
Architecture of a Big Data Platform for a Semiconductor Company

Daniel Müller, Stephan Trahasch
Institute for Machine Learning and Analytics

Offenburg University of Applied Sciences
Offenburg, Germany

e-mail: daniel.mueller@hs-offenburg.de, stephan.trahasch@hs-offenburg.de

Abstract—Apache Hadoop is a well-known open-source
framework for storing and processing huge amounts of data.
This paper shows the usage of the framework within a project
of the university in cooperation with a semiconductor company.
The goal of this project was to supplement the existing data
landscape by the facilities of storing and analyzing the data on a
new Apache Hadoop based platform.

Keywords—Big Data Analytics; Big Data Storage; Apache
Hadoop; Metrics

I. INTRODUCTION
Over the past few years, the world of data changed. More

and more data-driven processes are coming up. They can be
used to monitor or even improve existing processes.
Especially the industry benefits from this new know-how that
can be retrieved from analyzing Big Data where Big Data
refers to the large volumes of structured, semi-structured, or
unstructured data, acquired from a variety of heterogeneous
sources. On the other hand, new devices and techniques need
to be applied to enable such potential of Big Data. This often
leads to high costs for the acquisition of new hard- and
software, and even the knowledge how to implement a Big
Data solution.

The semiconductor industry is one of the most complex
manufacturing processes, and large amount of data retrieved
during the manufacturing process has to be stored in huge
databases [1]. The automatic analyses of that data may lead to
reduction in the manufacturing cost. This is true for basic
analyses, but especially for advanced analyses like anomaly
detection and quality control. Insights can be gained about the
production process if those data can be stored, retrieved and
analyzed in an easy way.

The Institute for Machine Learning and Analytics (IMLA)
[2] together with a semiconductor manufacturer from
Germany examines how large data - collected during the
manufacturing process - can be stored and analyzed in a Big
Data system. The company has widened their machines with
sensor technology, to be able to track their production process
in large part. This led to a mass of new data, that must be
stored and processed in an adequate duration of time, to be
able to handle all this data and react as fast as possible on
different events (especially in case of a problem). Another
challenge comes with the previous analyses, which are based
on different datasets – a lot of this data was collected and

joined manually by some employees, which meant a huge
overhead and delay on the analyses.

The goals of the project are to build a cost-effective and
scalable database for storing and processing the sensor-
generated data, to accelerate the search and analysis of data
and to implement advanced analyses with machine learning.
In this paper we focus on the first two goals: the architecture
and implementation of a scalable data base and the integration
in the IT environment to support the analysis process. The
approach is based on the Apache Hadoop [3] and Apache
Spark [4] framework, very popular platforms for subjects
concerning Big Data handling. The next step of the project is
the implementation of machine learning algorithms.

The structure of this paper is organized as follows: Section
II provides background information about the data base, while
Section III shows the basic information about the Apache
Hadoop cluster that was used to implement the project.
Section IV of this paper discusses various ways to store the
data and shows ways to import and analyze this data. Section
V provides first benchmarks on the imported data, and Section
VI concludes the paper with a brief summary.

II. BACKGROUND
This section describes the data and the database used so

far. The company uses different database systems and
Network-based File Systems (NFS) to store the data that
accrues during the different production processes. The data
consists of various types:

1) Structured Data
• Lot history (tracking of the steps that were passed

by each lot during production)
• Machine data (events that occur on the different

machines, lot independent)
• Many more smaller datasets

2) Semi-structured Data
• Results of quality tests (results of tests that run

after production, e.g., power consumption, heat
development, mechanical checks)

The structured data comes with a fix schema, like every
entry has the same amount and datatypes of columns. Typical
examples for this format are CSV files, which represent data
in a table-like form.

