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Abstract — Traditional Structural Health Monitoring (SHM) 

methods require bridge inspectors to manually inspect each 

bridge periodically (usually every two years) and recommend 

maintenance or rehabilitation services to the bridge if necessary. 

As limited manpower and budget constraints are the two major 

shortfalls in traditional SHM methods, in addition to potential 

human errors and lack of consistency, more rigorous and 

frequent solutions are needed to assess the health levels of 

bridges and provide needed recommendations. In this work, we 

process a new population-based approach that employs the 

concept of Correlation Networks to evaluate the status of each 

bridge based on general parameters as well as how it compares 

to other similar bridges. We propose a Correlation Network 

Model (CNM) that builds a network of bridges, based on time-

series data on sufficiency ratings, for a population of 9,546 “steel 

bridges with stringer/multi-beam or girder design,” taken from 

the U.S. National Bridge Inventory (NBI) database. We apply 

Markov Clustering Algorithms to produce clusters of bridges 

with similar features associated with their fitness ratings over 

user-defined periods of time. The top five clusters are identified 

and further analyzed using population analysis algorithms. We 

were able to identify three clusters with lower fitness ratings and 

suggest that the bridges in these clusters need to be serviced 

sooner than those included in the other clusters. Experimental 

results show that the proposed model provides an efficient 

approach that allows domain experts to assess the structural 

health of bridges/civil infrastructures in a robust way that can 

guide rehabilitation services for all bridges and identify 

potentially unsafe bridges that need urgent attention. 

Keywords — Structural Health Monitoring; Population 

Analysis; Correlation Networks; Markov Clustering; 

Sufficiency Rating; National Bridge Inventory database.  

 

I. INTRODUCTION  

The National Bridge Inventory (NBI) database consists 

of information on more than 600,000 bridges of the United 

States of America (USA), with each bridge dataset 

comprising 116 parameters. After each inspection cycle, 

usually every two years, the bridge inspectors develop 

condition ratings of the bridges as specified by the U.S. 

Federal Highway Administration (FHWA) [1]. Sufficiency 

Rating (SR) is an outcome parameter/measure which reflects 

the overall fitness rating of the bridge and is derived from 

over 20 NBI data fields/parameters grouped in four factors, 

i.e., Structural Evaluation, Functional Obsolescence, 

Essentiality to the Public Use, and Special Reductions as 

described in the FHWA coding guide [2]. SR ranges between 

0% and 100 % or between 0 and 1000.  Lower 

percentages/ratings indicate that the bridge fitness is low and 

higher percentages/ratings indicate that the bridge is highly 

fit. SHM is a process of implementing a damage detection 

and characterization strategy for engineering structures [3]. 

Traditional SHM methods require bridge inspectors to 

manually inspect each bridge over a period of time and 

recommend maintenance or rehabilitation services to the 

bridge if necessary. As limited manpower, budget 

constraints, and lack of consistent and continuous monitoring 

are the major shortfalls in traditional SHM, research 

communities are interested in new solutions to assess the 

structural health of civil infrastructures while taking 

advantage of the massive data available in the NBI database. 

In this work, we propose the use of Correlation Network 

Models (CNMs). CNM is a powerful big-data tool that has 

recently been used to analyze and visualize complex systems 

having large data with multiple dimensions/parameters in 

various domains [12], [17], [18]. We propose to employ 

CNM to create a correlation network of bridges, based on the 

time-series data of bridges’ overall fitness rating, such as SR 

for a population of 9,546 “steel bridges with stringer/multi-

beam or girder design” obtained from the NBI database. 

These bridges are taken from three US states: California, 

Iowa, and Nebraska, which come from three different 

climatic regions as shown in Figure 1.  We then apply a 

Markov Clustering algorithm, such as MCL to obtain clusters 

of bridges that have similarity in their fitness ratings (such as 

SRs) over a certain period of time.  

Our basic hypothesis is that the bridges with similar 

fitness characteristics are included in common groups or 

clusters. MCL is a graph-based efficient algorithm designed 

based on the random walks property of the graphs. As every 

clustering method groups elements with similar attribute 

values together [16], when applied to the bridge correlation 

network, MCL finds clusters of bridges with similar behavior 

in terms of SRs.  We identified the top clusters produced by 

the algorithm for further analysis. We were able to identify 

clusters with lower fitness ratings that need to be serviced 
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relatively soon compared to bridges in other groups. Our 

experimental results show that the proposed approach 

provides a new efficient tool that allows bridge owners to 

evaluate the structural health of bridges/civil infrastructures 

and identify the structures that need immediate attention. 

