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Abstract—Recent database research has focused on in-memory
databases, which can be used in mixed workload scenarios,
enabling OLTP and OLAP queries on the same database en-
gine. These compressed column-oriented database systems use a
differential store concept to enable fast inserting and require a
merge process to compact the data periodically in a compressed
main partition that is changed by the merge process only. This
characteristic feature calls for a re-evaluation of the performance
of inverted indices. In this paper we present a use case for an
inverted index in a column-oriented in-memory database system
to reduce the total costs of query processing in a mixed workload
environment. We evaluate the benefits and drawbacks of using the
index structure to answer queries and the costs of maintaining
the index, especially during the merge process. An analytical
model is introduced to compute the theoretical cost of index scans.
Furthermore a comparison between different index maintenance
strategies is presented. The theoretical findings are verified in a
prototypic implementation within the HYRISE database system.
Our contributions are an analytical framework to evaluate
the benefit of an inverted index during query execution, the
verification in an in-memory database system, and an evaluation
of different index maintenance strategies. From the presented
findings we conclude that indexing can be an efficient instrument
to meet the performance requirements in a mixed-workload and
main memory-based environment.

Keywords-In-Memory Database; Inverted Index; Index Main-
tenance;

I. INTRODUCTION

Over the last years the price of main memory has dramat-
ically declined to a level on which it becomes competitive to
prices for hard disk storage of only few years ago. This trend
allows for servers with several gigabytes or even terabytes
of main memory at a relatively low cost. The vast amount
of fast accessible memory exceeds by far the space needed
by traditional software, which mostly derives from times
where main memory was a resource to be handled carefully.
Consequently, in-memory databases build on this phenomenon
and use the available space to store the application itself as
well as the contained data entirely in the main memory, thus
eliminating costly lookups on slow hard disk drives when
accessing data. Despite all data now being present in the main
memory at any time, processing the data still requires it to
be loaded into the processor’s cache, an operation that - after
eliminating expensive reads from hard drives - represents the
system’s new bottleneck [1]. Due to this fact, reducing memory

accesses is crucial to the overall performance of the database.
Reading an entire table consisting of several million rows
for the sake of a few records’ values is an obvious waste,
which can be eliminated by a lookup structure called inverted
index. While inverted indices have been used for decades
in traditional disk-based database systems or text retrieval
systems, there are differences when using inverted indices
in an in-memory database, such as HYRISE [2], [3], which
impact the way an index is leveraged and maintained. In case
dictionary compression is applied on a column, the inverted
index is used to speed up read performance since the applied
dictionary compression facilitates the inverted index structure
as the compression can be leveraged to build up a compressed
index. The impact is especially high for queries with a low
selectivity. As shown in Figure 1 the workload of enterprise
applications consist of ∼50 percent lookup queries and ∼30
percent of range queries. Consequently, in mixed workload
environments an index is needed to efficiently support these
kinds of read access.

This paper gives an overview over the benefits and tradeoffs,
which result from the employment of inverted indices in the
context of in-memory databases. The remainder of the paper is
structured as follows: First, we will introduce the peculiarities
of the used in-memory database HYRISE and provide addi-
tional architectural information. Section II gives an overview
on the related work on inverted indices and describes the
differences regarding an inverted index implemented in an
in-memory database. In Section III, the inverted index is
explained and theoretically analyzed regarding advantages and
disadvantages, as well as other aspects such as the profitability
of a delta partition index and a unique approach to index
maintenance. The theoretical findings of this section are then
compared against the actual HYRISE implementation in Sec-
tion IV. The paper concludes with a summary and outlook.

A. Background

There are of course different implementation approaches
to in-memory database systems. In this paper, we focus on
HYRISE [2], that is an in-memory database, which facilitates a
column-oriented data organization and dictionary compression
with late materialization strategies during query execution [4].

15Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications



The key features with impact on structure and performance
of an inverted index encompass the following:

a) Column-oriented Data Storage: Typically there are
two ways of storing the information contained in a table,
either row-by-row or column-by-column. Which one to choose
primarily depends on the expected workload. Sequentially
accessing data on almost any storage medium is substantially
faster than random access. It has been found that in many cases
there are more analytical-style than transactional-style queries
[5]. Typical analytical queries rarely access entire rows of a
table but rather focus on the values of a small set of columns.
Storing data in a columnar fashion saves the effort of reading
unnecessary columns, thus reducing query execution time.

b) Dictionary Compression: Even if main memory is not
a scarce resource with regards to the available size anymore, it
still has to be used efficiently to reduce overall costs besides
reducing the memory consumption only. The uncompressed
size of a company’s productive system may exceed even most-
recent terabyte server setups. In HYRISE a column-based dic-
tionary compression technique is used to reduce the memory
footprint of each column. All distinct values are captured in
a dictionary data structure (vector) that assigns each actual
value of the column a unique value id, and provides bilateral
translation. Now instead of the actual values in a column, each
column consist of a dictionary vector and an attribute vector
that stores the respective value ids. The larger those actual
values and the smaller the number of distinct values, the more
efficient the compression. For instance, applying dictionary
compression to a column storing country names as strings: As
the number of countries is naturally limited and in practice
often narrows down to a handful that are actually used, storing
that handful of strings once in the dictionary and using value
ids in the column provides good compression rates.

Other lightweight compression techniques are not applied
to HYRISE since fast tuple reconstruction is essential for the
mixed workload environment HYRISE is build for.

c) Differential Store Concept: Due to the applied com-
pression each column is separated into two parts, a primary,
read-optimized, read-only part (referred to as “main partition”)
and a secondary, write-optimized part that serves as buffer
for data altering operations (referred to as “delta partition”)
[3]. The actual state of a column is represented by a union
of both partitions with a one-bit validity vector to handle
record visibility in case of update and delete queries. Initially
being empty, the delta partition gets filled by data modifying
queries. Since the main partition is not altered, a number
of optimizations regarding read performance can be applied
while the delta partition focuses on insertion speed, thus the
differential store copes efficiently with OLTP and OLAP style
requests at the same time.

d) Merge Process: As stated, data changes occur only
in the delta partition. Yet, main and delta partition form a
unit and together represent the column, meaning that data
retrieval of a column must respect both. Due to the write-
optimized nature of the delta partition, it lacks the main
partition’s read performance and thus should not grow too

large in size. Defining a threshold at which the delta partition
becomes “too large” is not a trivial task and primarily depends
on the individual workload and is discussed in [6]. However,
once the delta partition size exceeds certain limits, a merge
process is initiated. The merge process combines the main and
delta partition to create a new main partition and a new empty
delta partition. During this process the respective dictionary
vectors are first merged into a new, sorted dictionary, secondly
changes in the mapping of values onto value ids are applied
to both main and delta partition content and last the contents
are concatenated.

B. Enterprise Workload Characteristics

In order to give a background on realistic workloads in en-
terprise applications, this section presents results on analyzing
actual workloads.

The common assumption that enterprise applications work
row based and with many updates has driven decades of
database research. For example the TPC-C benchmark, which
incorporates the characteristics of a transaction processing
system, issues around 45% data modification operations and
55% read queries.
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Figure 1. Analyzed Enterprise Workloads

However, our analyses of realistic database statistics derived
from 65 customers have shown that more than 80% of all
queries are read accesses — in OLAP systems even over 90%
are read-only queries. Figure 1 shows the query distribution
for transactional and analytical systems of key lookups, tables
scans, range selects, inserts, updates and deletes. The analyti-
cal system differs in the distribution of inserts and table scans
(which become column scans in column-oriented databases)
with regards to the overall workload. While this is the expected
result for OLAP systems, the high number of read queries
on the transactional system is surprising. Consequently, the
query distribution leads to the idea of using a read-optimized
database for both transactional and analytical systems.