In contrast to that comes the semi-structured data, which
can have a very different schema from file to file. The quality
test results are of this schema-less format, so every file (or
even every entry) can have different number of columns

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics

and/or datatypes. Due to the various families of
semiconductors there are also different test cases for each.
This data diversity has also a second reason: In the course of
time, the sensors for checking the products and the software
changed, which also led to different test cases (which are
reflected in the different schemas) within the same product
families. Saving these differing data sets inside the same
storage pool was also a big challenge on the project.

Altogether these information sets filled up (amongst
others) an Oracle database with approximately 13 TB of data.
Since this system run into capacity limits, one of the main
goals of the project was to source older data out into another
file storage, e.g., the Hadoop Distributed File System (HDFS),
which is part of the Apache Hadoop ecosystem. More about
the task of data moving in the “Solution” section.

As already mentioned in the introduction section, there
were a lot of analyses that took a long time or even overloaded
the system, that ran on capacity limits. In addition to this issue,
many analyses needed some manually gathered and filtered
data as input. These issues are pain points because a lot of time
is wasted on getting and processing the desired data. Realtime
results (or even getting any results at all) were not possible for
these kinds of analyses. By using the parallelism of the
Apache Hadoop platform, we wanted to be able to automate
the information gathering and bring up new ways for faster
analyses.

III. THE APACHE HADOOP CLUSTER
The IMLA runs an in-house Apache Hadoop cluster,

which is based on the Hortonworks Data Platform [5]. This
platform is a combination of different tools that can be used
for storing and analyzing huge datasets [6]. Figure 1 shows the
main structure of the cluster components:

Figure 1. The coarse structure of the components in the Hadoop cluster

Since the Hadoop ecosystem is a collection of different
tools for storing and analyzing datasets, it is applicable for
most tasks all around working with Big Data. Some important
tools that were used in the project are the following:

• HDFS: Distributed data storage inside a cluster.
• Apache Hive: SQL-like interface to structured data

stored inside HDFS.
• Apache HBase: Distributed NoSQL database, using

HDFS as background data storage.

• Apache Spark: In-memory processing engine with
interfaces to various datastores, like HDFS, Hive,
HBase and many more.

Stand May 2019 the Hadoop cluster of the university has
the following setup: We use eight nodes, two of which are set
up as name nodes (high availability) and the other six as data
nodes. The name nodes are responsible for the administration
of the metadata of the HDFS and the requests of the different
services running inside the cluster and coordinate the
incoming tasks submitted by the users. The data nodes hold
the datasets in themselves and execute the processes, which in
turn work with this data.

These are the actual components of the cluster:
• 2 x NameNode

o CPU: 2 x Intel Xeon E5-2630v4 @ 2.2 GHz
(10 cores, 20 threads)

o RAM: 256 GB (DDR4, ECC-reg.)
o SSD: 2 x 480 GB (RAID-1)
o OS: CentOS 7

• 6 x DataNode
o CPU: 2 x Intel Xeon E5-2630v2 @ 2.6 GHz

(6 cores, 12 threads)
o RAM: 64 GB (DDR3, ECC-reg.)
o HDD (System): 1 x 1 TB
o HDD (HDFS): 4 x 3 TB
o OS: CentOS 7

We use the Hortonworks Data Platform 2.6.5, which is a
free Hadoop distribution from Hortonworks that is based on
the Hadoop 2.7 stack. As operating system we use CentOS 7.
In the future, the cluster will be upgraded to Hadoop 3 and
equipped with graphics cards to enable also GPU computing.

IV. SOLUTION
This section covers the realization of the project, which

consists of the four thematic areas data import, storage of
structured data, storage of semistructured data, and the data
processing. For a better understanding of the other topics, first
the storage of the data is treated, before continuing with the
import of the data into the cluster.

A. Storing the structured data
First, the Hadoop framework contains a distributed file

system that can be used to store all types of data. The user has
access to appropriate interfaces for writing and reading this
storage. Even other tools used in a Hadoop platform usually
store their data on the filesystem called HDFS.