This may serve as the main component of a new SHM 

decision support system.   

 

 

Figure 1. Map of nine USA climate regions  ( image courtesy 

NOAA). [8] 

 

The remainder of this paper is organized as follows. 

Section II provides a general background, where the need for 

creating a Correlation Network of bridges with time-series 

data of SRs is discussed. Section III discusses the key 

concepts used for creating Correlation Networks and the 

population analysis approach, followed by a discussion on 

how network models are used in various application 

domains. Section IV includes the complete methodology 

used to implement the proposed approach. Section V 

discusses the experimental results of the study. Conclusions 

and future directions are summarized in Section VI.  

 

II.  BACKGROUND 

Several researchers have recently attempted to develop 

deterministic and stochastic deterioration models for various 

bridge components, such as Deck, Superstructure and 

Substructure, and Average Daily Traffic [4]. Several studies 

have used Two-Step clustering, a powerful data mining tool, 

to study concrete deck parameters in the NBI database to 

identify the order in which bridges need to be serviced [5]. 

While there are some deterioration models that are based on 

temporal data [4], [6], but they usually consider only one or 

few input ratings, such as Deck Rating or Superstructure 

Rating, for their analysis. Since they did not consider a 

holistic approach or compound rating measures such as SR 

(which is a complex measure based on multiple parameters), 

their models are somewhat limited and lack robustness and 

consistency. For example, such models can explain how 

Deck Rating changes over a period of time but fail to measure 

the overall safety of bridges as a whole. To estimate the 

overall fitness ratings of bridges, we are proposing a 

population analysis model that is based on the complex SR 

measure. Again, as various models consider temporal data of 

selected input ratings, they are useful in estimating ratings of 

individual elements but fail in estimating the overall fitness 

ratings of bridges [4], [5], [6].  

 

 
Figure 2. Graph model representation with bridges. 

 

On the other hand, there are models, that could consider the 

overall fitness rating as their measure in predicting the health 

of civil infrastructures [7], [18], but they do not utilize time 

series data. Hence, obtained predictions may not be accurate 

or do not really characterize the overall behavior of the 

bridges over a period of time. Therefore, there is a need for a 

model that considers bridges’ overall behavior or fitness 

ratings over a period of time and identifies the categories of 

bad bridges with respect to their fitness ratings.  

 

A. Correlation Network Model (CNM) 

As mentioned earlier in the introduction section, the NBI 

database has information on more than 600,000 bridges, each 

with 116 parameters. The big-data associated with these 

bridges can easily be analyzed or visualized using a powerful 

tool such as CNM. CNM [17], [18] is a graph- based model 

which would allow the correlated bridges to be connected by 

an edge in the Correlation Network Graph. Creation of a 

Correlation Network is explained in our methodology 

section. CNM is relevant for this research as the highly 

correlated bridges or bridges with dense connections (usually 

we call them clusters) would give us information about 

bridges that have the same kind of behaviors or 

characteristics.  

For example, bridges with similar patterns in their SRs 

over a long period of time may be highly correlated and will 

have an edge between them in the CNM. Hence, all the 

highly correlated bridges will have dense edges among them 

and form as a cluster. The population analysis allows us to 

compare two or more clusters of bridges with respect to one 

or more enrichment parameters. This analysis will allow us 

to discover what parameters are significantly affecting a 

13Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics



 

particular cluster. For example, if one particular cluster is 

highly enriched by Structurally Deficient (SD) bridges, then 

we can identify other parameters that are similar to these 

bridges and hence, we can control them. If this structural 

deficiency is due to the deterioration of deck rating, then we 

can advise the bridge authorities to implement deck-related 

rehabilitation measures.  

B. Correlation Networks in Various Disciplines 

In the past decade, Correlation-based Network 

Analysis has become a powerful analysis tool in 

biological studies and have been used by other 

researchers in various disciplines because of their ability 
 

 
 

Figure 3: Structural elements of a bridge [21]. 

 

 
Figure 4. Representation of clustering. 

to show generalization, visualization, and analysis 

capabilities [12]. CNA was successfully applied in biological 

systems to determine plant growth and biomass in 

Arabidopsis thaliana Recombinant Inbred Lines (RIL) and 

introgression lines (IL) [13], [14]. It was also applied to 

evaluate the effects of hypoxia on a tumor cell biochemistry 

[15]. Correlation networks are powerful and provide us the 

opportunity to measure changes in temporal datasets, and 

there are clusters which are highly enriched by a few Gene 

Ontology (GO) terms [17]. 

