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Abstract—An Inflation-Indexed Swap (IIS) is a derivative in 

which, at every payment date, the counterparties swap an 

inflation rate with a fixed rate. For the calculation of the 

Inflation Leg cash flows, it is necessary to build a mathematical 

model suitable for the Consumer Price Index (CPI) projection. 

For this purpose, quants typically start by using market quotes 

for the Zero-Coupon swaps in order to derive the future trend 

of the inflation index, together with a seasonality model for 

capturing the typical periodical effects. In this study, I propose 

a forecasting model for inflation seasonality based on a Long 

Short-Term Memory (LSTM) network: a deep learning 

methodology particularly useful for forecasting purposes. 

Thanks to its architecture, able to capture highly nonlinear 

relationships, and to the design of a careful training, able to 

satisfy both statistical and econometric features, the proposed 

methodology can be considered more accurate rather than the 

traditional one. As a result, the study shows how the CPI 

predictions, conducted using a FinTech paradigm, can be 

integrated in the respect of the traditional quantitative finance 

theory developed in this research field. 

Keywords-Inflation-Indexed Swap (IIS); Year-on-Year 

Inflation-Indexed Swap (YYIIS); Zero-Coupon Inflation-

Indexed Swap (ZCIIS); Seasonality model; CPI bootstrap; 

Machine Learning (ML); Deep Learning; Long Short-Term 

Memory (LSTM) Network. 

I.  INTRODUCTION 

Machine learning methodologies are increasingly 
spreading in the financial sector. Among the numerous 
examples of applications proposed by the literature, the most 
popular ones are mainly aimed at solving the following 
problems: input data quality [15], innovative algo-trading 
techniques [5], optimal portfolio management [7], pattern 
recognition and classification [11], financial time-series 
forecasting as an alternative to traditional econometric 
approaches, such as: Autoregressive Integrated Moving 
Average (ARIMA), Bayesian Vector AutoRegression   
(BVAR),  Generalized AutoRegressive Conditional 
Heteroskedasticity (GARCH) [13] [17].  

It is more difficult to find evidence in literature of 
artificial intelligence methodologies applied to exotic 
financial instruments pricing or about the integration of 
traditional quantitative finance theory with the new FinTech 
methodologies. The traditional implementation regards the 
numerical solution of the so-called fundamental Black-
Scholes-Merton PDE through Radial Basis Functions [4]. 

 Only more recently, the application of Regressive Neural 
Networks together with the Monte Carlo method was 
suggested for evaluating early-exercise features in American 
and Bermuda option pricing in accordance with the 
Longstaff-Schwartz methodology [12]. This study aims to 
extend the existing literature concerning the integration of 
FinTech in Quantitative Finance through the design of a 
LSTM network for the seasonality modeling in inflation 
indexed swaps. 

The paper is structured according to the following 
sections: the next part illustrates briefly the pricing 
framework; section 3 deals with the traditional standard 
method for the forecast of CPI values (trend + seasonality); 
section 4 describes the LSTM architecture; section 5 focuses 
on CPI projections (also called CPI bootstrap) and section 6 
concludes with a real market case: the two methodologies are 
used for computing the fair-value for an Inflation-Indexed 
Swap and the model risk is quantified. 

II. THE PRICING FRAMEWORK 

An Inflation-Indexed Swap (IIS) is a swap deal in which, 
for each payment date, 𝑇1, … , 𝑇𝑀 , counterparty A pays to  
counterparty B the inflation rate in the considered period, 
while counterparty B pays to counterparty A the fixed rate. 

The inflation rate is calculated as the percentage return of 
the Consumer Price Index (CPI) over the reference time 
interval. There are two main types of IIS traded on the 
market: the Zero-Coupon Inflation-Indexed Swap (ZCIIS) 
and the Year-on-Year Inflation-Indexed Swap (YYIIS) [2]. 

In a ZCIIS, at maturity date 𝑇𝑀, assuming 𝑇𝑀 = 𝑀 years, 
counterparty B pays to counterparty A the fixed quantity: 

𝑁[(1 + 𝐾)𝑀 − 1]  (1) 

where 𝐾 and 𝑁 are the fixed interest rate and the principal, 

respectively.  

In return for this fixed payment, at the maturity date 𝑇𝑀,  

counterparty A pays to counterparty B the floating amount: 

𝑁 [
𝐼(𝑇𝑀)

𝐼0
− 1]  (2) 

In a YYIIS, for each payment date 𝑇𝑖 , counterparty B 

pays to counterparty A the fixed amount:   

𝑁𝜑𝑖𝐾  (3) 

where 𝜑𝑖  is the year fraction of the fixed swap leg in the 

range [𝑇𝑖−1, 𝑇𝑖], 𝑇0 ≔ 0 and 𝑁 is the principal of the deal. 

