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Abstract—Transport modeling, in general, and freight
transport modeling, in particular, are becoming important
tools for investigating the effects of investments and policies.
Freight demand forecasting models are still in an
experimentation and evolution stage. Nevertheless, some recent
European projects, like Transtools or ETIS/ETIS Plus, have
developed a unique modeling and data framework for freight
forecast at large scale to avoid data availability and modeling
problems. Despite this, important projects using these
modeling frameworks have provided very different results for
the same forecasting areas and years, giving rise to serious
doubts about the results quality, especially in relation to their
cost and development time. Moreover, many of these models
are purely deterministic. The project described in this article
tries to overcome the above-mentioned problems with a new
easy-to-implement freight demand forecasting method based
on Bayesian Networks using European official and available
data. The method is applied to the Transport Market study of
the Sixth European Rail Freight Corridor
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I. INTRODUCTION AND GOALS

Nowadays, there is a large interest in developing a
mathematical tool in the field of freight transport modeling
for investigating the effects of investments and policies,
involving large number of resources. However, freight
demand forecasting models are still in the evolution stage
[21] for the following reasons:

• lower seniority (about 10 years) than the respective
passenger models;

• high number of decision-makers to consider
(companies, shippers, carriers, logistics operators,

port operators, deposits, etc.);

• variety of products transported (in terms of
categories, dimensions, weight, value, etc.);

• high variability in decision-making processes;

• limited availability of information (data often

aggregated, dated, partial, heterogeneous, etc.).

To take into account the complexity of freight transport
system, researchers have proposed a wide array of models
belonging to the aggregate or disaggregate model types [1]

and to three different fields: the modelling of the relationship
between transportation and economic activity, logistic
decision making and processes and the link between traffic
flows and networks [2].

Recently, European projects like Transtools [3]
ETIS/ETIS Plus [4][22] have developed a unique modeling
and data framework to forecast freight flows at large scale to
avoid data availability and modeling problems [20]. Despite
this, very important projects, using these modeling
frameworks, have provided very different results for the
same forecasting areas and years, giving rise to serious
doubts about the results quality, especially in relation to their
cost and development time. For example, there is a very high
divergence between the results of the two projects Prog-
Trans and TransTools for truck flows (Germany in
TransTools has an increase in freight transport tonnage in
2005-2020 of about 10% while in Prog-Trans this value is
about 50%) [5].

This is a general problem for freight modeling and
forecasting, with a high complexity analysis level applied to
a very large scale, bringing uncontrollable errors.

Moreover, many of these models are purely deterministic
in results, giving no information about their estimation errors
or the probability of the occurrence of forecast values. Other
problems include forecasting different scenarios with very
long-term simulations. We think that projects of
national/European importance would benefit from the
contribution of probabilistic data-driven models that take
into account the uncertainties and variability of attributes and
scenarios, especially for long-term estimates, in order to have
more truthful decision-support.

There are a lot of freight demand models [15], with some
methods similar to the one adopted here, like the use of
Trend Analysis/Time series or Neural Networks [16], but
Bayesian Networks have the advantage to allow the
introduction in the model of expert knowledge and the
possibility to verify the results [23] that are in the form of an
easy-to-understand oriented causal graph among variables
and not complex or black-box relations, like with Neural
Networks [6].

The objective is mainly to understand quantitative and
qualitative aspects of future traffic demand and evaluate
possible future scenarios according to most relevant and
influencing variables of the freight market [7]. We also want
to overcome the above-mentioned problems with a new
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freight demand forecasting framework based on Bayesian
Networks and using European official and available data.
The model has to be easy to implement, not onerous and give
probabilistic results in less time, with an estimation error
similar to the more complex methods. It should be capable of
giving the order of magnitude of forecasted freight flows for
strategic decision making at a very early phase of policy
development, and be complementary to more traditional,
more precise, but much more expensive freight models for
later stages of analysis.

Section II, of this paper deals with a new methodology
for freight demand forecast, which is divided into four main
explanatory parts. The structure of the study is referred in
part A; part B is related to preliminary data analysis; part C
concerns decision tree models used in multivariate
classification; lastly, the Bayesian network forecasting model
is described in part D. Finally, Section III is for comments,
conclusions and insights on future developments.

