
Operating on Hierarchical Enterprise Data in an In-Memory Column Store

Christian Tinnefeld, Bjoern Wagner, Hasso Plattner
Hasso Plattner Institute, University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
christian.tinnefeld@hpi.uni-potsdam.de, bjoern.wagner@hpi.uni-potsdam.de, hasso.plattner@hpi.uni-potsdam.de

Abstract—Enterprise data management is currently sepa-
rated into online transactional processing (OLTP) and on-
line analytical processing (OLAP). This separation brings
disadvantages such as the need for costly data replication,
maintaining redundant systems or the inability to run data
reports on the latest transactional data. Academia and industry
are working on a reunification by storing all data in a single
columnar in-memory database which is designed to sustain
high transactional workloads while simultaneously handle
complex analytical tasks as well. Since enterprise data often
includes hierarchical data, this paper focuses on modeling,
storing, and operating on hierarchical data in an in-memory
columnar database. The paper contributes by describing the
implementation of the most frequently used hierarchical data
operations on such a database while maintaining the ability
to execute performant analytical queries on such data as
well. A set of benchmarks demonstrates that hierarchical data
operations can be executed up to three times faster on an in-
memory column store than on an in-memory row store. The
paper closes with a discussion which enterprise applications
can benefit from this contributions.

Keywords-hierarchical data; enterprise data management; in-
memory column store; SanssouciDB.

I. INTRODUCTION

Hierarchies are very common in every day life. Organi-
zational structures of companies, books, websites and most
file systems have a natural hierarchical structure. Moreover
hierarchies help to abstract complex things. E.g. software
engineers use object-oriented decomposition techniques to
encapsulate complex applications into independent modules.
The object hierarchy and inheritance are two of the key
concepts of object-oriented programming. Even one of the
first scientific data model proposals, the IBM Information
Management System, was based on a hierarchical data
structure, long before the rise of relational database man-
agement systems [1]. There have been many proposals to
store hierarchical data in relational databases as well as
in specialized graph databases. This paper explores the
opportunities of in-memory columnar databases for the
persistence of hierarchical data. These columnar databases
are superior in processing speed of huge datasets and provide
high scalability especially in parallel scenarios. In addition
to that, columnar databases sustain high transactional and
analytic workloads at the same time. Therefore, they are
used for reuniting transactional and analytical workloads

which are currently separated in the context of enterprise
data management [2].

The remainder of this paper is organized as follows. Sec-
tion II describes several enterprise applications that heavily
operate on hierarchical data in order to illustrate the need
and the requirements towards operating on hierarchical data
in the context of enterprise data management. Section III
describes the relevant concepts in terms of encoding, data
model, and data operations and their implementation in
terms of describing the resulting SQL statements. The sub-
sequent Section IV evaluates the performance by performing
measurements on SanssouciDB, which is a prototypical in-
memory columnar database [3]. Section V closes the paper
with a summary of the most important insights and by
discussing the implications for enterprise applications.

II. HIERARCHCIAL DATA IN ENTERPRISE APPLICATIONS

This section introduces enterprise application domains
with a strong focus on hierarchical data. The discussion
focuses on central characteristics of the applications and
the resulting requirements towards data management.

Supply Chain Management Supply chain management
tries to improve the flow of materials, information and
financial resources within a company and between different
companies [4]. The foundation of supply chain management
is information sharing, coordinated planning, scheduling
and execution as well as collaborative monitoring and
controlling. Supply chain management enables companies
to execute just-in-time production, reduce stock levels,
provide better forecasting and a shorter time-to-market for
new products. The reduction of vertical integration over
the last decade requires a more intensive collaboration
between suppliers and customers. E.g. in the automotive
and high-tech industry supplier coordination is vital to
keep the complex production processes up and running. At
the same time, the complexity of products and production
processes increased rapidly. The National Electronics
Manufacturing Initiative, Inc. (NEMI) outlined in [5]
that the Bill-of-Materials plays a major role in such
collaboration scenarios. The Bill-of-Materials (BoM) (see
Figure 1 for an example of a BoM) defines what and
how many components are necessary to build a product.
Therefore, the BoM is basically a hierarchy of components

