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Abstract—We establish a new theory of discriminant analysis
by mathematical programming (MP) and develop three MP-
based optimal linear discriminant functions (Optimal LDFs).
Those are Revised IP-OLDF based on a minimum number of
misclassification (minimum NM, MNM) criterion by integer
programming (IP), Revised LP-OLDF by linear programming
(LP) and Revised IPLP-OLDF that is a mixture model of
Revised LP-OLDF and Revised IP-OLDF. We evaluate these
LDFs with two support vector machines (SVMs), Fisher’s LDF
and logistic regression. Although we could compare these
LDFs by six different small samples, we could not validate
these LDFs by the validation samples. Therefore, we developed
“100-fold cross validation for small sample” method that is a
combination of k-fold cross validation and re-sampling sample
(The Method). By this break-through, we can validate seven
LDFs with the 95% confidence interval (CI) of error rates and
the discriminant coefficients in the training and validation
samples. Especially, we can select the best model with
minimum mean error rates in the validation sample (M2)
instead of the leave-one-out (LOO) procedure. We compared
seven LDFs using six different datasets and showed that the
best models of Revised IP-OLDF are better than the other six
best models by the Method.

Keywords- Fisher’s LDF; logistic regression; two SVMs; three
Optimal LDFs (OLDFs); Best Model; LOO.

I. INTRODUCTION

We establish a new theory of discriminant analysis by
MP-based OLDFs [28]. In statistics, the discrimination
means the method to classify class/object categories by
independent variables. On the other hand, classification of
cases by independent variables is cluster analysis. Three
OLDFs, namely Revised IP-OLDF, Revised LP-OLDF, and
Revised IPLP-OLDF [22] are validated with hard-margin
SVM (H-SVM), soft-margin SVM (S-SVM) [29], Fisher’s
LDF [3] and logistic regression [1] by the “100-fold cross
validation for small sample” method (The Method). It is a
combination of k-fold cross validation and re-sampling
sample. If we fix k=100, we can obtain the 95% confidence
intervals (CIs) of error rates and the discriminant
coefficients in the training and validation samples [17] [18]
[20] [23]-[25]. When we fixed k=10 at first, we noticed we
were not able to get 95% CIs. LOO procedure [6] cannot
offer 95% CIs. There are four serious problems with
discriminant analysis [21] [26]. Only Revised IP-OLDF [12]
- [16] can discriminate the cases on the discriminant

hyperplane exactly. Other LDFs cannot discriminate these
cases correctly (Problem1). All LDFs except for H-SVM
and Revised IP-OLDF cannot discriminate linear separable
data (LSD) theoretically (Problem2). Problem3 is the defect
of the generalized inverse matrix and effects the quadratic
discriminant function (QDF) and regularized discriminant
analysis (RDA) [5]. Although statisticians developed
discriminant functions based on the variance-covariance
matrices, we found many defects. Most statisticians
misunderstand that the discriminant analysis is the
inferential statistics as same as the regression analysis.
Although Fisher proposed Fisher’s LDF and established the
theory of discriminant analysis, he never proposed the
standard error (SE) of error rate and discriminant
coefficients (Problem4), nevertheless Fisher’s LDF assume
Fisher’s assumption. In this paper, we discuss on Problem4
and propose the Method using iris data [2] because it is
relevant evaluation data of discriminant analysis. Because
the iris data is not LSD, we cannot discuss H-SVM for this
data.

In Section 2, we explain five MP-based LDFs. In our
research, we compare two statistical LDFs and five MP-
based LDFs by the Method. We code the Method of
Fisher’s LDF and logistic regression by JMP script [7] and
do not discuss in this paper. We discuss five MP-based
LDFs coded by LINGO [8].

In Section 3, we explain the Method. By this break-
through, we can validate seven LDFs by the 95% CIs and
best models. Genuine statisticians established the inferential
statistics by their creative brain and theoretical distribution.
Because the Method is a computer-intensive approach by
computer power and software of MP and statistics, we had
better consider the Method is not traditional inferential
statistics that is more straightforward than LOO procedure.

In Section 4, we explain the results of iris data by the
Theory because Fisher’s LDF is most suitable for iris data.
Fisher proposed Fisher’s LDF under Fisher’s assumption
that two classes have the same normal distributions and two
different means. Because statisticians have difficulty to
develop good test statistics for Fisher’s assumption, we
usually obtain MP-based LDFs and logistic regression better
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results than Fisher’s LDF for many real data, most of whom
may not satisfy Fisher’s assumption.

In Section 5, we summarize the results by the Theory
using CPD data [9], Swiss banknote data [4], student data
[11], six pass/fail determination using exam scores [19] and
Japanese automobile data [28].