      Counterparty A pays to counterparty B the floating 

amount equals to: 
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𝑁𝜑𝑖 [
𝐼(𝑇𝑖)

𝐼(𝑇𝑖−1)
− 1]  (4) 

ZCIIS and YYIIS are typically quoted in terms of the 
corresponding equivalent fixed rate 𝐾. 

Based on these quotes and using stochastic calculus, 
pricing formulas can be derived for both classes of 
derivatives. Readers, interested in this quantitative financial 
part, can find the rigorous pricing formulas derivations in [2] 
[9] [10] and [14]. 

In particular Kazziha [10] derived the CPI forward 
values, ℑ𝑖: 

ℑ𝑀(0) = ℑ𝑅𝐸𝐹(0) ⋅ [1 + 𝐾(𝑇𝑀)]𝑀  (5) 

where: 

ℑ𝑅𝐸𝐹(0) is the CPI reference value. It corresponds to the 

one set 𝑛  months back in relation to the settlement date. 

Typically, the standard time lag is 3 months. 

𝐾(𝑇𝑀) is the Inflation Zero Swap Rate quoted on the market 

in correspondence to the maturity 𝑇𝑀.  

III. CPI INDEX TRADITIONAL SIMULATION 

Through (5), we are able to project the index values in 

the future according to the swap rates listed on the market 

following the pricing framework. Since the frequency with 

which the index is published is monthly, it is necessary to 

provide a simulation of the CPI with such periodicity [3]. 

The missing curve points are therefore estimated by 

adding the logarithm of the monthly increase between a 

calculated value ℑ𝑀(0) and its subsequent value  ℑ𝑀+1(0): 

Δℑ𝑀 =
ln(

ℑ𝑀+1(0)

ℑ𝑀(0)
)

12⋅𝜏
    (6) 

where 𝜏  is the time interval expressed in year fraction 

between ℑ𝑀(0) and ℑ𝑀+1(0). 

The points making up the simulated curve of the 

consumer price index are defined by the formula: 

ℑ𝑖+1 = ℑ𝑖 exp(Δℑ𝑀 + ℜ𝑀), ℑ𝑀(0) ≤ ℑ𝑖 ≤ ℑ𝑀+1(0)  (7) 

The standard methodology, suggested by the main 

benchmark info provider pricing modules, takes into 

account the index seasonality algebraically adding the 

normalized residuals  ℜ𝑀   obtained from the historical 

values of the CPI, in accordance with the expression (8): 

ℜ𝑀 =

∑ ln[
ℑ

𝑖+1
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

ℑ
𝑖
𝑀𝑜𝑛𝑡ℎ𝑙𝑦]

𝑠𝑒𝑎𝑠𝑦𝑒𝑎𝑟
𝑖=1

𝑠𝑒𝑎𝑠𝑦𝑒𝑎𝑟
−

∑ ln[
ℑ

𝑖+1
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

ℑ
𝑖
𝑀𝑜𝑛𝑡ℎ𝑙𝑦]

12⋅𝑠𝑒𝑎𝑠𝑦𝑒𝑎𝑟
𝑖=1

12⋅𝑠𝑒𝑎𝑠𝑦𝑒𝑎𝑟
  (8) 

where ℜ𝑀 are the standardized residuals obtained from the 

effect of seasonality over 𝑠𝑒𝑎𝑠𝑦𝑒𝑎𝑟  years. The first 

contribution is the logarithmic variation of the CPI values 

on the considered month; the second one represents the 

overall logarithmic variation recorded in the time period 

considered for seasonality. The objective of this study is to 

propose a deep learning methodology (LSTM network) able 

to simulate the seasonality of the inflation index. In this 

way, in addition to introducing a more robust and flexible 

econometric methodology than the standard one, the 

integration between the classic quantitative finance theory 

together with the Fintech paradigms can be considered an 

interesting feature [1]. In fact, the determination of the swap 

fair value is implemented by applying the formulas 

described above for the ZCIIS and YYIIS and therefore in 

total agreement with canonical principles; moreover, a Long 

Short-Term Memory network will be implemented for a 

more reliable simulation of the CPI seasonality. The next 

section deals with the explanation of the architecture and the 

training phase for the implemented LSTM network. 