When implementing analytical functionality in a transac-
tional system the support for fast tuple reconstruction based
on key lookups still stays essential. At the same time, more
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Figure 2. Inverted Index and Dictionary Encoding on a Single Column

complex queries with range requests and especially full col-
umn scans will increase. This trend will even further develop
in the direction of more complex queries and full column scans
as the direct reporting on transactional data enables new ”real-
time analytics”. To summarize, highly selective queries are
important in all workload variants and need to be supported
efficiently. For this use case, indices have been introduced for
any database system.

II. RELATED WORK

Inverted indices have been used for decades and were
initially used to reduce the amount of data read from disks
for the sake of throughput. Inverted indices in the context of
in-memory databases face a similar problem domain which led
to examinations of main memory inverted indices before actual
in-memory databases were feasible. For instance, Lehman
and Carey [7] already compared possible implementation
techniques in 1986, at the same time predicting the price
decline of main memory.

Most research about main memory inverted indices con-
centrates on either performance of the index itself or its
maintenance. For example Rao and Ross [8], and Raatikka
[9] evaluate several index data structures, such as T-trees,
B-trees and their descendants, optimizing them for cache-
consciousness.

Another approach is taken by Transier and Sanders in [10]
who evaluate compression techniques for inverted indices used
in text retrieval. The topic of maintaining inverted indices
has also been covered, mainly in the context of text retrieval
systems by facilitating the nature of certain index implemen-
tations [11].

Lester et al. [12] discuss the maintenance strategies in-place,
re-build and re-merge, which are close to the deliberations
about maintenance in this work.

Several research on inverted files has taken compression into
account, such as in [13], [14], [15], and [16].

The purpose of this paper is not to optimize the index in
terms of performance or size, but rather to investigate the use
inside an in-memory database, such as HYRISE [2], [3].

III. INVERTED INDEX STRUCTURE

As stated before, considering an in-memory database I/O
reduction is still the goal on main memory access. To eliminate
the access of unnecessary data, the inverted index offers an
inverse mapping of a column. As depicted in Figure 2, the

inversion results in a map containing a list of record ids for
every distinct value. When applying a predicate on a column
the requested conditions have to be checked on every value
of the column if no inverted index or sorting is in place.
While this results in a sequential read access pattern, which is
substantially faster than random access [1], still the complete
column has to be read, creating a potential bottleneck. Com-
pared to this, a lookup on the inverted index immediately offers
the positional information about which records match the
criteria and hence reduce the amount of data to be accessed.
As described in Section I-A, HYRISE implements a column
store without surrogate ids and therefore individual sorting
of columns is prohibited. Furthermore, dictionary encoding
is used as compression technique in HYRISE. Therefore, the
inverted index can likewise leverage dictionary encoding to
reduce memory footprint by mapping value ids instead of
values to positions (see Figure 2). Since the dictionary for
the attribute vector is already in place, there is no additional
overhead for compressing the inverted index.

The core of the inverted index is a key-value-container with
value ids as keys and record id lists as values. Since each
column has presumably a unique dictionary, compound indices
have to be implemented as higher-level functionality. Likewise,
due to the distinction into a main partition and a delta partition
with separate dictionaries on a single column, the inverted
index cannot span an entire column but has to be implemented
on the main and delta partition of the column respectively. The
available options are to index the main partition only or to
construct two inverted indices per column (one per partition).
The remainder of this section examines benefits and tradeoffs
accompanying the inverted index in theory, as well as whether
or not to use an inverted index on the delta partition. For the
index key-value-container an implementation of a balanced
tree is assumed [17], guaranteeing at least O(logn) for search,
insert and delete operations.

A. Cost Model

The scans with and without an index are examined for
their assumed costs in order to provide a common base for
comparison. The model is based on the assumption that the
bandwidth is the theoretical optimum and that cost can be
expressed as number of operations on data. These theoretical
operations will not directly map to CPU cycles, because
different operations will consume a different amount of CPU
cycles, also varying among hardware platforms. Our model is
suitable to theoretically define the impact of using an index
in a column store. As we show in Section IV, the model and
the measurements align in key properties, such as break even
points and general cost factors between storage schemes, but
also show, that theoretical operations and CPU cycles are not
directly interchangeable.