II. A NEW METHODOLOGY FOR FREIGHT DEMAND

FORECAST

Within our study, we applied the general demand forecast
methodology to freight flows within the Transport Market
study of the Sixth European Rail Freight Corridor. The
European parliament and the Council adopted on 22
September 2010 the EU Regulation 913/2010 concerning a
European rail network for competitive freight. Within this
framework, the EU identifies nine rail corridors; in
particular, Rail Freight Corridor.6 (RFC6) allows railway
connections among Spain, France, Italy, Slovenia and
Hungary, also providing links with rail freight corridors 1, 2,
3, 4, 5 and 7 (see violet line in Fig.1).
Regulation 913/2010 sets two main goals:

• To develop the rail freight corridors in terms of

infrastructure capacity and performance, to meet
market demand on both quantitative and qualitative

layers;

• To lay the groundwork for the provision of good
quality freight services, to meet customer

expectation.

Regulation 913/2010 requires a Transport Market Study
(TMS) for each freight corridor, developed according a clear
“corridor perspective”, with a coherent structure for the
entire corridor, and not as a collection of studies focused on
individual Member States. The Transport Market Study is
intended as the basis for the assessment of the customer
needs.

The main goal of the TMS for RFC6 is to provide a clear
understanding of the current conditions of the multimodal
freight market along the corridor as well as to develop short
and long term traffic forecasts (volumes and modal
split/modal shift), also including the effect of actions and
measures related to the implementation of the Corridor itself.

Consequently, the Transport Market Study is aimed at:
• Analyze the current situation in terms of transport

demand and supply and economic context;

• Analyze the transport market in terms of customer
needs and deliver information on modal choice

process;

• Provide transport demand projections after the

implementation of the corridor itself.

Figure 1. Rail Freight Corridor 6 (RFC6).

A. Structure of the study

To this, the study is organized in three Phases:
• Phase 1: Analysis of the present situation;
• Phase 2: Survey (Releaved Preferences-RP and

Stated Prefereces-SP surveys);
• Phase 3: short and long term transport demand

forecasts.
Phase 1 provides direct final results and creates the

background to structure, design and implement Phase 2 and
Phase 3. In particular, Phase 1 is aimed at providing a sound
analysis of the present socio-economic situation and of the
future scenario in the Countries crossed by Corridor 6 within
the wider EU framework, making clear the full picture and
deriving first qualitative policy indications and guidelines.

Consequently, Phase 1 provides information in terms of:
• Present and future economic magnitude of

Countries and/or regions along Corridor 6;
• Present transport demand across the Corridor

(macro-flows among Countries and/or regions,
including flows to areas not directly served by the
Corridor itself);

• Future transport demand (at the macro-level) in
terms of likelihood of increase (macro potential
demand and macro role of the railway transport in
terms of modal split, volumes and values of carried
goods based on the evolution of the future
competitive positioning of countries crossed by
Corridor 6).
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Phase 2 aims to engineer and implement surveys on the
decision path in the choice of transport mode. In particular,
the surveys and their analysis provides a complete picture of
the main factors affecting the choice of transportation, like:

• transport cost;
• travel time;
• risk of delay in delivery;
• risk of damage or theft.

The surveys are aimed at several transport market actors:
• manufacturing firms which directly organize the

shipping / receiving of goods;
• intermediaries which organize the transport of

goods on behalf of producers and/or final users;
• operators of rail transport networks and intermodal

centers.
Based on results of Phases 1 and 2, Phase 3 provides

estimates of freight transport that could be carried out on
Corridor 6 at the different time horizons (2015 and 2030).

Phase 3 is divided into two distinct steps:
• estimate of the total (road and rail) freight transport

demand in 2015 and 2030;
• estimate of the modal split road / iron as a function

of hypothetical scenarios characterized by the
variation of the main features of the transport (cost,
time, delay, damage / theft).