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

CAR
Q1 | T 12h

CHASSIS
Q1 | T 12h

DOOR
Q4 | T 3 h

FRAME
Q1 | T 0 h

ENGINE
Q1 | T 12h

INTERIOR
Q1 | T 12h

STEERING
Q1 | T 3 h

SEATS
Q4 | T 0 h

Figure 1. Bill-of-Material for a car containing quantity and assembly time

and sub components of a specific product. Many processes
and stakeholders operate on the BoM, such as procurement,
planning or production processes. Therefore it is necessary
for supply chain management solutions to provide a fast,
scalable and reliable BoM implementation. In addition to
those primary transactional scenarios, the BoM is also used
for analytics. For example, one might wants to know which
components cause the most delays in order to improve the
procurement process of this component.

Product Lifecycle Management Product lifecycle
management (PLM) software is designed to manage the
whole lifecycle of a product. This includes the conception,
design and manufacturing phase as well as services and
disposal. PLM integrates processes, data, people and
provides interfaces to other business systems. One key
requirement of PLM is the effective management of Bills-
of-Information (BoI). Although Bills-of-Material from the
previous section are also created and maintained by PLM
processes, Bills-of-Information play a more important role.
BoIs can be considered as a superset of Bills-of-Materials,
because a BoM only contains all information necessary to
assemble the product and a BoI holds lots of additional data
generated during design, testing, manufacturing, sales and
support of the product. A major goal of product lifecycle
management is to reduce the time-to-market by centralizing
the data organization. This drastically removes search
time for component reuse, provides more accurate results
and allows a better management as well as traceability of
intellectual property assets throughout the whole product life
cycle. This brings up two significant technical requirements
for the implementation of the BoI hierarchy. First, the BoI
hierarchy needs a very fast search interface. Second, the
hierarchy has to be update-optimized, because in contrast to
the BoM, the BoI changes often within the design iterations.

Project Management Another important application suite
based on hierarchical data is project management. Usually,
at the beginning of projects at set of high-level tasks is

defined. During the project these tasks are divided in more
detailed sub tasks. Beside this task hierarchy, employees
and resources in general are organized in a hierarchical
manner. Project management software uses those structures
e.g. to calculate project costs, estimates, and reporting.

Workforce Scheduling The scheduling of a workforce
is closely related to project management, but has special
requirements concerning the hierarchy implementation.
Project management focuses on static calculations and
workforce scheduling runs more sophisticated optimizing
algorithms. Workforce scheduling is calculated based on a
hierarchy of tasks and resources in oder to find an optimal
schedule to utilize all available resources. This is critical
for utilize the available resources for a project in the most
optimal way.

The preceding application domains gave an overview of
the broad spectrum of technical requirements for processing
hierarchies. It turned out that hierarchy implementations
have to tackle read as well as write workloads. In addition
to that real-time analytics on the complete hierarchies play
an important role e.g. when finding out certain properties of
a BoM or to find out how many resources are occupied for
a certain task within a project.

III. CONCEPTS AND IMPLEMENTATION

This section focuses on the concepts and their imple-
mentation for handling hierarchical data in an in-memory
column store. The example of the perviously introduced Bill-
of-Material is used as requirement driver throughout this
section.

A. Preorder and Postorder Encoding

As mentioned in the previous section, fast execution of
queries along the 4 main axes (ancestor, descendant, pre-
ceding, following) is crucial for Bill-of-Material processing.
According to Grust et al. [6], the 4 main axis of each node
in the tree partition the tree in 4 disjunct sets. The union
of all those sets with the node itself contains all nodes of
the tree exactly once. Grust further defines a mapping of tree
nodes to a relational structure that preserves this partitioning
and retrieves all the main axes using a simple range query.
This mapping is based on so called preorder and postorder
tree traversal. A preorder traversal assigns an unique rank
to each node in the tree before its children are recursively
traversed from left to right. The root node usually has the
rank 0. Postorder traversal also assigns an unique rank to
each node, but the value is assigned after the children has
been traversed recursively.