Table I summarizes the symbols that will turn up in calcu-
lations later on.

The term “query selectivity” refers to the fraction of a
table’s records that will be contained in the query result set.
As a shortcut SM equals s∗NM and Sd

M equals s∗dM ∗NM
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Description Unit Symbol
Number of rows in table - N
Table width, i.e. number of columns in table - W
Number of rows in main partition - NM

Number of rows in delta partition - ND

Number of entries in main dictionary - DM

Number of entries in delta dictionary - DD

Fraction of unique values in main partition % dM
Fraction of unique values in delta partition % dD
Query selectivity % s
Selected entries in main partition - SM

Selected entries in delta partition - SD

Selected distinct entries in main partition - Sd
M

Selected distinct entries in delta partition - Sd
D

Length of a value id bytes LV ID

Length of a record id bytes LRID

Memory bandwidth bytes/cycle B
Costs for operation X operations CX

Table I
SYMBOLS USED IN CALCULATIONS

for the main partition, while the same applies to SD and
Sd
D for the delta partition. Regarding the lengths of value

ids and record ids an implementation as 32 bit integers is
assumed, meaning that LV ID = LRID = 4. Furthermore,
all scans are assumed to be non-materializing, i.e. for the
result no translation of value ids into values will be done
[18]. In order to align the results as close as possible to
our actual implementation running on a system as described
in Section IV-A, we compute the memory bandwidth. 1066
MHz DDR3 memory in dual channel configuration features a
theoretical throughput of 17.066 gigabytes per second. Adding
the CPU with a base clock of 2.266 GHz and a turbo boost
frequency of 2.666 GHz, averaged to 2.466 GHz or 2.466
million cycles per second, allow for the following calculation:

B = 17.066 GB/s
2.466 GHz = 17,066,000,000 bytes/s

2,466,000,000 cycles/s ≈ 7 bytes/cycle
(1)

B. Performance Benefits

Performance benefits achieved by increased lookup speed
are the key argument for inverted indices. Scanning an entire
table requires NM + ND memory accesses and comparison
operations for a non-indexed column, resulting in a complexity
of O(M +D). The actual number of memory accesses might
be smaller because the data is read in chunks called cache
lines [19] and the sequential processing reduces cache misses
to a minimum and facilitates hardware based prefetching.
Neither dictionary size nor the query’s selectivity influence the
performance of scanning the entire table, because each record
is processed anyway. The total costs can be summarized as:

C
′

TableScan = (NM +ND) ∗W ∗ LV ID

B (2)

This equation means that an entire row is loaded to validate
a predicate on a single field’s value of the row. A slightly
improved variant runs a separate check on the column of in-
terest to determine the desired rows and read them afterwards.
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Therefore it suffers less from an increasing number of columns
and will serve as the standard equation for a table scan in this
Section and represents the characteristics of a column-oriented
data storage. In this case of course query selectivity does have
influence on the total costs:

CTableScan = (NM +ND + (SM + SD) ∗W ) ∗ LV ID

B (3)

Index-supported queries do not need to process the entire
column first. While the delta partition is processed via a
table scan as above, the positional information about the main
partition is already at hand. Looking up the record id list for
a given value id is in O(log DM ) as the number of keys in
the index is equivalent to the number of distinct values in the
column and therefore the number of dictionary entries. A value
id lookup is necessary for each distinct value that meets the
query conditions. The returned record id list contains s ∗NM

entries and has to be read from memory. The actual s∗NM ∗W
can finally be read from the main partition by using the record
id list. Data retrieval furthermore requires ND values to be
read from the delta partition to get the positions, followed by
reading the s ∗ND ∗W values, thus the overall costs can be
calculated by:

CIndexScan = (Sd
M ∗ log(DM ) +ND) ∗ LV ID

B

+SM ∗
LRID

B
+ (SM + SD) ∗W ∗ LV ID

B

(4)

As obvious by this equation, the selectivity has a major
impact on the inverted indexes profitability. Figure 3 illustrates
this with an one-column table. Neither this nor the other
figures referenced in this section feature a delta partition
because it influences scan costs for table and index scan alike.
At 25% selectivity for a main partition size of about 70,000
rows, the table scan becomes more economic. Since the cost
equation for an index scan is logarithmic, the two lines for
15% and 10% cross the table scan line as well, which grows
linearly.