The basic Hadoop framework can be extended with a data
warehousing software called Apache Hive that is based on
HDFS [7]. Hive is an interface for working with structured
data (that is stored in HDFS) using an SQL-like syntax called
HiveQL. It brings also new interfaces (e.g., command line
tool, JDBC driver and REST-based webservice) and supports
the common data types like numeric, date/time, string, misc
(boolean, binary) and complex (array, maps, structs).

There are also multiple file formats that can be read and
written by Hive. One of the best-known formats in storing
structured data in Hadoop is the Apache Optimized Row
Columnar (ORC) [8] format, which is also supported by Hive
and used in this project for storing the structured data. ORC is

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics

a memory-optimized and column-based data format with
helpful features like ACID support, built-in indexes and
support of complex types. It is optimized for Big Data
workloads, especially for parallel readings from HDFS. It
allows filtering close to the data, by passing the filter criteria
to the data store, thus selecting and returning only the desired
data at a lower level. This feature is called “predicate
pushdown” and accelerates queries many times over, because
it significantly reduces the network load and therefore the size
of data, that must be processed in further steps. ORC also
supports zlib and Snappy compression to reduce data size in
addition to the default column-based compression.

There are different ways to bring any Hive-readable
format into the ORC format and vice versa. This is very
helpful, especially to bring data from external systems into
this optimized format (e.g., if the external system can not work
with ORC files but can export data as CSV). For example, to
put CSV-based data into an ORC-based table, a user could go
one of the following ways:

• Create an external hive table to reference the newly
imported data (e.g., in CSV format) in HDFS. Then
add an internal hive table that contains the same
column definitions but uses the ORC format for
storing [9]. After that, the ORC table can be filled
using a simple "INSERT INTO ... SELECT ... FROM
..." command. This generates the corresponding ORC
files on HDFS in background [10].

• Using a Spark job to read in the original files (e.g., in
CSV format), optionally transform the data and write
it to Hive (or HDFS) in ORC-based format.

B. Storing the semistructured data
As explained in the introduction section, the data base of

the project partner also consists of semistructured data
created during the quality tests after production (different
schema from file to file, depending on test type, and software
version). Since this data makes up a large part of the data
base, the outsourcing of these files was also examined.

1) Composition of the semistructured data
The quality test results don not have this well-known CSV

structure, as they contain some metadata at the beginning of
each file, and every file can have another bunch of columns,
that contain the test results. Figure 2 is an illustration of the
coarse structure of such a test result file:

Figure 2. Schema of a test result file

The header rows (A) have always the same structure and
can help to identify a single test file within all the files. Also,

the first columns (C) are always the same in every file, they
identify the rows inside a test file. Area (B) contains meta
information about the following rows, like column names,
min / max values, and units. Its width depends on the amount
of test columns. The test columns (D) contain the results of
the test cases and can be different in each file (but are the
same within one file, containing null values if necessary).

2) Storing the semistructured data in HBase
Since these files have different schemas, the default bulk-

load mechanisms can not be used for importing this data. That
is why we have decided to process the data with Apache
Spark, because it has an extensive API and can handle almost
any kind of data. Spark also has interfaces to almost all
datastores that exist for Hadoop, e.g., HDFS, Hive and
HBase. We examined two different approaches for storing
these test data files, that follow in the next sections.

a) Spark-Job that writes an HBase table
The first approach of storing the data was a combination

between Spark and Apache HBase. We decided to use Spark
to read in and transform the data into key-value pairs, that
could be written into the NoSQL database HBase afterwards.
Since HBase stores data in form of key-value pairs this is an
interesting opportunity for storing un- or semi-structured
data. To do so, we had to split the regarding rows that
contained the test results into a combination of row key and
key-value pairs. The row key is used to identify a row
globally within the entire data base (i.e., across all files). To
get a unique key, we had to combine the information of the
header rows (file identification) and the base columns, which
identify the rows inside a single file. So, the key consists of
the following parts:

idFile = <Lot>_<Sublot>_<WaferID>_<Date>_<Revision>_<UserText>

keyRow = <idFile>_<PID>_<HBIN>_<DIE_X>_<DIE_Y>
Figure 3. Composition of the row key. DIE_X and DIE_Y are the x and y

coordinates of the die on the wafer.