In [7], Boncz et al. optimize the pre- and postorder
encoding by size and level attributes that replace the
postorder attribute. The size attribute describes the number
of descendants and the level attribute describes the number

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

A

B

C

D E

F

G H

I J

Figure 2. Example of a Pre- and Postorder table

bom_id : INTEGER
pre : INTEGER
size : INTEGER
level : INTEGER

cvc_id : INTEGER
quantity : INTEGER
assembly_time : INTEGER

HIERARCHY

product_no : INTEGER
name : VARCHAR

Product

Figure 3. Schema of the pre- and postorder table

of ancestors of a node. The postorder rank is not stored
explicitly in this schema anymore, but can be calculated for
any node v via post(v) = pre(v) + size(v) - level(v). Figure
2 shows an example of the optimized encoding, Figure 3
depicts the resulting schema.

B. Operations

This subsection describes the implementation of the
needed operations. The description is illustrated with SQL
queries that refer to the relational schema introduced above.
The most important operations are compared in a benchmark
in the next section.

1) Number of Nodes in the Tree: The calculation of the
number of nodes in a tree can be straightforward or complex
depending on the implementation. E.g. if each node is related
to one row in a relational database the number of node equals
the number of rows that can be retrieved with a simple
count() SQL statement as shown in Listing 1, since each
node in the tree is represented by a database row.

Listing 1. Query to calculate the number of nodes in the tree
SELECT count (p r e) FROM TREE

2) Number of Leaves in the Tree: A leave is node without
any child nodes. Hence, the number of leaves complies with
the number of nodes without any children in the tree. The
number of leaves in the tree can be calculated using the size
attribute of the node with the SQL query of Listing 2.

Listing 2. Query to calculate the number of leaves in the tree.
SELECT count (p r e) FROM TREE
WHERE s i z e =0

3) Height of the Tree: The height of the tree expresses
the maximum distance of a leave to the root node in nodes.
The height of the tree can be derived from the maximum
level attribute plus 1, because it is zero based. The query
can be found in Listing 3.

Listing 3. Query to retrieve the height of the tree.
SELECT max (l e v e l) + 1 FROM TREE

4) Finding the Root Node: The root node is the only
node on level 0 and can be found with the following SQL
statement as shown in Listing 4

Listing 4. Query to find the root node.
SELECT ∗ FROM TREE
WHERE l e v e l =0

5) Main Axes Query: The main axes traverse four differ-
ent kind of axis. The ancestor axis describes the parent nodes
of an input node excluding the node itself. The result list is
ordered and starts with the root node of the tree. Because of
that, the result can also be considered as path from the root
node to the input node. The descendant axis is the opposite
of the the ancestor axis. It describes the child nodes of the
input node and recursively the descendants of those child
nodes. As already mentioned, the tree structure is similar
to a XML data model. Therefore the best way to illustrate
preceding axis, to select all XML elements that have been
closed before the context node. The following axis contains
all elements that begin after the context element has been
closed.

Because the 4 main axes partition the tree in 4 disjunct
regions the range queries can be derived from the pre-
post-plane. The context node pre and context node post
are named parameters representing the pre- and postorder
rank of the context node. The ORDER BY statement is used
to ensure document order.

Listing 5. Query for the ancestor axis of the context node.
SELECT ∗ FROM TREE
WHERE p r e < : c o n t e x t n o d e p r e

AND p o s t > : c o n t e x t n o d e p o s t
ORDER BY p r e

Listing 6. Query for the descendant axis of the context node.
SELECT ∗ FROM TREE
WHERE p r e > : c o n t e x t n o d e p r e

AND p o s t < : c o n t e x t n o d e p o s t
ORDER BY p r e

Listing 7. Query for the preceding axis of the context node
SELECT ∗ FROM TREE
WHERE p r e < : c o n t e x t n o d e p r e

AND p o s t < : c o n t e x t n o d e p o s t
ORDER BY p r e

Listing 8. Query for the following axis of the context node.
SELECT ∗ FROM TREE
WHERE p r e > : c o n t e x t n o d e p r e

AND p o s t > : c o n t e x t n o d e p o s t
ORDER BY p r e

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

6) Subtree matching: Subtree matching is more complex
than the operations presented above. First of all, according
to [8] there are several kinds of subtree matching. For an
ordered rooted tree T with vertex set V and edge set E, an
rooted ordered Tree T ′ is a bottom-up subtree if and only
if