The present paper is then aimed at explaining key
quantitative and qualitative analysis of the Rail Freight
Corridor.6 Transport Market Study,the methodology and its
detailed results regarding the datamining methods used for
actual state analysis (Phase 1) and for the freight transport
model implementation (Phase 3-first step).

The key steps of the different activities based on the
datamining techniques performed and described here are:

• the input data analysis;
• the Decision Tree Induction model analysis [8]

(Witten and Frank, 2000);
• the final freight demand forecasting by Bayesian

Network models ([9] and more particularly [10],
[18] for their use as spatial strategic forecasting
tools).

These steps are logically connected. The input data
analysis allows to know how each input variable influences
the actual freight flow dynamics in terms of relative growth
(i.e. percentage variation between reference years 2005 and
2010) to understand which variables are directly (with the
uni-variate analysis) or indirectly (bi-variate and tri-variate
analysis) related to it. The Decision Tree classification
refines this preliminary analysis with a complex multi-
variate elaboration having as target variable always the
freight flow dynamics (the evolution of the freight flows
between 2005 and 2010). Finally, the Bayesian Network
models use as input data only the most influencing variables
in order to avoid irrelevant data in the model, resulting in
errors and reduction in the forecasting capacity.

The Bayesian Network models were finally used to
forecast freight flows in different scenarios. More precisely,
the final traffic forecasts were carried out according to three
different estimates of GDP growth for the study area: basic,
optimistic, conservative. The demand forecasting models
were developed with reference to two different geographic
areas: at first, the analysis were conducted with reference to
the mobility data of whole European O/D Matrix, later it was
decided to focus only on the area interested by Corridor 6
and to calibrate the model accordingly in order to obtain
more reliable estimates.

B. The Preliminary Data Analysis

A first socio-economical analysis was made to evaluate
and estimate the scenario for important input variables. For
example, population and its evolution can be considered as a
proxy of future trends for goods production and demand. The
total population is about 184 million, against a European
population of about 521 million. Corridor countries
population has been growing faster (CAGR +0,8%) than
Europe as a whole (CAGR +0,4%), despite a negative trend
in Hungary (Table 1).

TABLE I. GROSS DOMESTIC PRODUCT (BN €) AND POPULATION (M)
(SOURCE: ELABORATIONS ON EUROSTAT DATA)

GDP Population

CAGR % CAGR %

(2003-11) (2003-11)

Spain 1.087,70 1.063,40 3,9 45,3 46,2 1,3

France 1.933,20 1.996,60 2,9 64 65 0,6

Italy 1.575,10 1.579,70 2,1 59,6 60,6 0,7

Slovenia 37,3 36,2 4,3 2 2,1 0,3

Hungary 105,5 99,8 3,8 10 10 -0,2

Europe 13.152,80 13.499,50 3,1 515,9 521 0,4

Corridor 4.738,90 4.775,60 2,9 181 183,9 0,8

Zone 2008 2011 2008 2011

Despite the negative impact of the economic downturn
on the relevance of historical trends, medium term forecasts
(in particular at year 2030) can provide a higher level of
consistency, neutralizing short term fluctuations. At year
2030, in real prices GDP grows (base case) of about 28%
both for countries crossed by Corridor 6 and for Europe, but
with significant internal differences (France and Spain grows
more; Italy, Slovenia and Hungary grows less). GDP growth
rate is assumed according specific annual forecasts (made
available in winter 2013) for year 2012, 2013 and 2014 and
on average trends since 2015 on (average official long term
trends to 2060, to neutralize short terms fluctuations) (Table
2 and 3).

To cope with uncertainty in long term forecasts, low and
high sensitivity scenarios (GDP growth higher or lower than
in base case) are introduced.

The statistical initial data analysis was carried out on the
whole road and rail ETIS Origin-Destination Freight Flows
Matrix in Europe for 2005 and 2010 years. Origins and

102Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-510-4

DATA ANALYTICS 2016 : The Fifth International Conference on Data Analytics



Destinations in this database are known at the NUTS 2
level.

