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Abstract — In this paper, we propose a benchmark for semi 
structured data based on the concept of late binding. Our 
proposed benchmark, called WLBench, uses weblogs as a use 
case. We discuss the data model, the data generation, and the 
queries. Furthermore, we present a proof of concept using 
Teradata Aster platform. 
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I.  INTRODUCTION 

Data is produced by increasing volumes of a variety of 
data types (i.e., structured, semi-structured, and unstructured) 
from sources that generate new data at a considerably high 
rate (e.g., click streams captured in web server logs). Data 
with the above described volume, variety, and velocity 
properties is referred to as Big Data. Big Data provides 
numerous new analytic and business intelligence 
opportunities such as fraud detection, customer profiling and 
churn, and customer loyalty analysis. There is a tremendous 
interest in Big Data from academia, industry, and a large user 
base. Several commercial and open source providers released 
a variety of products to support Big Data storage, processing, 
and analytics. As these products mature, there is a need to 
evaluate and compare their performance.. 

There are a few benchmarks related to Big Data, e.g., 
YSCB [1], CALDA [2], GridMix [3] and PigMix [4]. For the 
most part, these benchmarks are micro and component 
benchmarks. BigBench [5] is perhaps the first end-to-end 
Big Data benchmark. It is based on a retail store that sells 
products online and in stores. However, handling of semi- 
structured weblogs by BigBench is quite limited. In 
particular, its specification assumes that the weblogs contain 
a small number and predefined set of keys. 

In this paper, we propose WLBench - a self-contained 
benchmark for weblogs that mandates late binding. The 
nature of weblogs applications makes it impossible to parse 
the weblogs upfront and capture their content in a structured 
form such as relational tables. In practice, weblogs can have 
hundreds or even thousands of keys from which only a small 
subset is used in queries. This makes it impractical to 
produce a schema ahead of time. Weblog queries usually 
involve a small number of well-defined keys which are 
different for each query. Hence, each query has its own 
schema that needs to be extracted before its execution. This 

concept of query-specific schema situation is called late 
binding. With late binding, data parsing cannot be done in 
advance since the schema is not known at the time data is 
acquired and each query has its own schema. Instead, it is 
carried out for each query within the query context. For 
example, a weblog of a retailer may have a few thousand 
keys and, at the same time, a query like “find the top most 
visited 10 products” only needs the product id information. 
To execute such a query, product ids need to be extracted 
from the weblogs and then passed over to an aggregate query 
that counts the number of occurrences and picks the top 10 
out of those. 

The contributions of the design of WLBench benchmark 
cover the data model, data generation, and queries. In 
addition, we present a proof of concept using Teradata Aster 
[6]. 

The rest of this paper is divided into the following sec- 
tions. Section II presents the data model. Section III contains 
a detailed description of the data generation requirements. 
Section IV describes the queries used for the proof of 
concept (POC). The POC is presented in Section V. Finally, 
Section VI provides a conclusion together with future work 
directions. 

II. DATA MODEL 

WLBench addresses the retail business problem 
encountered by online vendors. Clicks are done by users of a 
fictitious retailer having brick and mortar as well as online 
stores. Users can be registered or guests and they visit the 
site to browse products or make purchases. 

The data model is basically a set of records where each 
record captures a single click by a guest or a registered user. 
Each record consists of a set of key-value pairs that describe 
the corresponding click. For instance, a click by user “user1” 
browsing some books on 10/21/2013 at 11:30 AM is 
represented as follows: 

 
userid=“user1”,productid=“books”,timestamp=“2013-10-

21- 11:30”, key3=”vslue3”, key5=”value5”. 
 
Note that key3 and key5 in the above record are generic 

keys to represent the keys that are not referenced by the 
workload but are part of the weblog records. 
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III.  DATA GENERATION 

We designed and developed the corresponding 
generation special-purpose procedure for generating 
weblogs. The data generator features the following key 
functionality. The first part of the data generation concerns 
users and their associate information. It produces weblogs 
for two groups of users - registered users and guests. 
Registered users sign in to the system and browse and/or buy 
products. The activity of a registered user is logged and 
associated to the user id. Guest users can browse products 
but are not allowed to purchase until they sign in and their 
activities are logged in weblog entries with no values 
assigned to user id. The ratio between registered users and 
guests can be specified to the data generator. 