In combination with the row key, a list of key-value pairs
(that represent the test name and its value) can be added to a
HBase Put object to be sent to the database by using a Spark
application. After reading the different CSV files (test results)
from HDFS, Spark creates these Put objects by processing the
files in parallel and afterwards calling a bulk-load function on
the HBase API. Here is the relevant code snippet:

// This is inside the Spark Job
JavaRDD<HBaseRowEntry> rowsRDD = ...
hbaseContext = new JavaHBaseContext(sc, baseConf);
hbaseContext.bulkPut(rowsRDD, name, new PutFunction());

public class PutFunction
 implements Function<HBaseRowEntry, Put> {
 @Override
 public Put call(HBaseRowEntry entry) throws Exception {
 Put put = new Put(entry.getKey().getBytes());
 for(MyKeyValue kv: entry.getKeyValues()) {
 put.addColumn(kv.getCF, kv.getCQ(), kv.getValue());
 }
 return put;
}}

Figure 4. Writing to HBase using the Java API

C D

B

A

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics

We were able to try this approach in a test phase and we
successfully imported more than 100 GB of test result files
into HBase by running this Spark Job. The problem is that
additional skills would be needed to launch and administrate
the HBase infrastructure.

b) Spark-Job that writes an Hive table
After evaluating the first approach, we took a closer look

at the data and found out that it was possible to bring this
semistructured data into a structured form. That was possible,
because we learned from the company’s employees that they
will always read at least one entire column of the test result
files for analysis purposes. With this new knowledge, we were
able to plan a new data structure, which then enabled to have
a fix schema over all files. Figure 5 shows the transformation
that brings the data into a globally identical schema:

Figure 5. Transforming the test result file

As shown in the figure, the headers that identify a file have
been moved into the test rows below. They are still used to be
able to find a specific file. The main difference is the
transformation of the test columns, as they have been
converted to row-based key-value pairs. The new “Key”
column contains the test names, while the test results can be
found in an array of values under the new column
“ValueList”. This means, that the array of the ValueList
column has as much elements as the test result file had test
rows before. Also, there will be generated as much rows for a
test result file as the original file had columns. This schema
can be used to store the contents of all test result files in a
common, structured table together. As already mentioned, this
only works performant under the condition that the smallest
unit read out is an entire (former) test column, which means
the reading of a complete ValueList array in the new format.
Reading smaller units could cause performance issues, as the
array has to be iterated to find the correct item (then the key-
value approach with HBase would be a better solution). But
since the company wants to read complete test columns this is
a better solution, as we could use Apache Hive to save this
data. As Hive is already chosen in the company for storing the
structured data, they don nott need to administrate and learn a
new tool. Spark also has native connectors to the Hive
warehouse and can write this data to it in parallel, after
bringing the test results into the new format.

C. Realizing the data import process
Now that it has been determined, how and where the data

will be stored, the import process could be planned. An SAP

system acts as the data supplier, while the HDFS and Apache
Hive serve as data sink. We also decided to use Apache Spark
for data import, as it is flexible and can operate natively with
these Hadoop components, and this also avoids the
introduction of another tool. The idea now was to upload the
relevant data files into HDFS and then read them via Spark,
transform (if necessary) and finally write them into the
corresponding Hive tables. A basic scheme of the import
process is shown in Figure 6.

Figure 6. Import Process steps

The following steps are performed in the import process:
• SAP: Exporting the data as CSV files and

uploading them into HDFS.
• Spark: Read the files from HDFS and read in the

corresponding Hive table into datasets (in-
memory).

• Update the dataset by combining the CSV file(s)
with the Hive table content.

• Writing the final dataset content back to Hive
table (overwrite).