II. MP-BASED LDFS BY LINGO

A. The Iris Data in Excel

We explain the Method using iris data that is critical
evaluation data in the discriminant analysis. It consists of
three species as follows: setosa, versicolor, and virginica.
Each species has 50 cases. There are four variables, such as:
X1 (petal width), X2 (petal length), X3 (sepal width) and X4
(sepal length). Because we can separate the setosa from other
two species by the scatter plot quickly, we usually omit the
setosa and focus on the two-class discrimination of
versicolor (yi =1) and virginica (yi = -1) in Table 1. All
values of class2 are changed negative values. We define
Excel range name ‘IS’ that is “B2:F101.” LINGO can
retrieve ‘IS’ array values by “IS = @OLE( );” function and
use it as LINGO array name ‘IS.’ Next, we define the Excel
range name ‘CHOICE’ that is “I2:M16” in Table 2. Fifteen
rows correspond the models from the full model (X1, X2,
X3, X4) to the 1-variable model (X1). If the model includes
the variable, the value is ‘1,’ otherwise it is ‘0.’

TABLE I. THE IRIS DATA IN EXCEL

A B C D E F
1 species X1 X2 X3 X4 y
2 versicolor 7 3.2 4.7 1.4 1

… versicolor … … … … 1
51 versicolor 5.7 2.8 4.1 1.2 1
52 virginica -6.3 -3.3 -6 -2.5 -1
… virginica … … … … -1

101 virginica -5.2 -3 -5.1 -1.8 -1

TABLE II. RANGE NAME SUCH AS CHOICE

SN p X1 X2 X3 X4 c

1 4 1 1 1 1 1

2 3 0 1 1 1 1

3 3 1 0 1 1 1

4 3 1 1 0 1 1

5 3 1 1 1 0 1

6 2 0 0 1 1 1

… … … … … … …

8 2 1 0 0 1 1

12 1 0 0 0 1 1

13 1 0 0 1 0 1

14 1 0 1 0 0 1

15 1 1 0 0 0 1

After optimization, we output three arrays, such as the
“NM, ZERO and VARK100” to the Excel range name by
“@OLE( ) = NM, ZERO, VARK100;” function. “NM: (N2:
N16)” stores 15 NMs. “ZERO:(O2:O16)” stores the number
of cases on discriminant hyperplane of 15 models.
“VARK100: (P2:T16)” stores the coefficients of 15 models.

B. Five LDFs to Solve Original Data by LINGO

In this paper, we explain the model by LINGO, which is
the solver developed by LINDO Systems Inc. [8]. We
develop six LDFs; those are Revised IP-OLDF (RIP),
Revised IPLP-OLDF (IPLP), Revised LP-OLDF (LP), H-
SVM and two S-SVM (SVM4 for penalty c=104 and SVM1
for penalty c=1). In this paper, we consider two S-SVMs are
different LDFs. The Revised IP-OLDF in (1) can find the
right MNM by “MIN=Σei” because it can directly find the
interior point of an optimal convex polyhedron (OCP) [10].
If case xi is classified, ei=0. If case xi is misclassified, ei=1.
Because the discriminant score becomes negative for the
misclassified case, Revised IP-OLDF selects alternative
support vector, such as “yi* (txi b+ b0) = 1 - M*ei=-9999”
instead of “yi*(txib+b0) =1” for misclassified cases.

MIN=Σei; (1)
yi* (txi b+ b0) >= 1 - M* ei ;
b: p independent variables, b0: the intercept,
xi : (1*p) case vector if data is (n*p),
(txi b+ b0): the discriminant score,
M: big M constant, such as 10000,
yi: yi= 1 for class 1 and yi = -1 for class2,
ei: 0/1 integer variable corresponding xi.

We can define this model in ‘SUBMODEL’ section of
LINGO. ‘RIP’ is the sub-model name of Revised IP-OLDF.
We can solve and control this IP model by this name.
“@SUM and @FOR” are two essential LINGO loop
functions. “@SUM (N(i): E(i))” means “Σi=1

n E(i)”.
“@FOR(N(i):” defines n constraints, such as
“@SUM(P1(j): IS(i, j) * VARK(j) * CHOICE(k, j)) >= 1-
BIGM*E(i)); for i=1,…,n”. “@FOR(P1(j): @FREE
(VARK(j))); for j=1,…,p” defines the discriminant
coefficient b as the free decision variable.” “@FOR(N(i):
@BIN(E(i))); for i=1,…,n” defines that ‘ei’ are 0/1 integer
variables. By these function, we can define a compact model.
If we insert ‘!’ before “@FOR(N(i): @BIN(E(i)));”, it
changes the only comment, and ‘ei’ becomes non-negative
real decision variable by the default. This model is Revised
LP-OLDF. Therefore, we define the model of Revised LP-
OLDF named ‘LP’ that is the second SUBMODEL.