Generally speaking the data generation produces key 
value pairs. For each weblog entry, there are two sets of keys 
(1) fixed (or known) keys and (2) random (or unknown) 
keys. Fixed keys correspond to the set of attributes that are 
used by the query workload. The list of fixed keys is userid, 
itemid, webpageid, transactionid, and timestamp. The userid  
field identifies the user currently browsing an item itself 
identified by itemid on a webpage identified by webpageid. 
The transactionid field is assigned a value only when a user 
makes a purchase. The timestamp field marks the time at 
which the user started the current browsing or purchasing 
activity. The values of these keys are produced in a 
meaningful way. Random keys have different data types with 
values generated randomly and are labeled key1, key2,..., 
etc. We set the pool of keys to be a 100 random keys and 
average number of 20 keys per click. This supports the issue 
we highlighted before about the huge number of keys in the 
clicks. 

The data generator has the intelligence of generating 
weblog entries that are amenable to forming sessions. 
Sessions are generated for registered users with an average 
number of weblog entries per session that can be specified by 
the user. For the proof of concept in this paper, the average 
number of weblog rows per non-registered user is assumed 
to be 4 times that of registered users. Further intelligence 
exists in the data generator for the distribution of values of 
known keys. In general, no representation is made as to what 
weblog size should be used. 

 

IV. QUERIES 

For our proposed benchmark, we have selected the 10 
queries included below in Figure 1 below. They are 
expressed in English so that they can be implemented freely. 
The queries represent some common analytics applied to 
weblogs like market basket, shopping cart abandonment, 
session information, and affinity analysis. 

 
• Q1: Find the 10 most browsed products. 
• Q2: Find the 5 products browsed the most and not 

purchased.  
• Q3: List users with more than 10 sessions. A session 

is defined as a 10-minute window of clicks by a 
registered user. 

• Q4: Find the average number of sessions per 
registered user per month.  

• Q5: Find the average amount of time a user spends 
on the retailer website.  

• Q6: Find the top 10 products mostly viewed together 
with a given product.  

• Q7: Find the 5 products mostly viewed within  a 
month before a given product is purchased. 

• Q8: For users who had products in their shopping 
cart but did not check out, find the average number 
of pages they visited during their session. 

• Q9: Compare the average number of items 
purchased registered users from one year to the 
next..  

• Q10: Perform affinity analysis for products 
purchased together. 

Figure 1.  List of WLBench Queries 

The proposed benchmark is geared toward both Data 
Base Management System (DBMS) and Map Reduce (MR) 
[7] engines. The query set addresses the strengths of both 
paradigms since some of them can easily be implemented 
using a declarative language such as SQL (Q1, Q2 and Q4), 
while the other 7 queries require procedural constructs in 
addition to a declarative language. 

As part of a standard specification rule set, the 
implementation will require that no initial tables be built 
with a priori knowledge of the fields ahead of time. Queries 
will need to be run on the raw data whether a table is created 
within the query and dropped after the query results are 
produced or whether the query is run on the file itself or a 
table with all the data fields lumped together. 

 
 

V. PROOF OF CONCEPT 

WLBench can be executed by traditional DBMS, MR 
engines like Hadoop [7], or a mix of both. There is no 
requirement on how click data is captured and how workload 
queries are executed. A system under test can choose any 
method to store clicks as long as no parsing is done 
beforehand. A DBMS may capture clicks as a table with a 
single column for the record text. Hadoop systems can store 
clicks in HDFS. Workload queries can be executed in 
declarative languages such as SQL [8], HQL [9] & Pig [4]. 
As mentioned before, some queries require procedural 
constructs and those can be done by User-Defined Functions 
(UDF) [10] or MR programs. 

We executed WLBench on the Teradata Aster DBMS to 
illustrate the feasibility of the proposed benchmark. Clicks 
were captured using a simple table ClickTable where each 
row captures one click. The key-value text of each click is 
stored in a column called Payload of ClickTable. Payload is 
defined as a long variable character field. The workload 
queries were written using SQL-MR syntax which has both 
the declarative and procedural constructs to cover all the 
queries. Below is an example of a simplified SQL-MR 
syntax for Q3. 
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SELECT userid, count(*) as cnt  
FROM Sessionize ( parser("userid,timestamp")  
ON ClickTable)  
GROUP BY userid HAVING cnt > 10; 
 
Late binding is illustrated by the MR function parser 

which parses ClickTable and forms a table with two columns 
namely: userid and timestamp. The output of parser is 
streamed out to another MR function Sessionize which fnds 
the 10-minute sessions based on clicks by the same user. 
Finally, a count, grouped by userid is done on top of the 
result of the Sessionize function. 

 

VI.  CONCLUSION AND FUTURE WORK 

In this paper, we laid the foundation to benchmark semi- 
structured data based on the late binding concept. We 
proposed WLBench that uses weblogs as a use case. We 
discussed data model, data generation, and queries and 
presented a proof of concept using Teradata Aster platform. 

In the future, we plan on providing a full specification 
and a benchmark kit implemented on Aster Express, a 
Virtual Machine (VM) for Teradata Aster available online 
[6]. 
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