TABLE II. GROSS DOMESTIC PRODUCT GROWTH RATES (AVERAGE %
CHANGE OVER THE PREVIOUS YEAR) (SOURCE: ELABORATIONS ON DG

EC.FIN. DATA)

Zone 2012 2013 2014 2015 2020 2025 2030

Spain (F) -1,40% -1,40% 0,80% 1,60% 1,60% 1,60% 1,60%

France (G) 0,00% 0,10% 1,20% 1,70% 1,70% 1,70% 1,70%

Italy (H) -2,20% -1,00% 0,80% 1,30% 1,30% 1,30% 1,30%

Slovenia (I) -2,00% -2,00% 0,70% 1,30% 1,30% 1,30% 1,30%

Hungary (J) -1,70% -0,10% 1,30% 1,20% 1,20% 1,20% 1,20%

Europe (K) -0,20% 0,20% 1,60% 1,40% 1,40% 1,40% 1,50%

Corridor (L) -1,10% -0,60% 1,00% 1,50% 1,50% 1,50% 1,50%

TABLE III. GDP GROWTH RATES BY SCENARIO (AVERAGE % CHANGE;
2011-X) (SOURCE: ELABORATIONS ON DG EC.FIN. DATA)

Zone Low Basic High Low Basic High

Spain (F) -0,50% -0,10% 0,30% 0,80% 1,20% 1,70%

France (G) 0,50% 0,70% 1,00% 1,00% 1,50% 1,90%

Italy (H) -0,70% -0,30% 0,10% 0,60% 1,00% 1,40%

Slovenia (I) -1,00% -0,50% -0,10% 0,50% 0,90% 1,30%

Hungary (J) -0,20% 0,20% 0,50% 0,60% 1,00% 1,30%

Europe (K) 0,40% 0,70% 1,10% 0,90% 1,30% 1,70%

Corridor (L) -0,10% 0,20% 0,50% 0,80% 1,30% 1,70%

20302015

The original road 2005 O/D matrix has thus about
134.000 O/D pairs while the corresponding 2010 matrix has
only 102.000 O/D pairs. 88.000 O/D couples are common to
the two matrices. Taking into account only these common
data (88.000 O/D pairs), we lose around 4% of total flows
(containing also flows not interesting directly the Corridor
6). For each O/D couple an evolution rate between 2005 and
2010 could thus be calculated. Together with freight flows,
the starting data include twenty variables belonging to
different fields like economy, geography and transportation
and are summarized in Table 4.

TABLE IV. LIST OF THE INITIAL VARIABLES (IN ROSE COLOR ARE

INDICATED THE VARIABLES CHANGING FOR THE THREE SCENARIOS (BEST,
REGULAR AND WORST).

This general data analysis phase explores the freight
flow dynamics. Its correlation with the main variables, some
of which are normally used in Transport Distribution
Models (like distance, population and GDP) while others are
not included in these models but can be used in data-driven

Bayesian Network learning (for example unemployment
rate, the variation of origin export and destination import or
binary variables like the belonging to the EU) [17].

The starting data analysis is divided in three parts of
increasing complexity: orthogram, bi-variate and tri-variate
analysis. The following analyses concern only road and rail
freight flows because they are the most interesting for
Corridor 6 study area (Fig.1).

The first part of preliminary data analysis uses some
correlation tools at different complexity levels; for the
simplest part, we elaborated some bi-variate correlation
analysis, for example:

• Distance – Delta flow 2010/2005

• Population 2010 – Delta flow 2010/2005

• Unemployment 2010 – Delta flow 2010/2005

• Delta Export 2010/2005 – Delta flow 2010/2005
Increasing the complexity, we elaborated a tri-variate

analysis like for the correlation between Origin Delta GDP,
Destination Delta GDP and Delta flow 2010/2005.

Before using Datamining methods, we have also
implemented some Orthogram analysis, like for the two
following variables: UE Belonging - Delta flow 2010/2005.

The bi-variate analysis shows that correlation of freight
flow dynamics is practically absent both with the distance
between Origin and Destination (measured in kilometers on
the transportation networks), with Origin Population, with
unemployment rate at the Origin or with the Origin Export
Variation and with the Destination Import Variation (Import
and Export variations are known at the country level).