A more obvious demonstration is given in Figure 4, in-
cluding graphs for one, five and ten columns. In contrast to
the aforementioned influence of the selectivity, the number of
columns does not affect the efficiency, because it again applies
to both scan variants. The only other component with impact
is the number of distinct values in the column. Its influence is
quite obvious since it correlates with the inverted index’s size.
Less unique values allow for faster lookups in the index as
illustrated in Figure 5. An index scan with 10% selectivity on
a table with one column and 100,000 rows equals a table scan
in terms of cost at about 80% distinct values. The break even
point value for s can be calculated by equating CTableScan

with CIndexScan (under the assumption that LV ID = LRID)
and reveals the following formula:

sbreakeven = 1
dM∗log(dM∗NM )+1 (5)

Like observed in the graphs, the number of columns does
not appear in the equation, neither does the delta partition as it
is processed equally in both scan types. The only influencing
factors are the number of distinct values and overall number
of rows. If either row count or distinct value count increase,
sbreakeven logarithmically converges to 0, meaning that even
when selecting just very few tuples an index scan is more
costly than a table scan.

Of course this exact equation is only valid for a table with
just one inverted index that can be used to resolve all query
conditions. If this is not the case, either another inverted index
has to be consulted or the resulting list of records has to be
processed by a table scan. A second inverted index means an
overhead of another Sd

M ∗ log(DM ) + SM memory accesses.
The returned record id list is intersected with the one from
the first index before the respective rows are read from the
table, keeping the performance impact low. Alternatively, the
resulting rows from the index lookup are checked against all
query predicates by using a column scan.

For a table scan the overhead is bigger, requiring another
NM +ND memory accesses for each column to be checked.
If too many columns have to be checked, C

′

TableScan can
become lower than CTableScan. In summary the inverted index
provides an excellent acceleration of query processing, as
long as the query’s selectivity does not exceed certain limits
depending on table size and number of distinct values.

C. Tradeoffs

Besides the advantage of increased lookup speed, having
an inverted index has some downsides as well. These affect
both most important factors in almost any application, time
and space.

1) Construction Costs: Before it can be used, the inverted
index must be built. As there is no positional information
besides the column itself, a complete scan of the main partition
is required. Processing row by row, the found value id is used
to find the corresponding record id list or to create a new
one if it did not exist. The find operation is in O(log DM )
and has to be executed NM times, resulting in a worst case
construction cost of:

C(IndexConstruction) = NM ∗ log(dM ) ∗ LV ID

B (6)

Alongside the initial construction, maintenance costs arise
when main and delta partitions are merged. The possibility of
a change in the value id to value mapping renders the inverted
index invalid and a rebuild is inevitable. Details about the
inverted index maintenance including an alternative rebuild
strategy are discussed in Section III-E.

2) Memory Consumption: The inverted index data structure
uses space in memory. As said before, it contains one value id
of size LV ID for each distinct value in the column, mapping
onto a list of record ids (each LRID in size). Consolidating
all those lists yields NM entries for a main partition’s index.
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Summed up, the inverted index size for one column is:

DM ∗ LV ID +NM ∗ LRID bytes (7)

If the assumption applies that LV ID = LRID, the inverted
index consumes at least as much space as the underlying
attribute vector of the column (NM ∗LV ID bytes). In case the
level of distinct values reaches 100%, the index is effectively
double the size of the column.

D. Delta Partition Index
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An additional index on the delta partition can of course
speed up lookups since the aforementioned inverted index on
the main partition only leads to a retrieval of values from the
delta partition with the help of a regular column scan. Unlike
the main partition, the delta partition is constantly changed by
insert, update and delete operations while the the employed
insert only approach implements the logical update and delete
queries as technical insert operations with timestamps. An
index has to be always valid, therefore insertions into the delta
partition entail an index update, which has to be part of the
transaction.