SUBMODEL RIP (or LP):
MIN=ER; ER=@SUM(N(i):E(i));
@FOR(N(i):
@SUM(P1(j):IS(i,j)*VARK(j)*CHOICE(k,j))

>= 1-BIGM*E(i));
@FOR(P1(j): @FREE(VARK(j)));
(or !) @FOR(N(i): @BIN(E(i)));

ENDSUBMODEL
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Third, we define Revised IPLP-OLDF. In the first stage, we
discriminate the data by Revised LP-OLDF. In the second
phase, we discriminate the restricted cases misclassified by
Revised LP-OLDF. Therefore, we must distinguish two
alternatives stored in the array ‘CONSTANT’ and Revised
IP-OLDF discriminate only the misclassified cases by the
“SUBMODEL IPLP” that is restricted Revised IP-OLDF.

SUBMODEL IPLP:
MIN=ER; ER=@SUM(N(i):E(i));

@FOR(N(i):@SUM(P1(j):IS(i,j)*VARK(j)*CHOICE(k,j))
>= 1-BIGM*E(i));

@FOR(P1(j): @FREE(VARK(j)));
@FOR(N(I)| CONSTANT(i)#GT#0:@BIN(E(I)));
@FOR(N(I)| CONSTANT(i)#EQ#0:E(I)=0);

ENDSUBMODEL

In the ‘CALC’ section, we insert the below statements for
Revised IPLP-OLDF that is a mixture model of Revised LP-
OLDF and restricted Revised IP-OLDF.

@SOLVE(LP);
@FOR(N(i):@IFC(E(I)#EQ#0:CONSTANT(i)=0; @ELSE

CONSTANT(i)=1;));
MNM=0; ER1=0; MNM2=0; ER2=0;
@FOR(P1(J):VARK(J) =0; @RELEASE( VARK( J)));
@SOLVE(IPLP);

S-SVM has two objects in (2). These two objects are
combined by defining some “penalty c.” We must define the
value of penalty in the CALC section. In this research, two
S-SVMs, such as SVM4 and SVM1, are examined. We
know the mean error rates of SVM4 are almost better than
SVM1.  If we delete the second object “c* Σei” and “-
M*e,” it becomes H-SVM that is not used in this paper.

MIN = ||b||2/2 + c* Σei ; (2)
yi* (txi b+ b0) >= 1- M*ei ;
b, xi, (txi b+ b0), yi,: same in (1)
c : penalty c, ei: non-negative decision variable.

SUBMODEL SSVM:
MIN=ER;ER=@SUM(P(J1):
VARK(j1)^2)/2+Penalty*@SUM(N(i):E(i));

@FOR (N(i): @SUM(P1(j):IS(i,j)*VARK(j)*
CHOICE(k,j)) >= 1-E(i));

@FOR (P1(j): @FREE(VARK(j)));
ENDSUBMODEL

If we insert five LDFs before the ‘CALC’ section, we can
easily discriminate the original data by five LDFs.

C. Discrimination of the Iris Data by LINGO

We can discriminate the iris data by MP-based LDFs
using “SETS, DATA, five SUBMODELs, CALC, and
second DATA” sections. In the ‘SETS’ section, “P, P1, N
and ERR(MS)” are one-dimensional sets, element numbers
of those are 4, 5, 100 and 15 defined in ‘DATA’ section. Set
‘P1’ has one-dimensional array ‘VARK’ that stores the
discriminant coefficient of one discriminant model. Set ‘N’
has two one-dimensional arrays. ‘E’ stores the 100 binary

integer values of ‘ei’ and ‘CONSTANT’ stores 100
discriminant scores. “MS” has the two one-dimensional
arrays. ‘NM’ and ‘ZERO’ store the number of
misclassifications (NM) and the number of cases on the
discriminant hyperplane. If we discriminate the data by RIP,
‘NM’ column shows MNMs of 15 models. From ‘ZERO’
column, we can confirm Revised IP-OLDF is free from the
Problem1. Because other LDFs cannot avoid the Problem1,
all LDFs must check these numbers. Now, we cannot trust
the output of NMs by statistical LDFs. ‘VARK100’ stores
15 coefficients of Revised IP-OLDF.

MODEL:
SETS:
P; P1: VARK; P2; N: E, CONSTANT; MS: NM, ZERO;
D(N, P1):IS; MB(MS, P1):CHOICE;
VP(MS, P1):VARK100;

ENDSETS
DATA:

P=1..4; P1=1..5; N=1..100; MS=1..15;
CHOICE, IS = @OLE( );

ENDDATA

! Here, insert six SUBMODELs (LDFs).