The CSV file that is exported from SAP system must have
a separate column that contains information, whether the
corresponding row shall be added or removed – updates are
realized by a deletion, followed by an insert. Figure 7 is an
example of such an import file:

Figure 7. Example of an import file

As explained before, Spark first reads in the complete Hive
table, where the updates should be run against. The table
content is held in-memory during Spark job execution. In the
next step, the update file is read from HDFS and split into
delete and insert rows. Then the delete rows are used to
remove the corresponding rows from the table content (null
values are treated as wildcards). Afterwards the rows
containing the inserts are appended to the table content.
Finally, the dataset containing the updated content is written
back into the Hive table. The complete Hive table is
overwritten in this step.

To trigger the explained Spark import job, we use Apache
Livy. Livy is a REST based interface that enables to submit
Spark jobs from everywhere, also from outside the cluster.
This is helpful since the company needs to start the import job
from their SAP system, after writing the update files into
HDFS. In the final status (May 2019), the data is gathered

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics

inside the SAP system at night and written to HDFS, before
the Spark import job is triggered by a Livy call.

D. Data processing
The data processing is also done by using Apache Spark

jobs. Since Spark has connectors to data stores like Hive and
HBase, it is possible to read and write them from a native
Spark application. There is also another tool that is
particularly suitable for prototyping new Spark jobs. Apache
Zeppelin is a web-based notebook, with interfaces to Hive (via
JDBC), HBase (via Phoenix) and Spark. The respective tools
are connected to Zeppelin via so-called interpreters. A user
gets access to a Spark session, that is created automatically on
starting the corresponding interpreter. In these notebooks, for
example, Spark program code can be tried out in a direct and
uncomplicated way, without the effort of creating Spark
sessions, application packaging and publishing in the phase of
prototyping.

The partner company also decided to use Zeppelin
notebooks to introduce and try out new application logic.
After a successful test phase, the logic is moved into a
separate, stand-alone application, that is created, compiled and
packaged in an appropriate IDE. Since the Spark interpreter
for Zeppelin works with Scala (alternatively also with
Python), we use a Scala IDE to export the final application
logic as JAR files. These files are moved into the HDFS and
can be executed by using the spark-submit script or by making
a corresponding Livy call from outside the cluster. Second is
the standard procedure, since a large part of the applications
are started from the external SAP system or from user’s client
computers. Since the results of these data processing
applications can be very big, storing these datasets in HDFS
or Hive tables is a better approach than sending results back
to the client, which could lead to local memory problems.
After finishing a job, the user can preview (or download) the
results by exploring the data in HDFS or querying the
corresponding Hive tables.

Figure 8. Data processing overview

Figure 8 shows the tools that are used for data processing with
Spark (SAP and Oracle DB are external components that are
used in the company).

V. BENCHMARKS
In order to show and compare the performance of the new

Hadoop system, first benchmarks were carried out. For a
better comparability, the queries were executed on the old
and afterwards on the new system.

A. Comparison of the data size
The graph below shows the various amounts of data

required to store the “HistStep” table, which contains the
operations performed on the lots during production. The data
has the following characteristics:

• approx. 275 mio. rows
• 17 columns (String, VarChar[1-20])

In Oracle database, this table required about 34.9 GB of disk
space, plus optional (for performance reasons) index
information of around 29.9 GB. So, the table thus required a
total of 64.8 GB. In contrast, the ORC-based Hive table only
requires about 5.2 GB in HDFS (partitioned, but without
bloom filters and without replication). Using bloom filters
would increase the storage space by a small amount, but these
are not needed for current performance. So, the Hive tables
reduced the disk space requirements by factor 6.7 (without
Oracle table index) or even by factor 12.5 (with Oracle table
index) (see Figure 9).

Figure 9. Storage requirements for table "HistStep"

The comparison of space needed to save the results of the
product quality tests shows similar results. Saving this data
takes around 13 TB in the Oracle database while Hive table
only needs about 1.6 TB of HDFS storage without replication
(see Figure 10).