IV. LSTM NETWORK ARCHITECTURE AND TRAINING 

LSTM networks are also able to learn long-term 
relationships between the time intervals of a time series, 
therefore without the need to pre-set the number of time lags, 
as occurs in other dynamic recurrent networks, such as 
Nonlinear AutoRegressive (NAR) and Nonlinear Auto-
Regressive with exogenous variables (NARX) [6]. 

A common LSTM unit is composed of a cell, an input 
gate and a forget gate. The cell remembers values over 
arbitrary time intervals and the three gates regulate the flow 
of information into and out of the cell. Intuitively, the cell is 
responsible for keeping track of the dependencies between 
the elements in the input sequence. The input gate controls 
the extent to which a new value flows into the cell, the forget 
gate controls the extent to which a value remains in the cell 
and the output gate controls the extent to which the value in 
the cell is used to compute the output activation of the LSTM 
unit [8]. The activation function of the LSTM gates is often 
the logistic sigmoid. Figure 1 shows how the flux of a data 
sequence 𝑌  with 𝐶  features (or channels) of length 𝑆  has 
been processed into a LSTM layer. In the block diagram, ℎ𝑡 
and 𝑐(𝑡) are, respectively, the output (also known as hidden 
state) and the cell state at time 𝑡. 

 
 

Figure 1.  LSTM network architecture. 

The first LSTM block uses the initial state of the network 
and the first time-step of the sequence in order to compute 
the first output and the first update of the cell state. At time 𝑡, 
the block uses the current state of the network (𝑐𝑡−1, ℎ𝑡−1) 
and the next step of the sequence for estimating the output 
and updating the current state of the cell 𝑐𝑡. The layer state is 
characterized by the hidden state (also known as the output 
state) and the cell state. The hidden state at time step 𝑡 
contains the output of the LSTM layer for the current time 
step. The cell state contains the information learnt in the 
previous steps. For each time step, the layer adds or removes 
information from the cell state. The layer controls these 
updates using gates. The following components control the 
cell state and the hidden state of the layer [8]: 

 Input gate (𝑖): Control level of cell state update. 
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 Forget gate ( 𝑓 ): Control level of cell state reset 

(forget). 

 Cell candidate (𝑔): Add information to cell state. 

 Output gate (𝑜): Control level of cell state added to 

hidden state. 

Figure 2 shows how the gates (𝑖, 𝑓, 𝑔, 𝑜) process the 

signal at time 𝑡  
 

 

Figure 2.  Signal processed by the gates (𝑖, 𝑓, 𝑔, 𝑜). 

In a LSTM, the parameters that are subjected to 

calibration are: the input weights (𝑊), the recurrent weights 

(𝑅) and the biases (𝑏) [6]. 𝑊, 𝑅 and 𝑏 are the arrays built 

through the concatenations of such parameters for each 

component: 𝑊 = (𝑊𝑖 , 𝑊𝑓 , 𝑊𝑔, 𝑊𝑜)
⊤

, 𝑅 = (𝑅𝑖 , 𝑅𝑓 , 𝑅𝑔, 𝑅𝑜)
⊤

 

and  𝑏 = (𝑏𝑖 , 𝑏𝑓 , 𝑏𝑔, 𝑏𝑜)
⊤

where 𝑖 , 𝑓 , 𝑔  and 𝑜  denote the 

input gate, the forget gate, the cell candidate and the output 

gate, respectively. 

At time step 𝑡, the cell state is given by: 

𝑐𝑡 = 𝑓𝑡  ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (9) 

where ⊙ is the Hadamard product operator. 

At time step 𝑡, the hidden state is given by: 

ℎ𝑡 = 𝑜𝑡  ⊙ 𝜎𝑐(𝑐𝑡) (10) 

where 𝜎𝑐 is the activation function of the state (typically a 

hyperbolic tangent). 

The following equations define the components at time 

step 𝑡: 

 Input gate (𝑖): 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑦𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) (11) 

 Forget gate (𝑓): 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑦𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) (12) 

 Cell candidate (𝑔):  

𝑔𝑡 = 𝜎𝑐(𝑊𝑔𝑦𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) (13) 

 Output gate (𝑜): 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑦𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜) (14) 

𝜎𝑔 is the activation function of the gate, typically a sigmoid. 