In case of applied dictionary compression, an insertion
is executed by retrieving the respective value id from the
dictionary in O(log DD), followed by a simple push back
into the delta attribute vector in constant time. Having a delta
index means another search in the indexes keys to find the
appropriate bucket (O(log DD)) and inserting the new record
id, which equals a regular insertion in terms of complexity
and thus doubles insertion costs as shown in Figure 6. It
also becomes obvious, that an uncompressed delta partition
naturally offers the best insert performance.

Beneficial to an inverted index on the delta partition is
the reduced lookup complexity when processing the delta
partition. Using the delta index replaces the column scan with a
regular index scan with another lookup. The costs are the same
as for two index scans without a delta partition, one regular

and the other one with NM = ND and DM = DD. In practice,
the delta partition will not grow large in size compared to the
main partition, a priori reducing a delta indexes impact on
the overall performance in general. Figure 7 demonstrates the
theoretical cost reduction in a table containing 100000 rows in
the main partition and 10000 rows in the delta partition with
varying scan selectivity. The difference in scan costs between
index scans with and without delta index constitutes about the
ratio of delta to main size, in this case 10%. Recognizing
the high insertion costs and the fact that in a productive
environment the delta will be orders of magnitude smaller
than the main, a delta index becomes fairly unprofitable. We
therefore propose to leave the delta partition uncompressed
and without an index.
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E. Maintenance

One of the downsides to having an index are the mentioned
maintenance costs. When the values of a table change, the
index needs to be adapted too. Due to the fact that in in
HYRISE a dedicated buffer called delta partition handles all
data changes without affecting the main partition the inverted
index of the main partition has to be adapted while the merge
process compacts the delta and main partition to create a new
main partition.

There are different strategies that can be used to retain the
validity of the index, which can mostly be associated to one
of three basic principles: rebuild, update and merge. A merge
could be achieved by combining main and delta partition
indexes, but as explained in Section III-D an inverted index
on the delta partition is not in favor of the write-optimized
characteristics, so we will not go into any more detail about
this approach.

The two strategies presented are therefore rebuild and
merge.

1) Rebuild Strategy: The rebuild strategy constitutes the
most naive approach to inverted index maintenance. Basically,
after merging the two storage partitions the former index is

20Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications



discarded and a new one is created from scratch. There is
no difference to the initial construction apart from the delta
partition’s rows now being indexed as well and consequently
the costs are:

CIndexRebuild = (NM +ND) ∗ log(DM +DD) ∗ LV ID

B (8)

Although this may seem a less favorable option at first
glance, rebuilding after merge process completed has the
advantage of independence. First of all, it can be employed
outside the merge process, a potentially costly and memory in-
tensive operation. Therefore the merge process is not affected
whether there is an index on a column or not.

Secondly, the main partition is already merged and due to its
nature of being read-only will undergo no further alterations
until the next merge operation. This allows the inverted index
to be rebuilt in parallel to regular execution. Queries reading
from the main partition will be affected shortly after the
completion of the merge, as long as the index is not yet ready,
but their requests can be served with table scans. Once the
index rebuild is finished, table scans can again be replaced
by index scans. Further the index rebuild could be delayed
or rather scheduled as, for example, explored in the context
materialized view maintenance [20].

2) Update Strategy: The update strategy facilitates the
special characteristics of the differential store concept that
is implemented in the HYRISE database system, the merge
process to be exact. During the merge process a new dictio-
nary is created from the combination of the main partition’s
dictionary and the created dictionary of the delta partition’s
contents. For the subsequent conversion of table contents a
mapping is created that assigns each former value id in both
main and delta the respective value id in the newly created
dictionary. With this mapping at hand main and delta partition
are processed sequentially, applying the mapping whenever the
currently read value id has been changed in the new dictionary.
As a last step the delta partition’s content is appended to the
main partition, resulting in a new, empty delta partition, which
is ready for new insertions.