CALC:
@SET('DEFAULT'); @SET('TERSEO',2);

K=1; G=1; LEND=@SIZE(MS);
@WHILE(K#LE#LEND:
@FOR( P1( J): VARK( J) = 0;
@RELEASE( VARK( J)));NM=0; Z=0; Penalty=10000;
@SOLVE(RIP); !Change the submodel name.;
@FOR(P1(J1): VARK100(@SIZE(MS)*(G-1) +K, J1)

=VARK(J1)*CHOICE(k,J1));
@FOR(n(I): CONSTANT(i)= @SUM(P1(J1): IS(i,J1)

*VARK(J1)*CHOICE(k,J1)));
@FOR(n(I): @IFC(CONSTANT(i) #EQ#0: Z=Z+1));
@FOR(n(I): @IFC(CONSTANT(i) #LT#0: NM=NM+1));

NM(K)=NM; ZERO(K)=Z; K=K+1);
ENDCALC
DATA:

@OLE( )=NM, ZERO, VARK100;
ENDDATA
END

III. THE THEORY

A. The Method Outlook

In this paper, we proposed the Method, as follows [17].
1) Let n be the number of cases and p be the number of

variables including the intercept yi (yi = 1 for class1; yi = -1
for class2). We copy the original data (n-cases by p-
variables) 100 times and generate pseudo-population
sample (100*n cases by p-variables).

2) We add the random number to this sample (100*n
cases by (p+1)-variables) and sort it in ascending order by
the random number. We divide this sample by 100 sub-
samples and add the sub-sample number from 1 to 100.
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3) We use 100 sub-samples as the training samples (n
cases by (p+1)-variables) and the pseudo-sample as the
validation sample (100*n cases by (p+1)-variables). This
operation implies us that we re-sample 100 sub-samples
from the pseudo-population. If we consider one sub-sample
is the training sample, and other 99 sub-samples is the
validation sample, we cannot estimate results uniformly
because 100 validation samples are different. Moreover, if
we fix the validation sample uniquely, we can control the
training samples and validation sample very easy. For
example, we can validate the validation sample generated
by the original data because both samples are the same
distribution. Moreover, we can get 95% CIs of the
discriminant coefficients and propose the best model as
model selection procedure instead of LOO procedure.

B. How to generate the re-sampling sample and prepare
the data in Excel file

We generate re-sampling sample from the original iris
data and evaluate seven LDFs by the Method. Each species
compose of 50 cases with 4-variables and classifier yi. We
copy each species 100 times. We add the random number (R
column) as the seventh variable and sort it in ascending order
in Table 3. Variable names “A1:X1 and R” are located in
cells “A1 and G1.” We consider this dataset is a pseudo-
population and the validation sample that has the same
statistics values, such as the average and range as the original
data. We can control many research datasets and reduce
mistakes.

TABLE III. RESAMPLING SAMPLE: ES

A1:X1 B1:X2 C1:X3 D1X4 yi
SS R

x(1,1) x(2,1) x(3,1) x(4,1) 1 1

1 ….

1 1

1 ….

1 100

1 …

x(1,5000) x(2,5000) x(3,5000) x(4,5000) 1 100

-x(1,5001) -x(2,5001) -x(3,5001) -x(4,5001) -1 1

-1 ….

-1 1

-1 ….

-1 100

-1 …

-x(1,10000) -x(2,10000) -x(3,10000) -x(4,10000) -1 100

Next, we divide this sample into 100 sub-samples and
add the sub-sample number (SS column) from 1 to 100 as the
sixth variable. Each sub-sample consists 100 cases and seven
variables in Table 3. Six variables excluding ‘R’ are input by
“ES= @OLE ();” in the ‘DATA’ section of next ‘D.’ The

‘@OLE ( )’ function input the data ES on Excel range name,
such as “A2: F10001” if the cell of ‘X1’ is located in `A1’,
and define the LINGO array ES. The 100 sub-samples play
the training samples, and a total re-sampling sample is used
as the validation sample. We consider the validation sample
is a suede-population, and the training samples are the
samples from the suede-population. We should fix the
validation sample uniquely and evaluate the training
samples by suede-population.

C. Set Notation Model by LINGO

Fisher never formulated the equation of SE for error rate
and discriminant coefficient. If we discriminate the data by
the Method, we can easily calculate the 95% CIs of error
rates and discriminant coefficients. We obtain the
Philosopher’s Stone to validate seven LDFs by six small
datasets. ‘SET’ section defines six one-dimensional sets,
such as P, P1, P2, N, MS, and G100. “P, P1, and P2” are the
number of independent variables, the number of
(independent variables + intercept) and the number of
(independent variables + intercept + sub-sample No.),
respectively. These dimensions of elements in ‘DATA’
section are 4, 5 and 6, respectively. Only ‘P1’ defines one-
dimensional array named ‘VARK’ with 5-elements that
store the discriminant coefficients of the training sample.

Five sets “N, N2, MS, MS100 and G100” are one-
dimensional sets, the elements of those are 100, 10000, 15,
1500 and 100 elements, respectively. Two-dimensional set
‘D(N, P1):’ with 100*5 has the same size array ‘IS’ that
stores the 100 sub-sample with p-variables as the training
samples. “D2(N2, P2):” with 10000*6 has the same size
array ‘ES’ that stores the resampling-sample as the
validation sample. The set ERR(MS, G100) with 15*100
has four arrays. The IC and IC_2 store MNM or NM in the
training and validation samples. The EC and EC_2 store the
number of cases on the discriminant hyperplanes in both
samples. The set SS(N2, MS) with 10000*15 has the array
SCORE2 that stores the discriminant scores of 15 models.
The set VVV(MS100, P2) with 1500*6 has the array
VARK100 that stores 1500 coefficients of the 100 training
samples.