The tri-variate analysis correlates simultaneously the
freight flow variations with Origin and Destination GDP
variations. The 3D scatterplot, with a smoothing
interpolation effect (Fig. 2) indicates an overall positive
correlation between these three variables with more specific
local trends.

Figure 2. Smoothing interpolation of 3D Scatterplot between Origin and
Destination GDP growth and freight flow variation.
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For better understanding this last point, two 2D
scatterplots are extracted from the 3D diagram (Fig. 3). The
correlation is similar for the destination and origin GDP
variations. Curiously, a positive flow growth characterizes
even negative GDP variations, showing, for some countries,
an inverse correlation, which could indicate a profound
restructuring of the economy following the integration in the
European market. More than linear flow growths are to be
observed beyond 75% of GDP increase rate (more evident
for Origin than Destination).

Figure 3. The results of two bi-variate analysis corresponding the
previous tri-variate one

The orthogram analysis (Fig. 4) allows studying the
correlation between different kinds of variables (categorical
and numeric for example).

Figure 4. The Orthogram analysis (freight flow variation are indicated in
percentage).

The analysis shows that 2005-2010 freight flow
variation is correlated with the belonging or not of each area
to the EU: there is a clear distinction between areas
belonging to the EU and the other areas. EU Countries have
more stable freight flows while non-EU Countries have
opposite behaviors with some showing a big increase of
freight flows and others a considerable decrease. These bi-
modal behaviors are difficult to model with classical
Transport Distribution Models. This first analysis already
shows the interest of using different, more exploratory
methods, like Decision Tree Induction and Bayesian
Network modeling.

C. The Decision Tree Induction Classification

Decision Tree models are useful multivariate
classification instruments allowing analysis of data
correlation on the base of a target variable, O/D freight flow
relative growth. Moreover, instead of regression models
where we need to hypothesize a shape of the correlation
(linear, cubic, exponential, etc.), Decision Tree models don't
require any assumption and give more than one type of
correlation. Finally, the IF THEN framework is very useful
and understandable for users and Decision Tree models can
be used as a preliminary phase for the Bayesian Network
modeling in order to understand the most influential
variables to simulate the target one. Decision Trees Induction
is an inductive classificatory technique belonging to the
Data-Mining and to the Knowledge Discovery in Databases
fields. It will be applied to the complete list of variables
(Table 4), keeping the O/D freight flow relative growth as
target variable.

The extracted classifier has a percentage of Correctly
Classified Instances of about 38%, which appears relatively
inaccurate. However, the analysis shows two main points:

• the classification ability is higher for the first and

last flows variation classes and for the class nearest
to zero;

• once again, distance (DIST_2010) between the

individual Origins and Destinations does not have a
relevant influence.

The analysis suggests introducing new variables so to
add detail in the information (GDP at NUTS 2 Level,
Internal, Belonging to EU and others) and to add interaction
between territorial dimensions at NUTS2 and NUTS0. The
new variables are:

• Internal (indicates if an O/D couples belong to the
same country);

• No_EU (indicates if an O/D couples belong to EU

countries or not);

• Delta GDP 2010-2005 at NUTS2 level;

• Flow 2005 (to indicate flow level before the 2008
economic crisis);
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• EU15_CH_NO (indicate whether a flow belongs to
the 15 EU member states before 2004 plus

Switzerland and Norway);

• Weight of the exit flow for a given origin = Fij/Fi.;

• Weight of the entry flow for a given destination =
Fij/F.j;

• Weight of exports to Country J from i = FiJ /Fi.;

• Weight of imports from Country I to j = FIj/F.j

where FiJ means total flows from NUTS2 i to all Country J
while F.j means total exit flows to NUTS2 j.

Introducing these new variables, the extracted Decision
Tree identifies the variable “weight of the exit flow” as the
most important one and shows the relatively chaotic
evolution of flows for non-EU countries. Decision Trees
results for the whole ETIS O/D Matrix describe a non-unique
freight traffic evolution, with different variables explaining
flow growth for each country and mainly different from
countries belonging or not to the early EU member states.
The only shared important variable is the weight of the exit
flow (Fij/Fi) showing the relative importance of the
economic relation between the origin and destination areas
with respect to all the exit flows.