1) V ′ ⊆ V
2) E′ ⊆ E
3) the labeling of V’ and E’ is preserved in T’
4) if vertex v ∈ V and v ∈ V ′ then all descendants of v

must be in V’
5) left-to-right ordering among siblings of T must be

preserved in T’

The bottom-up subtree matching defined by Zaki [9]
is implemented by transferring the depth encoding tree
representation to the relational model. The basic idea behind
the subtree matching query is, to pick one tree and match it
against all the others by joining the hierarchy table with
itself. The query in Listing 9 shows one possibility to
implement subtree matching in SQL. It takes the bomId and
the number of nodes of the subtree as input parameters. It
is possible to retrieve the number of nodes of the subtree
by another join with the hierarchy table, but this would
also introduce more complexity in this example. Since the
subtree matching operates on products, the hierarchy table is
joined on the cvcId attribute and where-clause ensures, that
subtree isn’t matched against itself. But the most important
part of this query is the group-by-statement. First of all,
the bomId attribute separates the result of different trees.
Second, the tree.pre-subtree.pre and tree.post-subtree.post
statements group all nodes of the tree together, that have
a similar preorder and postorder rank. To be more exactly,
the structure is of the subtree is preserved in the tree, but
the position of the root node of subtree in the matching
tree doesn’t matter. Hence all nodes of a tree that match
the structure of the subtree are contained in one group. The
last having-clause verifies that all nodes of the subtree can
be found in the matching tree. Finally, the select-statement
returns the id of the matching tree as well as the preorder
and postorder rank of the node that matches the root node
of the subtree.

Listing 9. Query for subtree matching
SELECT t r e e . bom id , min (t r e e . p r e) , max (t r e e . p o s t)
FROM h i e r a r c h y s u b t r e e INNER JOIN h i e r a r c h y t r e e
ON t r e e . c v c i d = s u b t r e e . c v c i d
WHERE s u b t r e e . bom id = : s u b t r e e b o m i d

AND t r e e . bom id <> : s u b t r e e b o m i d
GROUP BY t r e e . bom id , t r e e . pre−s u b t r e e . pre ,

t r e e . pos t−s u b t r e e . p o s t
HAVING count (t r e e . p r e) = : s u b t r e e n o d e c o u n t

7) Add, Move, Delete Nodes or Subtrees: The following
operations change the structure of the tree. An insert oper-
ation inserts new nodes or subtrees below an existing node

into the tree. Moving a node or a subtree means to change the
parent of the node or the root node of the subtree. Deleting
a node from a tree detaches it from the hierarchy. If this
node has descendants, all descendants are also removed.

The implementations of the read-only statements aren’t
complex and can be executed fast on a relational database
system as seen above. Unfortunately, this is not completely
true for structural update operations of the tree. No matter if
a single node or a subtree is inserted, moved, or deleted, all
pre values following the insert node and all size values of
ancestors of the insert node have to be updated. Especially
the first update is critical from a performance perspective,
because it has to update the half table on average. A highly
optimized implementation of the update operation including
transaction management was proposed by [7]. Listing 10
illustrates a much simpler query that inserts a node into a
tree.

Listing 10. Query to insert a node or subtree
UPDATE H i e r a r c h y SET p r e = p r e + : s u b t r e e n o d e c o u n t
WHERE p r e > : i n s e r t n o d e p r e

AND p o s t > : i n s e r t n o d e p o s t
UPDATE H i e r a r c h y SET s i z e = s i z e +: s u b t r e e n o d e c o u n t
WHERE p r e < : i n s e r t n o d e p r e

AND p o s t > : i n s e r t n o d e p o s t

8) Analytical Query: Analytical operations often operate
on all nodes of the tree instead of a subset. Path based
aggregation traverses the tree or a subtree recursively from
root to leaves and applies a arithmetical operation on one
attribute of each node on the path.

The analytical query operation flattens the Bill-of-Material
hierarchy by processing each component of each product and
aggregate the quantity of each node. The result is a simple
list of all components necessary to assemble the product
from scratch as shown in Listing 11.