C. Correlation Networks to Monitor Structural Health   

Recently, researchers have applied CNM to monitor the 

structural health of civil infrastructures and have also 

analyzed the safety issues with respect to various parameters 

such as inventory rating and deck rating [18]. One of the 

advantages of using CNM in civil infrastructures is that the 

bridges can be clustered based on some similarity, and 

visualized as healthy and unhealthy clusters of bridges [18], 

using any existing visualization tools, such as Cytoscape [19] 

and Gephi [20]. As CNM is a new approach for SHM, it can 

be used to display critical bridges and find an efficient way 

to improve bridge inspection schedules [18]. However, one 

of the limitations of the latter study is that it did not consider 

the temporal-data of SRs; hence, it cannot accurately predict 

a future overall fitness rating behavior of the bridges. Hence, 

creating a Correlation Network model that could deal with 

temporal-data is one of the objectives of this paper. The 

motivation of this paper is to develop a CNM that could 

consider bridges’ overall behavior (i.e., SR) over a period of 

time and analyze highly correlated clusters of bridges to 

predict bridges’ future behavior. The research question of 

this paper is to determine what parameters are enriched for 

each cluster of bridges in the population, if the bridges are 

clustered using the correlations of temporal data of SRs. The 

research objective of this paper is to provide a CNM-based 

Decision Support System for bridge owners to enable them 

to find out which bridges need to be serviced first. As a result, 

we developed a novel CNM that considers the temporal data 

of SRs of the bridges for the last 25 years (from 1992 to 

2016), so as to exactly characterize the overall fitness 

behavior of the bridges over a period of time and hence, 

predict the future fitness behavior accurately.  

 

III. GRAPH MODEL, CORRELATION 

COEFFICIENT, AND CLUSTERING  

This section talks about the graph model, correlation 

coefficient and Markov clustering. 

A. Graph Model 

The graph model (denoted by G= (V, E), where V is a set 

of vertices/nodes, and E is a set of edges) used in this paper 

is undirected and unweighted. An example of an undirected 

and unweighted graph is shown in Figure 2 with five vertices 

and six edges, where every vertex represents a bridge/civil 

infrastructure and any two bridges are connected by an edge 

if and only if they have some correlation. Various colors of 

bridges may represent various status of bridges while 

visualizing them. For example, a green-colored bridge may 

represent a structurally sufficient bridge, whereas a red-

colored bridge could be a SD bridge.  

B. Correlation Coefficient 

A Pearson’s correlation coefficient [10] between any 

two variables is a real value that ranges between -1 and +1, 

and which expresses the strength of linkage or co-occurrence. 

This strength is called Pearson's r or Pearson product-

moment correlation coefficient if the correlation is between 

two continuous–level variables [10], [11]. This paper uses 
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bivariate (Pearson’s) correlation analysis to show the 

relationship between any two bridges. 

 

C. Markov Clustering 

Clustering groups objects with similar attribute values 

together [16]. The objects are grouped together in such a way 

that distances among the clusters are maximized and the 

distances within the clusters are minimized, as shown in 

Figure 4. The MCL algorithm [9] with default parameters is 

used in this paper to cluster the bridges, as the MCL is more 

suitable to graph-based networks. MCL is a fast and efficient 

algorithm that is designed based on the random walks 

property of the graphs. A random walk in a strongly 

connected cluster usually visits almost all the nodes in the 

cluster. MCL was applied on various protein-protein 

interaction networks and proved to be remarkably robust to 

graph alternations and superior in extracting complexes from 

interaction networks [26]. Since our correlation network with 

civil bridges is also a kind of protein-protein interaction 

network, we used MCL to extract the clusters of bridges that 

behave similarly. 

 

IV. METHODOLOGY 

The following are the four phases of the CNM we are 

proposing.  

i. Data acquisition and filtering 

ii. Creating a correlation network and applying 

MCL algorithm 

iii. Analyzing various clusters with respect to both 

input parameters, and output parameters, and 

comparing various clusters (population analysis) 

iv. Developing a decision support system 

The first two phases are explained in this section and the last 

two sections are explained as part of the next section. The 

novelty of this method is that the similar bridges are 

connected together into one cluster and the individual clusters 

are analyzed to see what input or output ratings are highly 

enriched for that cluster. The population analysis allows us to 

compare various clusters with respect to various rating 

parameters and then the decision support system allows us to 

make decisions about various clusters.  