The Decision Tree extracted from the same variables but
including only O/D flows belonging to the area of interest for
Corridor 6 shows clearly two different dominant behaviors:

• the first one is related to the countries with more

stable economy and freight market where the only
element that explains the freight dynamic is the

actual weight of outgoing flows (this concerns more
than 50% of total flows);

• the second one is the already noted bi-modal

behavior.

D. The Bayesian Network Forecasting Model

The Decision Tree technique produces knowledge only
for the pre-processing phase. The limit of this technique is
mainly due to the difficulty of the application of the rules
extracted from the sample to the whole population:

• first, it is possible that a combination of conditional
attributes never occurred in the extracted rules (IF
part), whereas it can be present in the prevision

dataset; the problem would then be to compute the
relative conditional probability distribution;

• second, it could also be possible not to find a rule
exactly identical (in the IF part) with the record to
be classified: this problem can be solved only with

the search of an attribute set close enough to the one
to be classified.

Due to these possible situations, the extracted influent
variables were used as input variables to implement a
Bayesian Network. Bayesian Networks are more suitable to
predict phenomena due to their robustness (they can couple

statistical robustness from data-mining to expert knowledge
directly implemented in the model, whereas Decision Trees
are only based on data frequencies) and the possibility to
make probabilistic inference so to have a probability values
attached to predictions. Even in the absence of expert
knowledge (as in our application), prior probabilities in the
network initialization produce non-null probabilities for
combination of attributes that are not present in the learning
data-base. Through Bayesian learning algorithms from data
[11], the model links the variables in acyclic and directional
graphs, showing their reciprocal influence in a cause-effect
relationship between “parent” and “child” nodes. Finally, a
conditional probability table is calculated for each dependent
variable (with incoming link in the node), detailing the
probabilistic relationship between the values of the “parent”
and “child” variables. Unconditional probability tables are
calculated for independent variables (without incoming links
in the node). Learning algorithms search for the best possible
combination of structure (links among nodes) and parameters
(probability values in the tables) within a subspace of
possible solutions. The best solution is found through
likelihood maximization, knowing the empirical data.

Different Bayesian Network models were calculated
from data covering the whole ETIS O/D Matrix, or just the
area of interest for Corridor 6. Continuous variables were
discretized in eight classes of equal frequencies (other
discretizations were also attempted). Each model allows
probabilistic inference of O/D freight flow relative growth
between 2005 and 2010 from 2005 and 2010 data. Under the
assumption of model stationarity, the probabilistic
relationships embedded in the model can be used to infer
O/D freight flow relative growth between 2010 and 2015
(end hence 2015 freight flows) from 2010 data and scenarios
on 2015 data. A more problematic stationarity assumption
was also used in order to forecast 2030 freight flows.

1) The forecast for the whole ETIS O/D matrix
The final model set up for the whole ETIS O/D Matrix

(Fig. 5) shows that the most important variables are
essentially two. One is the GDP national growth in the
country of origin (NUTS2 GDP growth had too many
missing data to produce statistically significant links in the
model); the other one is the relative importance of the
outflow for the origin (weight of the exit flow Fij/Fi.). The
mutual information analysis (resumed by the position of each
node within the model) shows a clear clustering of economic
(with internal circle in dark grey) and geographic (without
internal circle) variables.

A first validation of the extracted Bayesian Network
concerns its predictive power in inferring the value of the
target variable of flow relative growth knowing the other
variables. The resulting confusion matrix shows that the
model can predict values of the target variable with a total
precision of 25%, when considering the prediction of the
exact variation class, but of more than 50% when
considering prediction of the right class or of the two
(eventually one) nearest ones (flow growth rates are
discretized in eight classes). The second validation tests the
model generalizability (or presence of over-fitting problem)
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through a ten-fold cross validation (that is to say the iterative
use of 9/10 of the total O/D data to build the network and
1/10 of the total O/D data to validate it). Results of the cross
validation are very similar to the initial model, which leads
us to the conclusion that the model does not have particular
over-fitting problems. During the cross validation, another
validation of the model regards the stability of its network
structure (called confidence analysis) and relative variable
dependencies (represented from the arc connections) in the
ten simulated networks. The arcs directly connected with the
target variable (flow_growth) remain always the same and
are present in all the networks produced within the cross
validation (100%).