Now, the idea behind the update strategy is that a major part
of the table, the main partition, is already indexed. Merging
main and delta partition also does not change row ids, i.e.
the values in the inverted indexes key-value-map, but only the
value ids, i.e. the keys since an insert only approach is applied
in HYRISE. The value id mapping can be used to update the
existing index by changing keys where necessary. The basic
balanced tree structure is assumed as basis for the index sorts
the keys, thus a key change might result in shifting half or
more of the other keys in memory. But since value ids in
the main partition are sorted by their respective value, it can
be safely assumed that V alueIDold ≤ V alueIDnew. Parsing
the inverted index from the end now will ensure that no values
will be shifted or overwritten when applying the mapping, the
keys are relocated at constant time, because no re-sorting is

necessary. The costs for this update are:

COldIndexUpdate = DM ∗ LV ID

B (9)

This update should happen right after creating the new
dictionary and mapping. When the delta partition’s content is
processed in order to apply the mapping, each row has to be
extracted, checked and changed if necessary. To avoid a second
processing of the delta partition rows, indexing can happen
right during this operation. The necessary information (value
id and record id) are already present and can be inserted into
the inverted index in O(logDM ). Altogether the additional
costs of updating an index during merge are:

CIndexUpdate = DM ∗ LV ID

B +ND ∗ log(DM +DD) ∗ LRID

B
(10)

Despite the fact that the update strategy has to be part
of the merge process and may impact the cache friendly
sequential processing of table data, the difference as illustrated
in Figure 8 is immense in theory.
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Figure 8. Comparison of index rebuild and update costs with varying delta
partition size

IV. IMPLEMENTATION AND EVALUATION

A. Test Environment

The purpose of this section is to compare the theoretical
findings with a working implementation. All tests were per-
formed within HYRISE [2], a main memory hybrid storage
engine prototype written in C++. While its main feature is
the arbitrary partitioning of tables to accommodate mixed
workload scenarios, it provides the necessary implementation
of a differential store to allow for comparison with the
assumed database layout of the previous sections such as a
main and delta partition and dictionary compression. For the
tests only the full column-oriented storage without horizontal
partitioning were used.

All benchmarks were performed on an Intel Xeon X7560
native Octocore with a base clock of 2.26 GHz and a turbo
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boost frequency of 2.66 GHz accompanied by 256 GB DDR3
1066MHz main memory.

B. Inverted Index Implementation

The implemented inverted indexes core is a Standard Tem-
plate Library (STL) map. Despite offering better best-case
complexity, an implementation as a hash-map was discarded
due to its high worst-case complexity of O(N) [21]. Value
ids and record ids are represented by 4 byte unsigned integers,
the record id lists are STL vectors of the according type. To
answer many types of requests, the inverted index provides
methods for inserting single or multiple elements and retrieval
of position lists for either one, multiple or a range of value
ids.

As already proven, a larger number of columns has the same
effect on table and index scan. Consequently the influence of
the number of columns is excluded from the measurements,
only one column is used.

C. Delta Index Insertion Costs

To verify the calculated double insertion costs into the
indexed delta partition, a delta partition index was imple-
mented. The graph shown in Figure 9 indicates, that indeed
almost twice as many cycles are used when updating the delta
partition’s index on insert operations. The actual difference
is a bit smaller due to overhead created by the software that
adds onto both, but still high enough to confirm the theoretical
findings.
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Figure 9. Insertion cost increase with Delta index

D. The Inverted Index in Practice

As done in Section III-B, the influence of variations in main
partition size, number of distinct values and selectivity were
examined, but this time in practice.