In the DATA section, we define nine parameters values
and input two arrays, such as CHOICE and ES. The
‘CHOICE’ stores the pattern of 15 models showed in Table
2. The ‘ES’ stores the validation sample in Table 3. In
CALC section, the training sample IS with 100*5 chooses
100 rows of ES by the sub-sample number (SS column).

D. Total Model with CALC Section by LINGO

After we define the “SETS and DATA” section, we insert
six LDFs described in ‘B’ of Section 2. We divide two parts
of the ‘CALC’ section. The first part is the default setting of
output, global search, QP, multi-thread, etc.

MODEL: The Method for the Iris data;
SETS:

P; P2; P1: VARK;
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N:; N2: ; MS : ; MS100 : ; G100 :;
D (N, P1):IS;
D2 (N2, P2):ES;
MB (MS, P1): CHOICE;
ERR(MS, G100):IC, IC_2, EC, EC_2;
SS(N2, MS):SCORE2;
VVV(MS100, P2):VARK100;

ENDSETS
DATA:

P=1..4; P1=1..5; P2=1..6;
N=1..100; N2=1..10000;
MS=1..15; G100=1..100; MS100=1..1500 ;
BIGM=10000; ! for SVM4;
CHOICE, ES=@OLE();

ENDDATA
! Here, insert five LDFs described in ‘B’ of Section 2.

CALC:
! Reset all options to default; @SET('DEFAULT');
! @SET('TERSEO',1);!Allow for minimal output;
@SET('TERSEO',2);
!Global solver (1:yes, 0:no); @SET('GLOBAL',1);
!Quadratic recognition (1:yes, 0:no);@SET('USEQPR',1);
!Multisarts (1:Off, >1 number of starts);
@SET('MULTIS',1);
!Number of threads; !@SET('THRDS',4);
!Print output immediately (1:yes, 0:no);
@SET('OROUTE',1);
!No need to compute dual values; @SET('DUALCO',0);

K=1; Lend=@SIZE(MS);
@WHILE (K#LE#Lend: f=1;
@WHILE (f#LE#100:

@FOR(D(i, j): IS(i, j)=ES( @SIZE(N)*(f-1)+i, j));
MNM=0; ER1=0;MNM2=0;ER2=0;

@FOR( P1( J): VARK( J) = 0;@RELEASE( VARK( J)));

@SOLVE ( RIP );! Set the submodel name here;

@FOR(P1(j): VARK100(100*(k-1)+f,j)=VARK(j));
VARK100 (100*(k-1)+f, @SIZE(P2))=K;

@FOR(n(l):SCORE(l)=@SUM(P1(j):IS(l,j)*VARK(j)*
CHOICE (k, j)));

@FOR(n2(nn):SCORE2(nn,K)=@SUM(P1(j):ES(NN, j)*
VARK(j)*CHOICE(k, j)));

@FOR(n(l): @IFC(SCORE(l)#LT#0: MNM=MNM+1));
@FOR(n2(nn):

@IFC(SCORE2(nn,k)#LT#0:ER1=ER1+1 ));
@FOR(n(l):@IFC(SCORE(l)#EQ#0: MNM2=MNM2+1));
@FOR(n2(nn):@IFC(SCORE2(nn,k)#EQ#0:ER2=ER2+1 );
IC(K,f)=MNM;EC(k,f)=ER1;
IC_2(K,f)=MNM2;
EC_2(K,f)=ER2;
f=f+1);

ENDCALC

DATA:
@OLE( )=IC, EC, IC_2, EC_2, VARK100, SCORE2;

ENDDATA
END

The second part of CALC section controls the
optimization models that consist two loops. The big loop is
repeated 15 iterations by “K=1,…,15.” The small loop is
repeated 100 iterations by “f=1,…,100.” If we set
“@SOLVE (RIP);," we can discriminate the iris re-sampling
sample by Revised IP-OLDF. If we replace this command
by “`SOLVE(SSVM);,” S-SVM discriminate the datasets.
We can choose SVM4 or SVM1 by setting “Penalty=10000
or 1” in Calc section. In the second DATA section, we
output six results on Excel arrays. “IC and EC” are the 100
MNMs in the training samples and 100 NMs in the
validation samples. “IC_2 and EC_2” are the 100 numbers
of cases on the discriminant hyperplane in the both samples.
From these figures, we calculate the mean error rates, such
as “M1 and M2” in the both samples. ‘VARK100’ are the
1500 discriminant coefficients of 15 models. We can
calculate the 95% CI of discriminant coefficients.
“SCORE2” are the 10000 discriminant scores.