Figure 5. The Bayesian Network model (whole ETIS O/D Matrix)

A first problem of this methodology arises when we need
to use the probabilistic results of the Bayesian Network
inside the Discrete Choice model [12] that is based on
deterministic values of total demand and, based on Revealed
Preferences/Stated Preferences interviews (RP/SP, [19]),
elaborates probabilistic results on the modal split. In our
application, modal split predictions are carried out using the
weighted average of the median value of each flow variation
class. An example is shown in Fig. 6, with a probability
distribution for the target variable freight flow growth. For
each of the eight classes, the central value is reported in the
right column and is used to calculate the expected mean
value (-26.17% in the example) as the weighted average (on
the predicted probabilities) of the mean class values.

TABLE V. DEMAND FORECAST (WHOLE ETIS O/D MATRIX) FOR

2015 AND 2030 SCENARIOS

YEAR

2005

2010

2015

2030

17.752 million of tons

16.229 millions of tons

16.367 - 17.037 millions of tons

19.530 - 26.167 millions of tons

Delta 2010-15: 0%:+5%

Delta 2010-30: +20%:+61%

Freight flows (road and rail) of the whole ETIS O/D Matrix

Once the Bayesian Network model is calibrated for 2010
(base year), scenario values can be defined for 2015 and
2030 for the main economic variables. Subsequently, the
most probable values of freight flow growth can be inferred
through the Bayesian Networks for very O/D couple in 2015
and 2030.

Figure 6. Bayesian Network (whole ETIS O/D Matrix): evaluation of the
mean flow prediction

The scenarios for the economic variables are as follows:
• Base scenario: 2015 and 2030 forecast baseline

(natural development of the market from the current

situation);

• Optimistic scenario: GDP growth forecast increased
by 30%;

• Conservative scenario: GDP growth forecast
decreased by 30%.

2) The forecast for the Corridor 6 study area
A second Bayesian Network model was developed more

specifically for the area concerned by Corridor 6. Flows are
grouped as follows:

• Internal, with Origin AND Destination in Corridor
zones;

• Exchanges, with Origin OR destination in Corridor

zones;

• Transits, with Origin AND Destination outside of

Corridor zones.

Once again, under 5-year and 20-year stationarity
assumptions, freight flows were inferred for 2015 and 2030,
using the most probable values of flow relative growth. The
forecasts for Corridor 6 flows (see Table 6 and Fig. 7) shows
that the flows variation in 2015, relative to 2010 base year
and considering the three scenarios, lies between -1%
(conservative scenario) and +10% (optimistic scenario), with
very low probability of having total flow decrease and high
probability of having total flow increase, although small in
quantity. The results of the demand forecast for 2030 show a
general long-term increase of traffic flows with high
percentage variation from the conservative scenario, with a
27% of increase to a 96% of increase for the optimistic one.
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It is very difficult to verify these results. We thus tried to
compare our results with those produced by a recent work by
the French Ministry of the Environment [14]. This is one of
the few comparable works to ours, in terms of geographical
extension of the study area.

Figure 7. Road and Rail flows in the Corridor 6 catchment Area
(including transit)

The study on freight flows through the Pyrenees
predicts the following annual average freight flow growth
rates between the Iberian Peninsula and the rest of Europe
between two scenarios: 2.9% (low scenario) and 4.5% (high
scenario).