A. Data Acquisition and Filtering 

       Bridge data of California, Iowa, and Nebraska, from the 

years 1992 to 2016, was obtained from the NBI database. 

Each bridge description is an alpha-numeric string of 432 

characters in the database. There are 45,397 (California-

15123, Iowa-16513, and Nebraska-13761 bridges) common 

bridges from 1992 to 2016 (based on the structure number 

entry in the database) in these three states. A total of 7,038 

bridges out of 45,397 are culverts (Alpha-Numeric character 

string position 262! =’N’) and 38,359 are non-culverts, 

according to the 2016-database. As the data was processed 

for any kind of anomalies, we found that there are 2,285 of 

these 45,397 common bridges that have inconsistent entries. 

In some years, they were recorded as culverts and in some 

years they were non-culverts. These 2,285 bridges were 

omitted from consideration. The remaining 43,112 common 

bridges consisted of 5550 culverts and 37,562 non-culverts 

(bridges). The majority of non-culverts (9,546 out of 37,562) 

were coded with main-structure type-302 (Item 43 from the 

NBI coding guide). In the coding 302, the first digit 3 

represents the kind of material, i.e., “Steel,” and the last two 

digits, 02, represent the type of design, which is, 

“Stringer/Multi-beam or Girder.”  

Our method takes a population of this 9,546 steel-

stringer/multi-beam or girder bridges across three states of 

the USA (California, Iowa, and Nebraska), which come 

from three different climatic regions (as shown in Figure 1). 

The following items/parameters extracted from the FHWA 

coding guide [2] were considered for our analysis.  

 

 
Figure 5. Correlation Network (correlation ρ>=.90) with 9,546 nodes 

and 767542 edges (Average degree=89.14, and 101 Connected 

components). 

 

 
Figure 6. Clusters produced by MCL algorithm. Top-5 clusters are 

indicated by yellow color. Figure 5 and 6 were generated using 

Cytoscape [19]. 

i. Item 58 - Deck Rating (DR)  

ii. Item 59 - Superstructure Rating (SPSR)  

iii. Item 60 - Substructure Rating (SBSR) 
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iv. Item 67 - Structural Condition Rating (SCR) / 

Structural Evaluation Rating (SER) 

v. Item 71 - Water Adequacy Rating (WAR)  

vi. Status of the bridge as defined in [22] 

vii. Sufficiency Rating 

B. Creating a Correlation Network  

The SRs of each of the 9,546 bridges from 1992 to 2016 

(25 years) are recorded as an input matrix (say, SR matrix) 

with each row (i.e., each bridge) of the matrix having 25 

years’ SRs in it. So, there are 9,546 rows in the matrix, with 

each row as a vector of 25 years’ SRs. A Pearson correlation 

coefficients matrix (say, Correlation-matrix) was then 

obtained over the SR matrix. The resultant Correlation-

matrix is of size 9546 times 9546. Assuming each bridge as 

a node (vertex) in the graph model, two nodes are connected 

by an undirected edge if and only if their correlation 

coefficient ρ >= 0.90 and significance value p <=.01. This 

creates a Correlation-Network with bridges as nodes along 

with highly correlated nodes connected by edges as shown in 

Figure 5. We applied the MCL algorithm with all default 

parameters in Cytoscape [19] on the obtained Correlation 

Network, in order to produce clusters. These clusters are 

basically sub-networks of nodes and edges. Each cluster was 

further analyzed to see which input parameters were enriched 

for that cluster. As the clusters are formed with high 

correlations among the nodes, we can infer that the overall 

behavior of the nodes within each cluster is the same. This is 

the hypothesis of this research. MCL has produced 8610 

nodes in various clusters and 3865 nodes are present in the 

Top 5 clusters and shown in Figure 6. These Top 5 clusters 

are considered for further analysis. Various experiments are 

conducted on the Top 5 clusters produced by the MCL 

algorithm, and the results are shown below. 

 

V. EXPERIMENTAL RESULTS 

This section demonstrates various experimental results 

with respect to various network properties of the Top-5 

clusters, SR, and other input ratings.  

A. Network Properties of Top 5 Clusters 

Figure 5 shows the correlation network (correlation 

ρ>=0.90) formed with 9546 nodes, 767542 edges, and 101 

connected components. This is a scale-free network and 

follows a power-law node degree distribution. In a power-

law node degree distribution, there are many nodes with 

fewer degrees and fewer number of nodes with more degrees. 