IV. RESULTS OF IRIS DATA

A. Results of Original Data

We investigate all combinations of discriminant models
(15 = 24 - 1). Table 4 shows the 15 models from 4-variables
model to four 1-variable models. The column ‘SN’ is the
sequential number of models. The column ‘Var.’ denotes
the suffix of variable name. The column ‘RIP’ is the MNMs
of Revised IP-OLDF. We can confirm “MNM
monotonously decreases (MNMk ≥ MNM(k+1)).” For
example, the forward stepwise technique of the regression
analysis chooses the variable as follows: X4, X2, X3, and
X1 in this order. The MNM of four models decreases as
follows: 6, 3, 2, 1. We can confirm the monotonous
decrease of MNM by other model sequences, such as X1,
X2, X3, X4 in this order. The MNM of four models
decreases as follows: 37, 25, 2, 1. Therefore, we cannot
choose the model having minimum MNM as the best model
because we always choose the full model. Six discriminant
functions represent the following abbreviations in the table.
SVMs are SVM4/SVM1. Revised LP-OLDF is LP. Revised
IPLP-OLDF is IPLP. The logistic regression is ‘Logi.’
Fisher’s LDF is LDF. Six columns after ‘RIP’ are the
difference (Diff2) between (NMs of seven discriminant
functions – MNM). We omitted Revised IPLP-OLDF from
the table because NMs are the same as MNMs. All NMs of
each model should be greater than equal to MNM because
MNM is the minimum NM in the training samples. The last
row shows the number of models with a minus value of
‘Diff2’. Revised LP-OLDF has two minus values. This fact
means that Revised LP-OLDF is not free from the
Problem1. We cannot judge the Problem1 by models having
“Diff2 >= 0,” because we must check ‘ZERO.’ Although
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this data is expected to give the right results for Fisher’s
LDF, QDF and RDA, these functions based on variance-
covariance matrices are not superior to MP-based LDFs.
Bold numbers of ‘Diff2s’ among each seven discriminant
functions are maximum values. There are 23 maximum
values among Fisher’s LDF, QDF and RDA. On the other
hand, there are 15 maximum values among SVM4, SVM1,
and Logi. Roughly speaking, we judge Fisher’s LDF, QDF
and RDA are inferior to other LDFs, although this judgment
is not clear.

TABLE IV. MNM AND EIGHT DIFF2

SN Var. RIP SVMs LP Logi. LDF QDF RDA

1 1,2,3,4 1 1/0 1 1 2 2 2

2 2,3,4 2 0/2 0 0 2 2 1

3 1,3,4 2 0/0 0 0 1 1 2

4 1,2,4 4 3/1 3 0 1 2 1

5 1,2,3 2 2/4 2 2 5 6 4

6 2,4 3 1/1 3 0 0 2 2

7 3,4 5 3/2 1 1 3 0 2

8 1,3 4 1/3 1 0 2 2 2

9 1,4 6 1/1 0 0 1 0 0

10 2,3 5 0/0 1 0 1 1 1

11 1,2 25 2/2 2 0 0 4 4

12 4 6 0/0 0 0 0 0 0

13 3 7 0/0 0 0 1 0 0

3 1 37 0/0 -3 0 0 3 3

15 2 27 5/5 -2 0 5 5 5

- 0 2 0 0 0 0

1) Diff2 of Revised IPLP-OLDF is omitted from the table because all
values are zero.

2) Column ‘SVMs’ denotes both values of SVM4/SVM1.

We cannot select the best model by MNM or error rate
in the training samples. Until now, we have two options to
choose a good model from the original data or training
sample. The first option is the LOO procedure. The second
option is to evaluate models by the model selection statistics
of regression analysis. Table 5 is the result of all possible
combination of models. The column ‘Model’ shows 15
models from 4-variables model to 1-variable model. The
column ‘p’ indicates the number of variables. Within the
same ‘p,’ models are descending order of “R-square (R2)”.
The column ‘Rank’ is the ranking within the same number
of ‘p.’ This procedure is very powerful because we can
overlook all models and simulate the forward and backward
stepwise techniques. Both techniques choose the same
models, such as: (X4) -> (X4, X2) -> (X4, X2, X3) -> (X4,
X2, X3, X1). Therefore, we can easily choose a good model
among these four models. Model selection statistics, such as

AIC, BIC, and Cp statistics, choose the full model as a good
model. However, these statistics usually select different
models by other data. Therefore, we cannot usually decide a
good model by these statistics uniquely.

