two-tier inference filter refinement

Figure 9. The Place Of Interest algorithm

The primary filter defines interesting places for a moving
object. The interesting places are related to where the moving
object stays more and visits more often. This filter is explained
in Figure 9. This algorithm takes the two parts of a trajectory
(move and stop) data as input and gives as output interesting
places. The following definitions are used by this algorithm:

Definition 3 (Neighbors): Neighbors for a point (pi) are a
list of points from the Move data where the distance between
pi and any neighbor point is smaller than a fixed radius.
Neighbor(pi) = {(p j)

n
j=1 : pi, p j ∈ Move, distance(pi, p j) <

radius}.
Definition 4 (Peak): A peaki is a cardinality of the list

Neighbor(pi). (peaksi)
n
i=1 = #(Neighbor(pi))

n
i=1.

Definition 5 (Points_Neighbors): Points_Neighbors are a
list of points and their neighbors. Points_Neighbors =
{(pi,Neighborsi)

n
i=1 : pi,Neighborsi ∈Move}.

Definition 6 (Places): Placei is an interesting place which
contains the Neighbor(pi) and number of its visits (nVisits)
by the moving object. Places = {(Neighborsi,nVisitsi)

n
i=1 :

Neighborsi ∈Move, nVisitsi ∈ number}.
The first step of the primary filter, Figure 9 lines 5-9,

gathers the move data into groups of neighbors. These groups
are defined with respect to a radius. This radius is a fixed
distance between two points to calculate the neighbors. The
candidate of the radius is related to the application view of
a trajectory, and is an input for this algorithm. The output of
the first step is Points_Neighbors, from which the second step
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Figure 10. Interesting and foraging places

starts.

Lines 10-16, the second step, defines the interesting
places. In general, we can consider all the members of
Points_Neighbors or we can apply a condition over the Peaks.
For example, the application view could be interesting in
places that have 60 points and over, or could be interesting
in any place having at least a point. For defining a place, the
coordinates of the neighbors could be an interesting place after
applying two conditions. Every point that belongs to a place
should be far from the stop data more than the fixed radius.
Any place should not have any neighbor within the radius
distance, otherwise we merge the two coordinates and increase
the visits number. The result of this step is the output Places
of this algorithm.

VIII. EXPERIMENTAL RESULTS

To analyze our data, we consider the same datasets in
Section VI. We pass these data to the Place Of Interest
algorithm. This algorithm analyzes the data and gives as output
the places and their visits, as shown in Figure 10 interesting
places (1). However, the main goal is to define foraging places
among the captured data from 16 June until 18 July 2011. We
look forward to analyse all the 10 000 captured data.

Defining foraging places is the objective of the secondary
filter. The secondary filter computes the entailment over the
interesting places. This filter specifies foraging places among
10 000 captured data. It determines the number of foraging
activity for each place, as shown in Figure 10 foraging places
(2). We can notice that the places 1, 4, 5, 7 and 11 are not
considered as foraging places. Places 2, 6 , 9 and 10 are the
significant foraging places. Finally, the results of the primary
filter are decreased the captured data from 10 000 into 6 170
interesting raw trajectories organized in places.

By the normal inference ontology computation results,
we could not be able to consider all the captured data. We
computed the inference just for 500 raw data. However, using
the primary filter and defining the interesting places helped
us to define foraging places over all the captured data. These
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inferred data are considered as the final knowledge data that
the user can query.

IX. CONCLUSION

In this work, we proposed a modeling approach based
on ontologies to build a trajectory ontology. Our approach
considers three separated ontology models: a general trajectory
domain model, a domain knowledge or semantic model and
a temporal domain model. We map the spatial concepts in
the trajectory ontology to the spatial ontology. To implement
the declarative and imperative parts of the ontologies, we
consider the framework of Oracle Semantic Data Store. To
define the thematic and temporal reasoning, we implement
rules related to the considered models. The thematic rules
are based on the domain trajectory activities and the temporal
rules are based on Allen relationships. Then, we define and
apply two-tier inference filters. In other words, two distinct
operations are performed to enhance the inference: primary
and secondary filter operations. The primary filter analyzes
the trajectory data into places of interest. The secondary filter
computes the ontology inference over the semantic trajectories
using the ontology domain and temporal rules. The latter
filters the interesting places into domain activity places. The
experimental results show that we are able with the two-tier
filters to consider all the captured data, whereas we could not
even compute the ontology inference. For the evaluation, we
use a PC with Linux system over a processor i5-250M, 2.5GHz
and 8G memory.
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