TABLE VI. EVOLUTION OF FREIGHT FLOWS CONCERNING CORRIDOR 6
CATCHMENT AREA (INCLUDING TRANSIT)

YEAR

2005

2010

2015

2030 297 - 457 millions of tons Delta 2010-30: +27%:+96%

Freight flows (road and rail) of Interesting O/D couples

217 million of tons

233 millions of tons Delta 2005-2010: +7,3%

230 - 256 millions of tons Delta 2010-15: -1%:+10%

By applying these growth rates to the observed 2005
freight flows within the area of interest for Corridor 6 (data
derived from the 2005 ETIS O/D matrix), the estimated 2010
road and rail freight flows from the Iberian Peninsula to the
rest of the catchment area of Corridor 6 would be much
higher than the ones actually recorded within the ETIS 2010
O/D Matrix (Table 7).

TABLE VII. COMPARISON OF EVOLUTION OF FREIGHT FLOWS THROUGH

PYRENEES BETWEEN THE FRENCH STUDY AND THE ETIS REAL VALUES

(VALUES IN MILL. OF TONS)

10,86 11,6812,5 13,5

ETIS 2005
Study on freight flows through Pyrenees - 2010 estimates

ETIS 2010
Low scenario High scenario

TABLE VIII. COMPARISON OF PREVISION OF FREIGHT FLOWS THROUGH

PYRENEES BETWEEN THE FRENCH STUDY AND OUR RESULTS (VALUES IN

MILL. OF TONS)

2015

2030

11,9

17,3

13,6

24,4

14,8 16,9

22,7 32,6

11,5

16,3

YEAR

Low scenario High scenario Conservative Regular

Our study on RFC 6

Optimistic

Freight Transport of Pyreneer' study -

Estimates 2010

Table 8 provides a comparison between 2015 and 2030
forecasted freight flows in the two studies (the study of
freight flows through the Pyrenees provides estimates in
2025, but due to the hypothesized linearity of the evolution,
it was possible to determine the “most likely forecast” in
2030).

III. CONCLUSIONS AND FUTURE DEVELOPMENTS

The data-driven methodology applied within this work
seems to be very promising from many points of view. First
of all the data it needs are easy to find from official European
level sources (even if more complete economic data-bases at
the NUTS 2 level could have improved the performance of
our models). Secondly, the methodology, because of its
simplicity, is applicable in the short term, through model
updating by incremental learning or new model
development; it will thus be possible to update forecasts, as
new data are available and to follow multi-temporal
economic dynamics. Moreover, the Bayesian Network
framework adopted allows the recognition of different flow
evolutions (which is similar to having multiple transport
distribution system equations based on different calibrated
parameters) and their application in the forecasted scenarios.
In addition, a comparison of the results with some official
studies shows that our results are acceptable estimates.

The starting database for this first application covers two
base years, namely 2005 and 2010, which are a very
particular period for the European economy (arrival of new
member states in 2004 and deep economic crisis after 2008),
with some peculiar correlations and dynamics among
economic, transportation and social variables. Availability of
the 2015 version of the ETIS database will allow data-driven
model development over the 2005-2015 period, which
should produce more reliable results. Of course, the
development of new infrastructures or geo-economic
dynamics (entrance of new member states in the EU) will
always be exogenous to the model, and the use of timeor
cost-distances could be used instead of km-distance to better
model the impact of transportation networks on the study
area. Finally, the stationarity hypotheses on the links
between economic, geographic and transportation variables
are much more appropriate for short-term forecast (5 years)
than for long-term ones (20-30 years).

A further point to be developed is the link between the
total demand forecast and the following modal split
scenarios. The use of average prediction values necessary for
this further methodological step involves the loss of the
richness of the Bayesian Network results that is the
probability distribution of the estimated flows demand. We
are presently trying to use Monte Carlo simulation
approaches [13] in order to extract a large number of
possible deterministic demand values from the demand
probability distribution. Subsequently, a modal choice
probabilistic distribution will be derived from each of these
values. It will then be possible to estimate an overall
probability distribution for flows by mode and the results
will be expressed in terms of values accompanied by
statistical parameters such as mean, variance, and quartiles.
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The methodology is similar to that used in Mixed Discrete
Choice Models.

Another option would be to develop the entire demand
forecast that is the generation and the modal distribution of
freight flows, within the Bayesian Network framework. It
will then be possible to preserve a consistent probabilistic
approach for flows estimation by transport mode.
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