TABLE V. THE RESULT OF ALL POSSIBLE COMBINATION

Model p Rank R2 AIC BIC Cp

1,2,3,4 4 1 0.78 143.49 158.22 5.00

2,3,4 3 1 0.77 148.70 161.09 10.37

1,3,4 3 2 0.76 151.80 164.18 13.59

1,2,4 3 3 0.73 163.89 176.27 27.16

1,2,3 3 4 0.70 174.19 186.58 40.09

2,4 2 1 0.72 163.52 173.52 27.39

3,4 2 2 0.72 165.00 175.00 29.19

1,3 2 3 0.70 172.71 182.71 39.07

1,4 2 4 0.69 176.43 186.43 44.12

2,3 2 5 0.63 192.14 202.14 67.61

1,2 2 6 0.25 263.97 273.97 237.44

4 1 1 0.69 174.27 181.83 42.12

3 1 2 0.62 193.68 201.25 71.72

1 1 3 0.24 262.02 269.59 236.18

2 1 4 0.09 280.07 287.63 301.87

B. Results by the Method

Table 6 shows the results of 15 models by the Method.
The first 15 models of RIP show all possible combination of
models from a 4-variables model to a 1-variable model
shown in column ‘Model’. “M1 and M2” columns are the
mean of error rates in the both samples. ‘M1’ decreases
monotonously the same as MNM, because M1 is the average
of 100 MNMs. Therefore, M1 of the full model is always
minimum value theoretically. We can confirm this fact by
the values of M1 in the table. Although M2 of the full model
happen to be the minimum value, and it is 2.72, this may be
caused by the reason this data has only four variables. We
consider the model with minimum M2 is the best model. We
claim the best model has good generalization ability. The
column ‘Diff’ is the difference between (M2 - M1). Because
a 1-variable model (X4) has a minimum value of ‘Diff,’
these statistics is not useful to choose the best model. We
confirmed this fact by many types of research.

We summarize 15 models of other LDFs in two rows.
The first row corresponds to the full model. All LDFs choose
the full model as their best models. Those M2s are 3.03, 3.00,
2.98, 2.70, 3.07, and 3.18 %, respectively. The second row
corresponds to the model with minimum ‘Diff.’ Last two
columns, such as “M1Diff & M2Diff” are the differences
between (M1/M2 of other LDFs – those of RIP). If we focus
on ‘M2Diff’ of the full model, those are 0.31, 0.28, 0.26, -
0.02, 0.35 and 0.46 % higher than Revised IP-OLDF,
respectively. Therefore, six LDFs are not so bad than
Revised IP-OLDF. The values of ‘M2Diff’ are almost less
than those of ‘M1Diff.’ This fact may imply that Revised IP-
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OLDF over-fit the training sample. We observed this defect
only in this data. The column ‘Diff’ is the difference
between (M2-M1). We misunderstand the model with a
minimum value of ‘Diff’ has good generalization ability. If
we check the ‘Diff,’ we can understand this claim is not
right. Especially, although ‘Diff’ of Fisher’s LDF is -0.42%,
this result is caused by the high value of M1, such as
40.72%. We claim the full model of Revised IPLP-OLDF
has good generalization ability among seven LDFs. CPU
times showed in full model rows tell us Fisher’s LDF and
logistic regression are slower than MP-based LDFs.

TABLE VI. THE COEFFICIENTS OF SEVEN LDFS

RIP M1 M2 Diff. Model

1 12m11s 0.56 2.72 2.16 X1, X2, X3, X4

2 0.96 3.03 2.07 X2, X3, X4

3 1.37 3.42 2.05 X1, X3, X4

4 2.68 5.07 2.39 X1, X2, X4

5 1.55 3.70 2.15 X1, X2, X3

6 3.61 5.79 2.18 X2, X4

7 2.44 4.39 1.95 X3, X4

8 2.91 4.82 1.91 X1, X3

9 4.23 5.69 1.46 X1, X4

10 4.29 7.03 2.74 X2, X3

11 22.74 27.27 4.53 X1, X2

12 5.40 6.08 0.68 X4

13 5.88 7.25 1.37 X3

14 25.75 28.24 2.49 X1

15 35.67 38.93 3.26 X2

SVM4 M1 M2 Diff. M1Diff. M2Diff.

1 8m43s 1.21 3.03 1.82 0.65 0.31

12 6.00 6.06 0.06 0.60 -0.02

SVM1 M1 M2 Diff. M1Diff. M2Diff.

1 8m42s 2.23 3.00 0.77 1.67 0.28

12 6.16 6.28 0.12 0.76 0.20

LP M1 M2 Diff. M1Diff. M2Diff.

1 4m20s 1.15 2.98 1.83 0.59 0.26

12 5.74 5.83 0.09 0.34 -0.25

IPLP M1 M2 Diff. M1Diff. M2Diff.

1 16m39s 0.56 2.70 2.14 0.00 -0.02

12 5.44 6.08 0.64 0.04 0.00

Logistic M1 M2 Diff. M1Diff. M2Diff.

1 18m 1.36 3.07 1.71 1.50 0.35

15 40.68 40.30 -0.38 5.01 1.37

LDF M1 M2 Diff. M1Diff. M2Diff.