The top 5 clusters (yellow colored clusters) produced by the 

MCL algorithm are shown in Figure 6. These clusters’ 

statistics are shown in TABLE 1, with the top- most cluster 

having the highest number of nodes 1496 and 354939 edges, 

and the least cluster having 255 nodes and 13922 edges. The 

lower the diameter, the closer the nodes are. Hence, almost 

all the nodes in all the clusters are around the center node(s). 

The higher the clustering coefficient [23], the higher the 

degree to which nodes in a graph are inclined to cluster 

together. The higher values of the average clustering 

coefficient for each cluster / subnetwork indicate that the 

nodes inside each cluster tend to be part of that cluster only. 

Therefore, the Top 5 clusters with higher clustering 

coefficients are considered for further analysis. TABLE 1 

shows that cluster 5 has the highest clustering coefficient, 

which is 0.838. The cluster density describes the potential 

number of edges present in the sub-network compared to the 

possible number of edges in the sub-network. From TABLE 

1, we see that cluster 3 has the highest density (0.533) among 

all the Top 5 clusters. 
 

TABLE 1. NETWORK STATISTICS OF TOP 5 CLUSTERS 

PRODUCED BY THE MCL ALGORITHM. 

 

B. Analysis of Bridge Behavior with Respect to 

Sufficiency Rating 

 

We selected two bridges from cluster5 for our analysis to 

look at their behavior in terms of their overall fitness ratings 

(i.e., SRs) as shown in Figure 8. These two bridges are highly 

correlated (correlation ρ>=0.94) with each other and hence, 

connected by an edge in the network. The first bridge (say 

Bridge1, shown in red color) has an initial SR value of 615 

in the year 1992, and maintained almost the same value until 

the year 2013. After then, there was a sudden drop in the SR 

value from almost 600 to below 500, ending at a SR value of 

490 in the year 2016. Similarly, the second bridge (say 

Bridge2, shown in green color) started with a SR value of 970 

in the year 1992 and steadily maintained it until 2013. There 

was a sudden drop in the year 2013 to a SR value of 860 and 

ended at that value itself. Though the first bridge was 

constructed in the year 1969, and the second bridge in the 

year 1988, both of these bridge had almost similar SR curves 

from 1992 to 2016. We have also observed that the current 

status of the first bridge is SD, and the second bridge is 

structurally good.  

As SR is an overall fitness rating of the bridges, and as 

both of these bridges had the same kind of SR curve for the 

last 25 years, if the first bridge is SD, the second bridge may 

also have a high probability of becoming SD in the near 

Cluster 

Number 

#Nodes #Edges Avg. 

Degree 

Density Avg. 

Clust. 

Coeff. 

SR 

Avg. 

Cluster1 1496 354939 474.51 0.317 0.775 623.7 

Cluster2 1180 99000 167.79 0.142 0.674 489.3 

Cluster3 634 106955 337.39 0.533 0.823 801.9 

Cluster4 300 13377 89.18 0.298 0.812 818.5 

Cluster5 255 13922 109.19 0.43 0.838 577.5 
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future, as both bridges are highly correlated and in the same 

cluster. Estimating after how many years the second bridge 

will become SD is not the scope of this paper. Some of the 

bridges’ SRs comparison is given in Figure 9. In fact, all 

these bridges are connected to the bridge CA-B06422 

(Bridge names are partially anonymized. That means the first 

two letters in each bridge name may indicate the state but the 

remaining sequence in the name does not reflect the original 

bridge name as it is given in [1]). This means all these bridges 

are adjacent bridges of the bridge CA-B06422. This figure 

clearly shows that the SRs pattern is almost the same for 

adjacent bridges as they are highly correlated. It also clearly 

shows that all these bridges are sooner or later going to 

become SD, as all bridge SRs are deteriorating. Immediate 

maintenance may be required for this kind of bridges. Figure 

10 shows that both clusters 3 and 4 have higher SRs at the 

end (year 2016), while all the remaining bridges have lower 

averages of SRs. We can also observe that for clusters 4 and 

3, there was a maintenance (in terms of reconstruction) took 

place in the years 1997 and 2007 respectively. Hence, these 

clusters have higher SRs in the year 2016 (as shown in Figure 

10) and do not need immediate maintenance.   

 

 
Figure 7. Ratings comparison for top 5 clusters (year 2016) 

 

 

Figure 8. Comparison of SR values of two bridges from Cluster-5. 

(The image was generated in Tableau [25]). 