LSTMs are supervised networks, as a result, after the 

design of the model, it is essential to implement a robust 

algorithm for the training phase. This is the part in which 

the designer decides how many neurons must be 

implemented in order to make reliable predictions. In order 

to obtain valid models for forecasting purposes it is 

necessary to conduct statistical and econometric tests. The 

objective of the first kind of test is to tune the LSTM in 

order to have a good fitting of the training dataset. The gap 

between the target and the model output is reduced through 

an ADAM optimizer as the network training process 

progresses, so it may happen that the estimated relationship 

returns a perfect fit of the sampled data (in-sample), making 

vain the attempt at generalization, fundamental for making 

the network capable of processing different data (out-of-

sample). For this reason and especially in the field of deep 

learning where there is a huge number of parameters to tune 

in order to capture highly non-linear relationships, special 

measures for avoiding overfitting must be taken into 

consideration. As a result, the first intervention, shared also 

with traditional recurrent networks, such as NAR and 

NARX, is to work directly on the dataset through a random-

splitting method. 

The data set configuration used for the network is: 

 70% of the set will form the training set, thus the 

optimization will be carried out with respect to its 

loss function (𝐽) only. 

 15% of the set will be assigned to the validation set, 

thus, despite the weights are updated with respect to 

the train set, the algorithm saves the weights that 

minimize 𝐽  on the validation set, in order to avoid 

data overfitting and trying to reach a good 

generalization. 

 15% of the data set will form the test set, so that the 

network performance can be measured on data that it 

has never seen before, as the ultimate objective of a 

neural network user is to employ the network on 

completely new data. 

The second kind of statistical measures, which are 

traditionally applied in the field of deep learning, work 

directly on the network. The implemented measures can be 

summarized as follows: 

 Adding a term to the traditional loss function 

(RMSE) which put in a penalty (the 𝜆 coefficient) if 

a further weight (𝜔) associated to an arch has been 

activated: 𝐽 = 𝑅𝑀𝑆𝐸 +
1

2
𝜆‖𝜔‖2 

 Dropout, which is a technique consisting of training 

only a group of randomly selected neurons rather 

than the entire network: a percentage (a popular 

choice is 25%) determines how many neurons to 

choose and the remaining ones are deactivated. Since 

the neurons and the relative weights are continuously 

modified, it is thus possible to avoid overfitting. 

These precautions are thus implemented in the forecaster 

in order to have a reliable fitting. 

Given that the objective is to perform a prediction of the 

most reasonable CPI projections, the second test has an 

econometric nature. It is based on the verification of the 

autocorrelation error absence so that the model error is 

unstructured and the predicted values can be 

econometrically reliable.  

V. COMPARISON BETWEEN STANDARD AND LSTM 

TECHNIQUES FOR THE CPI PROJECTION 

In order to compare the standard inflation bootstrap 
methodology with the LSTM approach, we use the market 

.
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data retrieved from Bloomberg on 30th June 2020. Swap rate 
values, 𝐾(𝑇𝑀), quoted by the market at the reference date are 
reported in Table I, together with the estimation of the CPI 
projections, ℑ𝑀(0)  and the Δℑ𝑀, according to (5) and (6). 
The estimation of Δℑ𝑀 is useful in order to have the inflation 
values expressed on a monthly basis [3]. 

TABLE I.  𝐾(𝑇𝑀), ℑ𝑀(0) AND Δℑ𝑀 (30TH
 JUNE 2020) 

𝑇𝑀 Mid 𝑷𝒓𝒊𝒄𝒆 𝐾(𝑇𝑀) ℑ𝑀(0) Δℑ𝑀 

1 -0.071 104.69561 0.0382 

2 0.19375 105.17638 0.0543 

3 0.347 105.86444 0.0787 

4 0.497 106.86841 0.0721 

5 0.57125 107.79688 0.0804 

 
According to (7), this information allow us to project the 

CPI values for the next years using a market-oriented 
approach without taking into account the seasonality. In 
order to add this essential contribution for the forecast into 
the model, we have to consider the monthly normalized 
residuals, ℜ𝑀 , calculated starting from the past CPI 
realizations. The traditional way to implement this task is to 
apply (8). 

Using the traditional market standard preference to 
consider the previous five years of the CPI time-series, we 
get the following ℜ𝑀, from January to December: -0.011959, 
0.001761, 0.008373, 0.00266, 0.000828, 0.00018,-0.005856, 
0.000625, 0.002751, 0.00105, -0.002176, 0.001764.  

Applying recursively (7), the projections for the CPI are 
obtained for the following years. These simulations are 
reported in Figure 3 together with the past values.  
 

 
Figure 3.  CPI time-series and its projection (traditional methodology). 