1 16m 2.76 3.18 0.42 2.20 0.46

15 40.72 40.30 -0.42 5.05 1.37

Table 7 shows the three percentiles of the discriminant
coefficients and the intercept. To fix the “intercept=1,” we
divide the original five coefficients by the value of (original

intercept + 0.00001) to avoid the zero divide if original
“intercept=0.” By fixing the intercept, we can understand
the meaning of the 95% CI of coefficients clearly [26].
Before adjusting the intercept, we struggle many 95% CI of
coefficients include 0 because the signs of intercept almost
have both plus and minus values [24]. Although Shinmura
[17] proposed this idea, we could not obtain good results
because we did not fix the intercept. Four 95% CI of the full
model of Revised IP-OLDF includes zero, and we cannot
reject the null hypothesis at 5% level. On the other hand, we
can reject three coefficients of a 3-variables model (X2, X3,
X4) at 5% level.

TABLE VII. THE 95% CI OF LDFS

% X1 X2 X3 X4 C

97.5 4.55 5.35 9.94 12.31 1

50 0.06 0.11 -0.23 -0.41 1

RIP 2.5 -5.59 -11.94 -6.93 -6.34 1

97.5 1.25 -0.06 -0.14 1

50 0.18 -0.15 -0.54 1

2.5 0 -0.53 -1.36 1

If we choose the medians as the coefficient, we get the LDF
in (3). Although we judge the full model of Revised IP-
OLDF is the best model, the 95% CI of Revised IP-OLDF
tells us this model may be redundant and suggest a 3-
variables model as a useful model. There is a mismatch
between our judgment of the model selection using M2 and
the 95% CI of discriminant coefficients in the best model.
We usually experienced this uncertainty in inferential
statistics, also.

RIP= 0.18*X2-0.15*X3-0.54*X4+1. (3)

We cannot reject four coefficients of Revised LP-OLDF
in (4), three coefficients of Revised IPLP-OLDF in (5), and
two coefficients of SVM4 in (6). We can reject only four
coefficients of SVM1 in (7). If we check a 3-variables
model, we can reject three coefficients of four LDFs the
same as Revised IP-OLDF. Before we did not fix the
intercept, we lost many research time and had no knowledge
about the discriminant coefficients. To summarize these
results, we cannot obtain clear results of the 95% CI of the
coefficient.

LP = 0.06*X1+0.13*X2-0.21*X3-0.46*X4+1 (4)
IPLP = 0.52*X1+0.11*X2-0.21*X3-0.39*X4+1 (5)
SVM4= 0.06*X1+0.13*X2-0.22*X3-0.43*X4+1 (6)
SVM1=0.08*X1+0.11*X2-0.28*X3-0.28*X4+1 (7)

V. CONCLUSION

In this research, we specified how to discriminate the
original data and re-sampling data by the Method. We can
compare five MP-based LDFs and two statistical LDFs. We
obtain remarkable results.
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1) We propose the new model selection procedure as the
best model of each LDFs. We can easily compare and
evaluate seven LDFs by the best models because we can
evaluate seven LDFs by the minimum mean values of M2.
In many evaluations, Revised IP-OLDF and Revised IPLP-
OLDF is the best. Next, logistic regression is superior to
SVM4 in many trials. M2 of SVM1 is almost greater than
M2 of SVM4. Fisher’s LDF are almost the worst except for
the iris data.

2) Next, IP-OLDF found the Swiss banknote data is
LSD, and 16 models including (X4, X6) are linear separable
models. Other 47 models are not linear separable models.
We can conclude H-SVM and Revised IP-OLDF can
recognize LSD theoretically. Other LDFs are not free from
the Problem 2. It is hard for us to find LSD occasionally.
We locate the pass/fail determination of exam scores give us
good research data for linearly separable models [19]. By
these examinations, the error rates of Fisher’s LDF are 20%
worse than Revised IP-OLDF with MNM=0. Therefore, we
claim the discriminant functions based on the variance-
covariance matrices are fragile for the discrimination of data
that has many cases nearby the discriminant hyperplane. We
had better re-evaluated the old principal researchers
discriminated by these functions.

3) Many statisticians struggle to select feature of
microarray datasets because it has many variables (genes)
(Problem5). Only Revised IP-OLDF can select feature
naturally and shows that high dimensional gene space
consists several small disjoint unions of gene sub-spaces
those are linearly separable. Therefore, we can analyze these
small gene sub-spaces by the common statistical methods
[27].

4) The Method solves Problem4 for six MP-based LDFs
instead of LOO [6]. Revised IP-OLDF solves Problem1, 2
and 5. H-SVM solves Problem2. Other LDFs can not solve
Problem1and Problem2 theoretically.

5) We should not use the iris data for evaluation of
discriminant analysis because it cannot tell us the
differences of discriminant functions.
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