Figure 10. Storage requirements for table "STDF_Data"

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics

We have also received first performance benchmarks
from our project partner. The results show the runtimes of lot-
based queries, executed on the “HistStep” table, showed in
the first benchmark. On small queries, where only a few lots
are selected, Oracle is much faster than Hive. But even with
queries for a few hundred lots, Hive takes less time to select,
process and return the data. Since lot-based analyses must
include thousands of lots, the result on the far right of the
diagram is the most interesting for the company. The
difference in performance can be clearly seen in Figure 11.

Figure 11. Query Runtime for table "HistStep"

While Oracle scales rather linearly, Hive’s runtime
increases only minimally. In this scenario, Hive also offers a
major performance advantage over the previous system.

VI. CONCLUSION
This project examined the applicability of a Hadoop-

based platform for the storage and processing of company-
relevant data. Alternative ways to import, store and process
different types of data were demonstrated on practical
examples. Depending on the problem, the Apache Hadoop
framework offers various components to implement the
different tasks. In this project, a Hadoop-based cluster was
successfully introduced to a company’s existing data
platform to store and analyze data over a longer time. Helpful
tools are especially the basic Hadoop components like the

HDFS, the SQL interface Apache Hive, the NoSQL database
HBase, as well as the processing engine Apache Spark. This
project confirms by means of an industrial project that
Hadoop can be used to build such a data-driven platform.
Hadoop comes with special storage formats and engines that
can be used for efficient storage and high-performance
analyses.

REFERENCES

[1] Y. Zhu and J. Xiong, „Modern Big Data Analytics for 'Old-
fashioned' Semiconductor Industry Applications,“
Piscataway, NJ, USA, IEEE Press, 2015, p. 776–780.

[2] Institute for Machine Learning and Analytics - IMLA.
[Online]. Available: https://imla.hs-offenburg.de. [retrieved:
May, 2019].

[3] „The Apache Hadoop project,“ [Online]. Available:
https://hadoop.apache.org. [retrieved: May, 2019].

[4] „The Apache Spark project,“ [Online]. Available:
https://spark.apache.org/. [retrieved: May, 2019].

[5] „Hortonworks Data Platform,“ [Online]. Available:
https://de.hortonworks.com/products/data-platforms/hdp/.
[retrieved: May, 2019].

[6] A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, and S. Belfkih,
„Big Data technologies: A survey,“ Journal of King Saud
University - Computer and Information Sciences, Bd. 30, Nr.
4, p. 431–448, 2018.

[7] A. Ismail, H.-L. Truong, and W. Kastner, „Manufacturing
process data analysis pipelines: a requirements analysis and
survey,“ Journal of Big Data, Bd. 6, Nr. 1, p. 1, 2019.

[8] „Apache ORC,“ [Online]. Available: https://orc.apache.org/.
[retrieved: May, 2019].

[9] „Apache ORC - Hive DDL,“ [Online]. Available:
https://orc.apache.org/docs/hive-ddl.html. [retrieved: May,
2019].

[10] „Convert an HDFS file to ORC,“ [Online]. Available:
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-
3.1.0/migrating-data/content/hive_convert_an_hdfs_file_to
_orc.html. [retrieved: May, 2019].

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-741-2

DATA ANALYTICS 2019 : The Eighth International Conference on Data Analytics

	I. Introduction
	II. Background
	1) Structured Data
	2) Semi-structured Data

	III. The Apache Hadoop Cluster
	IV. Solution
	A. Storing the structured data
	B. Storing the semistructured data
	1) Composition of the semistructured data
	2) Storing the semistructured data in HBase
	a) Spark-Job that writes an HBase table
	b) Spark-Job that writes an Hive table

	C. Realizing the data import process
	D. Data processing

	V. Benchmarks
	A. Comparison of the data size

	VI. Conclusion
	References