Black line: past CPI values. Green line: CPI projection without seasonality. 

Red Line: CPI projection with seasonality (traditional model). Blue points: 
market-implied CPI estimation 

 the black line represents the past five years CPI 

values used for the estimation of the seasonality 

effect. 

 the green line represents the CPI projections without 

seasonality: it connects the blue dots which are the 

ℑ𝑀(0)  whose estimations are strictly connected to 

the 𝐾(𝑇𝑀) quotation. 

 the red line represents the projections of the CPI 

index taking into account the seasonality through the 

monthly annualized residuals ℜ𝑀. 

The idea is to use a LSTM network with the aim of 

providing a better model for the seasonality. For the training 

set, we use  the monthly return of the index computed in the 

last 5 years: ln [
ℑ𝑖+1

𝑀𝑜𝑛𝑡ℎ𝑙𝑦

ℑ
𝑖
𝑀𝑜𝑛𝑡ℎ𝑙𝑦], according to the market standard 

convention. The number of hidden units in the LSTM block 

is tuned in function of the performances recorded by the 

network. Using a layer made by 100 neurons, adopting an 

ADAM optimizer and implementing all the described 

techniques in order to avoid overfitting, we can achieve 

excellent results in the training phase [6]. From a statistical 

point of view, we obtain an  𝑅2 close to 1, as a result the 

fitting over the historical time series is extremely good. 

From an econometric point of view, the auto-correlation 

error for the tuned model has been kept under an acceptable 

threshold for the non-zero lags [16], with a confidence 

interval equal to 95%. 

Having checked the forecasting reliability of the LSTM 

network, we proceed to compute the following 6 years 

returns (72 values). Figure 4 and Figure 5 show the 

difference between the two approaches: the black line 

represents the realized past returns of the last five years and 

the red line represents the forecasted returns. 

 

 
Figure 4.  Historical and prospective seasonality estimation using the 

standard technique. Black line: realized past returns. Red line: forecasted 

returns 

It is sufficient to look at the figures to realize that the red 

line (i.e. the projected time-series) obtained from the 

traditional method has a behavior which is too simplified. In 

fact, it is based on the estimation of the twelve normalized 

residuals of the previous months which are repeated equal 

for the future values. Implementing a properly trained 

LSTM allows to use a model able to capture highly 

nonlinear relationship among the time-series in accordance 

with the  rigorous statistical and econometric tests [16] 

described in Section IV. 
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Figure 5.  Historical and prospective estimation for seasonality using Deep 

Learning. Black line: realized past returns. Red line: forecasted returns 

As a result, facing the forecasting problem with the 

FinTech approach, the red line has a more realistic forward-

looking behavior thanks to both the advanced technology 

(deep learning) and the careful tuning. As we will see in the 

market case, which regards the pricing of a YYIIS, these 

differences in the simulation of the seasonality cause an 

impact on the derivative fair-value that is not always 

negligible. 

VI. MARKET CASE: YYIIS PRICING 

In this section, we proceed with the valorization of a 

YYIIS using the two approaches previously described. The 

main financial characteristics are reported in Table II. The 

valuation date of the "In Arrears" swap is 30th June 2020, as 

a result we use the historical and prospective inflation data 

already computed in the previous sections. Regarding the 

discount curve we use, according to the new benchmark 

standard for collateralized derivatives, the EUR OIS ESTR 

term structure. As a result, zero rates and discount factors 

used for pricing are those implied from the new market 

benchmark curve. Using the pricing framework described in 

section II, we proceed with the estimation of the future cash-

flows for the swap and then we go through the discounting 

process for obtaining the NPVs for the two legs. The 

difference between the two NPVs gives the price of the 

swap.  

TABLE II.  YYIIS FINANCIAL CHARACTERISTICS 

 Receiving Leg Paying Leg 

Leg Type Y-o-Y Inflation Fixed 

Notional 10 MM 10 MM 

Currency Euro Euro 

Index CPTFEMU Index Fixed Coupon: 0.5% 

Effective Date 30th June 2020 30th June 2020 

Maturity Date 30th June 2026 30th June 2026 

Lag 3 Month - 

Interpolation Monthly - 

Spread 0 - 

Reset Frequency Semi-Annual - 

Payment Freq. Semi-Annual Annual 

Day Count ACT/ACT ACT/ACT 

Discount Curve EUR-OIS-ESTR EUR-OIS-ESTR 

 

The discounted Cash Flows for the fixed paying leg of 

the swap are equal to -306,314.62 Euro (Table III). 