Listing 11. Query for flattening data hierarchy
SELECT H i e r a r c h y . bom id , Cvc . name ,

sum (H i e r a r c h y . q u a n t i t y)
FROM H i e r a r c h y INNER JOIN Cvc
ON H i e r a r c h y . c v c i d =Cvc . i d
GROUP BY H i e r a r c h y . bom id , Cvc . name

IV. BENCHMARKING

This section evaluates the performance of the previously
discussed tree implementations by benchmarking the major
tree operations and compare the results. The benchmarks are
executed on two different database systems: one system is
a row-oriented MySQL database running on a RAMDisk,
the other database is a column-oriented SanssouciDB [3].
The machine they are running on is an Intel Xeon E5450
Quadcore with 3 GHz and 32GB of RAM.

A. Read Operation

We selected the 4 main axis (ancestor, descendant, pre-
ceding, and following) as example query for read operations.

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 4. Read operations on a tree with 500.000 nodes

Figure 4 shows the results for the read operations on a tree
with 500.000 nodes. The column store is faster for all 4
read queries. However it occurs that there is a noticeable
variance between the different axis on both databases. While
the ancestor axis performs very well, the preceding and
following axis operation is about ten times slower. This can
be explained by the structure of the tree. Because the width
of the tree is bigger than the height, the result set of the
following axis operation is usually also larger. E.g. the result
set of the following axis operation for a node with a small
preorder rank can contain almost the complete tree, but the
ancestor axis result set is limited to the height of the tree.

B. Write Operation

The write operation we benchmarked adds a new child
node to a leaf of the tree. It turns out, the lower the preorder
rank of a leaf is, the slower performs SanssouciDB compared
to MySQL. Obviously, SanssouciDB is optimized for read-
intensive workloads, but this case is compounded by the
fact that for lower preorder ranks almost all nodes in the
hierarchy table are updated during an insert.

C. Analytic Operation

Finally, the analytic operation flattens the Bill-of-Material
hierarchy as described in the previous section. Throughout
the different measurements, the number of nodes has been
increased, starting with 100.000 nodes up to 1.000.000
nodes. Especially in the latter case, the column store can
play off its analytic strengths and passes the MySQL up to
a factor three. This is remarkable, because it shows that
the described data operations on SanssouciDB provide a
performant execution of transactional operations (such as
reading and inserting nodes) as well as fast analytics on

Figure 5. Insert operation on a tree with 500.000 nodes

Figure 6. Analytic operation on a tree with varying number of nodes

the same data. Although the non-exponential growth of the
response time when adding more nodes indicates that even
bigger trees can be analyzed while still maintaining a sub-
second response time.

V. CONCLUSION

This paper shows that the reunification of transactional
and analytical workloads on one single database is possible
even when operating on hierarchical data. The described
tree operations build the foundation for serving enterprise
applications such as supply chain management, product
lifecycle management, project management or workforce

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

scheduling. Furthermore, the paper demonstrates that the
described operations can be executed in a performant manner
on an in-memory column store such as SanssouciDB.

Since this is the technical prerequisite for enabling more
analytical functions within applications that work on hier-
archical data, the following new application scenarios are
within reach: when working on BoMs in the context of
supply chain management, the properties of each component
of a product can be taken into consideration when doing
Supply Network Planning or Production Planning and not
only the product as a whole. E.g. when a production plan
has to be rescheduled due to a temporary outage of some
machines, it can be instantly determined which sub-products
can still be produced. Or for example in the field of
product lifecycle management, analytics and simulations on
every new iteration of a product is possible which leads
to quicker validation of new product proposals and allows
the product designer to validate that a new product fulfills
certain requirements while he is still working on it.

REFERENCES

[1] M. Stonebraker and J. M. Hellerstein, “What Goes Around
Comes Around,” Architecture, 2005. [Online]. Available:
http://www.w3.org/TR/xpath/

[2] J. Krueger, C. Tinnefeld, M. Grund, A. Zeier, and
H. Plattner, “A case for online mixed workload processing,”
in Proceedings of the Third International Workshop on
Testing Database Systems, ser. DBTest ’10. New York,
NY, USA: ACM, 2010, pp. 8:1–8:6. [Online]. Available:
http://doi.acm.org/10.1145/1838126.1838134

[3] H. Plattner and A. Zeier, In-Memory Data Management: An
Inflection Point for Enterprise Applications. Springer, 2011.

[4] G. Knolmeyer, P. Mertens, A. Zeier, and J. Dickersbach,
Supply Chain Management Based on SAP Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.