Figure 10, depicts the variations in main partition size with
two column scans and two index scans, both fetching once
10% and once 40% of the values. At a lower selectivity level,

the index scan outperforms the column scan as expected, at
40% the difference is remarkably smaller. In contrast to Fig-
ure 3, the graphs seems not to be logarithmic. An explanation
could be the fact that the STL map stores its keys sequentially
in memory, allowing for a smaller number of cache misses
and in consequence an effective lookup time that is below the
theoretically average log(N).
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Figure 10. Actual index scan performance with varying main partition size
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Figure 11. Actual IndexScan performance with varying levels of distinct
values

A different perspective is offered in Figure 11. The theoreti-
cal analyses have proven that a column scan is not affected by
the number of distinct values in a columns, because it scans
all values anyways. This theory is justified by the more or less
horizontal lines depicting the column scans’ costs. The slight
deviation can be explained by unpredictable variations in the
overall system load, apart from that the scan costs are about
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constant.
In contrast, the costs for an index scan increase once

reaching 20%-25% selectivity. On 50% distinct values it is
outrun by the column scan. The graphs for the remaining two
scans will meet somewhere around 70%-80%, almost exactly
matching the theoretical graph in Figure 5.

Figure 12 underlines the selectivity’s impact on table and
index scan performance. The costs for an index scan grow
almost twice as fast as the column scan costs, on 50% distinct
values the break even point is reached at a selectivity of about
45%, and 65% on 20% distinct values respectively. Also here
the curves’ shapes resemble to the prediction in Figure 4.

In summary, the measurements and observations of the im-
plementation largely align with the expectations that emerged
from the theoretical discussion.
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Figure 12. Actual index scan performance with varying selectivity

E. Maintenance

Both the rebuild and update strategy were implemented in
HYRISE to verify the theoretical findings. To make the actual
difference more obvious, the regular merge was included in
the graphs.

Figure 13 shows a result similar to Figure 8 from the
previous chapter. The costs for the mere merge process grow
almost equally to the number of rows in the delta partition,
whereas a parallel update or subsequent rebuild means a linear
growth with a greater factor. The update strategy’s advantage
of not having to re-index the main is pretty obvious and
marks a constant offset from the rebuild costs. Yet, as the
delta partition grows, the ratio of indexed to non-indexed rows
diminishes and changes the overhead reduction from about
70% in the beginning to about 40% at a main-delta-ratio of
1:2.

Deductively it can be said that the update strategy always
has a benefit over discarding and rebuilding, even though the
difference decreases when the delta partition grows too large.
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Figure 13. Comparison of implemented index rebuild and update with
varying delta partition size

V. CONCLUSION

In this paper, we showed that an inverted index can dramati-
cally speed up value lookups in a table with a differential store
as long as certain conditions apply. If either selectivity or the
number of distinct values in an indexed column exceed limits
that depend on the actual implementation, the performance
gain is lost. As a consequence, the typical profiteers of such an
index are selective queries fetching only small subsets or even
just a single tuple from the database, which is the standard case
in transactional-style queries. Although this paper concentrates
on inverted indices for the sole purpose of data retrieval as a
distinct query, many different kinds of typical operators in a
database could make use of it. When for instance a merge
requires only a handful of value ids to be changed in an
indexed column, the respective rows could easily be found
using the index, which is the case when choosing the so called
in-place merge strategy that implements a sparse dictionary.

Besides, it has been presented that an inverted index used
for the delta partition adds benefit to the overall performance.
While it provides speedup capabilities similar to the main
partition index, even though with less impact on the overall
performance, the delta partition inverted index doubles the
insertion costs. Due to the fact of the delta partition acting
as a buffer and thus predictably being orders of magnitude
smaller, the minor reduction in scan costs does not justify
the high insertion costs as the delta partition is designed as a
write-optimized partition.

The last conclusion regards maintenance and how the merge
process’s nature can be exploited for it. The two strategies
explained both have advantages and disadvantages. While
updating the index during merge saves memory accesses,
it is encapsulated in the merge which makes parallelization
difficult. Being more costly in total, this does not apply to the
rebuild strategy. Whether or not an inverted index makes sense
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is subject to the individual case, i.e. the general pattern of the
expected workload. While they cannot outperform full column
scans for OLAP style queries, they are beneficial for answering
OLTP style queries, which request typically only a few rows.
Thereby the inverted index helps to avoid congestion on the
main memory interface in a mixed workload environment.
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