TABLE III.  YYIIS PAYING LEG 

Payment Date Payment Discount Rate Present Value 

06/30/2021 -49,930.76 1.006019 -50,231.30 

06/30/2022 -50,000.00 1.012638 -50,631.89 

06/30/2023 -50,000.00 1.019137 -50,956.87 

06/30/2024 -49,796.02 1.025040 -51,042.90 

06/30/2025 -50,203.98 1.030223 -51,721.29 

06/30/2026 -50,000.00 1.034607 -51,730.37 

 
The discounted Cash Flows for the inflation-indexed 

receiving leg of the swap using the standard seasonality 
approach are equal to +391,740.5 Euro (Table IV). 

TABLE IV.  YYIIS RECEIVING LEG (STANDARD APPROACH) 

Date  Reset CPI Payment Discount PV 

12/31/2020 104.74729 -2,185.66 1.002913 -2192.02 

06/30/2021 104.69561 -4,894.44 1.006019 -4923.89 

12/31/2021 105.06038 35,066.31 1.009331 35393.52 

06/30/2022 105.17638 10,944.48 1.012638 11082.8 

12/30/2022 105.6452 44,597.45 1.015884 45305.83 

06/30/2023 105.86444 20,674.18 1.019137 21069.82 

12/29/2023 106.49159 58,904.25 1.022122 60207.33 

06/28/2024 106.86841 35,225.72 1.02504 36107.77 

12/31/2024 107.45914 56,181.35 1.027729 57739.21 

06/30/2025 107.79688 31,122.41 1.030223 32063.02 

12/31/2025 108.44679 60,603.27 1.032507 62573.3 

06/30/2026 108.84187 360,65.68 1.034607 37313.81 

 
The discounted Cash Flows for the inflation-indexed 

receiving leg of the swap using the deep learning architecture 
are equal to +371,023.4 Euro (Table V). 

It is interesting to highlight that, in correspondence with 

the dates where the CPI values can be directly implied by 

the market using (5), both methodologies are consistent with 

the values reported in Table I. This shows a good integration 
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between traditional quantitative finance principles and new 

FinTech paradigms. 

TABLE V.  YYIIS RECEIVING LEG (LSTM APPROACH) 

Date  Reset CPI Payment Discount PV 

12/31/2020 104.80403 3274,34 1.002913 3283.87 

06/30/2021 104.69561 -10265.09 1.006019 -10326.88 

12/31/2021 104.75465 5683.47 1.009331 5736.51 

06/30/2022 105,17638 39847.66 1.012638 40351.25 

12/30/2022 105.33777 15375.28 1.015884 15619.50 

06/30/2023 105.86444 49737.38 1.019137 50689.20 

12/29/2023 106.18170 29841.55 1.022122 30501.70 

06/28/2024 106.86841 64287.66 1.02504 65897.43 

12/31/2024 107.14643 26480.24 1.027729 27214.51 

06/30/2025 107.79688 60025.26 1.030223 61839.40 

12/31/2025 108.13120 31220.98 1.032507 32235.88 

06/30/2026 108.63801 46376.07 1.034607 47981.01 

 

According to the traditional pricing approach, the fair 

value for the analyzed YYIIS is +85,425.87. On the other 

hand, if we would have used the proposed and more 

advanced approach, its value would have been +64,708.77. 

The gap between the values from the two pricing 

methodologies is equal to 20,717.1, an amount that can be 

considered significant enough for causing a percentage error 

higher than 20% compared to the Mark to Market of the 

analyzed derivative. 

VII. CONCLUSION 

This study shows how a Deep Learning methodology can 
be usefully implemented in a pricing framework aimed at 
determining the fair value of derivatives linked to the 
inflation index. The Long Short-Term Memory has allowed 
to identify the effect of seasonality more reliably than the 
traditional standard methodology. In fact, the proposed 
technique is able to simulate the future values of the time 
series by applying the described rigorous statistical and 
econometric tests, reasonably guaranteeing the reliability of 
the forecast. On the contrary, the traditional approach, based 
on the estimation of the historical normalized residuals, does 
not consider these important tests and it is not able to capture 
highly nonlinear relationships as a LSTM network does. It is 
particularly interesting considering how artificial intelligence 
paradigms can be integrated with traditional pricing 
methodologies in the quantitative finance field. For the 
continuation of the study, it is interesting to apply the 
suggested technology to derivatives written on an underlying 
which differs from inflation, where the seasonality modeling 
is of fundamental importance, such as commodity and 
energy derivatives. 
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