[5] S. Your and S. Chain, “In Search of the Perfect Bill of
Materials (BoM),” Material Interchnage Journal, no. March,
2002.

[6] T. Grust, “Accelerating XPath location steps,” Proceedings
of the 2002 ACM SIGMOD international conference on
Management of data - SIGMOD ’02, p. 109, 2002.

[7] P. Boncz, T. Grust, M. V. Keulen, S. Manegold, J. Rittinger,
J. Teubner, and C. W. I. Amsterdam, “MonetDB / XQuery :
A Fast XQuery Processor Powered by a Relational Engine,”
2006.

[8] Y. Chi, “Frequent Subtree Mining — An Overview,” Funda-
menta Informaticae, pp. 1001–1038, 2001.

[9] M. J. Zaki, “Efficiently mining frequent trees in a forest,”
Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining - KDD ’02,
p. 71, 2002.

[10] P. A. Boncz, J. Flokstra, T. Grust, M. van Keulen,
S. Manegold, K. S. Mullender, J. Rittinger, and J. Teub-
ner, “Monetdb/xquery-consistent and efficient updates on the
pre/post plane,” in EDBT, ser. Lecture Notes in Computer
Science, Y. E. Ioannidis, M. H. Scholl, J. W. Schmidt,
F. Matthes, M. Hatzopoulos, K. Böhm, A. Kemper, T. Grust,
and C. Böhm, Eds., vol. 3896. Springer, 2006, pp. 1190–
1193.

[11] Y. E. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes,
M. Hatzopoulos, K. Böhm, A. Kemper, T. Grust, and
C. Böhm, Eds., Advances in Database Technology - EDBT
2006, 10th International Conference on Extending Database
Technology, Munich, Germany, March 26-31, 2006, Proceed-
ings, ser. Lecture Notes in Computer Science, vol. 3896.
Springer, 2006.

[12] T. Grust, S. Sakr, and J. Teubner, “Xquery on sql hosts,”
in Proceedings of the Thirtieth international conference
on Very large data bases - Volume 30, ser. VLDB ’04.
VLDB Endowment, 2004, pp. 252–263. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1316689.1316713

[13] H. Plattner, “A common database approach for oltp
and olap using an in-memory column database,” in
Proceedings of the 35th SIGMOD international conference
on Management of data, ser. SIGMOD ’09. New York,
NY, USA: ACM, 2009, pp. 1–2. [Online]. Available:
http://doi.acm.org/10.1145/1559845.1559846

[14] G. Valiente, “Algorithms on trees and graphs,” Security, 2002.

[15] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann,
R. Schiele, and T. Westmann, “Anatomy of a native XML
base management system,” The VLDB Journal The Interna-
tional Journal on Very Large Data Bases, vol. 11, no. 4, pp.
292–314, Dec. 2002.

[16] M. M. Tseng, “Generic Bill-of-Materials-and-Operations for
High-Variety Production Management,” Concurrent Engi-
neering, vol. 8, no. 4, pp. 297–321, Dec. 2000.

[17] X. Shen, X. Papademetris, and R. T. Constable, “Graph-
theory based parcellation of functional subunits in the brain
from resting-state fMRI data.” NeuroImage, vol. 50, no. 3,
pp. 1027–35, Apr. 2010.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Second Edition, 2001.

[19] P. Umversay and W. Lafayette, “Pattern Matching in Trees,”
Computing, vol. 29, no. I, pp. 68–95, 1982.

[20] T. Grust, “Staircase Join : Teach a Relational DBMS to Watch
its (Axis) Steps,” Evaluation.

[21] K. Beyer, N. Seemann, T. Truong, B. Van der Linden,
B. Vickery, C. Zhang, R. J. Cochrane, V. Josifovski,
J. Kleewein, G. Lapis, G. Lohman, B. Lyle, F. Özcan, and
H. Pirahesh, “System RX,” Proceedings of the 2005 ACM
SIGMOD international conference on Management of data -
SIGMOD ’05, p. 347, 2005.

[22] M. H. Xiong, S. B. Tor, and L. P. Khoo, “WebATP: a Web-
based flexible available-to-promise computation system,” Pro-
duction Planning & Control, vol. 14, no. 7, pp. 662–672, Jan.
2004.

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