 
Figure 9. Ten adjacent bridges of the bridge--CA-B06422 from Cluster5 

(Bridge names are partially anonymized). 

 

Figure 10. Comparison of Top 5 clusters’ averages (dataset years 1992, 

1997, 2002, 2007, 2012 and 2016) with respect to SRs. 

C. Analysis of Top 5 clusters with respect to input rating 

parameters 

Various input rating parameters of output ratings, such 

as SR, are considered for cluster enrichment analysis. Figure 

7 shows the comparison of Top 5 clusters’ average input 

ratings, such as DR, SPSR, SBSR, WAR, and SCR of the 

NBI-dataset-2016. From this figure, we can see that all the 

ratings of both cluster 3 and cluster 4 are higher compared to 

all the remaining clusters. Similarly, from Figures 11 through 

15, we see how different input ratings vary for all the Top 5 

clusters. For example, from Figure 11, we find that both 

cluster 1 and cluster 2 are enriched with DR = 5. This 

indicates that the deck (as shown in Figure 3) is in “Fair 

Condition” (as specified in the FHWA coding guide [2]). If 

we see cluster 4 from the same Figure 11, DRs ranging from 

5 through 8 are equally distributed and hence, these higher 

ratings led to the higher SRs as shown in Figure 16. We can 

also see that both cluster-3 and cluster-4 have higher input 

rating values as shown in Figures 11 through 15. Figure 12 

shows that Cluster-2 is highly enriched with Superstructure 

Rating <= 5. Once these bridges’ Superstructure Ratings drop 

from 5 to 4, then the bridges will fall into the SD bridge 
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category. Hence, the improvement in the Superstructure 

Rating in terms of reducing the live load is required. This can 

be done by reducing Average Daily Traffic and 

implementing required rehabilitation services on these 

bridges. Cluster 2 from Figure 13 also shows that the 

Substructure Rating is critical, as most of the bridges’ 

Substructure Ratings are <= 5. From Figure 14, we see that 

Water Adequacy Ratings are good for all the clusters and no 

Water Adequacy improvement measures are required for 

these clusters. As shown in Figure 15, most of the bridges in 

clusters 1, 2, and 5 are enriched with SCR value <=4, which 

indicates that most of the bridges in these clusters are either 

SD or will soon become SD. Hence, they have lower SRs as 

shown in Figure 16. The same can be observed from Figure 

10, where the average SRs for every 5 years’ interval are 

shown. From this graph, Clusters 1,2 and 5 are showing 

higher deterioration patterns as compared to Clusters 3 and 

4. Hence, our decision support system recommends various 

bridge authorities to provide immediate attention or service 

to the bridges in clusters 1, 2 and 5. 

 

 
Figure 11. Comparison of Top 5 clusters with respect to Deck 

Rating (DR) 

 

 
Figure 12. Comparison of Top 5 clusters with respect to 

Superstructure Rating (SpSR). 

 
Figure 13. Comparison of Top 5 clusters with respect to 

Substructure Rating (SBSR). 

 
Figure 14. Comparison of Top 5 clusters with respect to Water 

Adequacy Rating (WAR). 

 
Figure 15. Comparison of Top 5 clusters with respect to Structural 

Condition Rating (SCR). 

 

 
Figure 16. Averages of SRs of Top 5 clusters for the year 2016. 
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VI. CONCLUSIONS 

In this paper, we presented a new Correlation Network 

Model for analyzing civil infrastructures with a focus on the 

assessment of safety of bridges. We employed the network 

model to provide a population analysis approach to extract 

useful information for publicly available bridge data. The 

proposed method allows highly correlated bridges to be 

identified and form a cluster of bridges with similar safety-

related characteristics, such as the overall fitness rating. The 

population analysis makes it possible to compare different 

clusters with different enrichment parameters and ratings. We 

conducted a pilot study with a group of bridges from three 

states. We were able to use the constructed correlation 

network to identify several groups of bridges with different 

safety measures. Based on the obtained classifications, we 

identified bridges that exhibit a higher rate of deterioration 

and need to receive a higher priority for receiving 

maintenance. With these findings, we showed that the CNM 

enables domain experts to categorize clusters of bridges 

based on their safety. CNM as a decision support system 

allows SHM inspectors to have a risk-based schedule for 

servicing bridges, and allocate funds to inspect bridges with 

low safety patterns. As a future step, we plan to study the 

effect of specific parameters, such as Average Daily Traffic, 

on SRs and provide a risk assessment to various groups of 

bridges based on their deterioration patterns.   
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