
Basic Components for Building Column Store-based Applications

Andreas Schmidt∗† and Daniel Kimmig†
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: andreas.schmidt@hs-karlsruhe.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {andreas.schmidt, daniel.kimmig}@kit.edu

Abstract—A constantly increasing CPU-memory gap as well
as steady growth of main memory capacities has increased
interest in column store systems due to potential performance
gains within the realm of database solutions. In the past several
monolithic systems have reached maturity in the commercial
and academic space. However a framework of low-level and
modular components for rapidly building column store based
applications has yet to emerge. A possible field of application
is the rapid development of high-performance components
in various data-intensive areas such as text-retrieval systems.
The main contribution of this paper is column-store-kit, a
basic building block of low-level components for constructing
applications based on column store principles. We present a
minimal amount of necessary structural elements and associ-
ated operations required for building applications based on our
column-store-kit.

Keywords-Column store; basic components; framework; rapid
prototyping.

I. INTRODUCTION

Within database systems, values of a dataset are usually
stored in a physically connected manner. A row store stores
all column values of each single row consecutively (see
Figure 1, bottom left). In contrast to that, within a column
store, all values of each single column are stored one after
another (see Figure 1, bottom right). In column stores, the
relationship between individual column values and their
originating datasets are established via Tuple IDentifiers
(TID). The main advantage of column stores during query
processing is the fact that only data from columns which
are of relevance to a query have be loaded To answer the
same query in a row store, all columns of a dataset have
to be loaded, despite the fact, that only a small portion of
them are actually of interest to the processing. On the other
side, the column store architecture is disadvantageous for
frequent changes (in particular insertions) to datasets. As the
values are stored by column, they are distributed at various
locations, which leads to a higher number of required write
operations exceeding those within a row store to perform the
same changes. This characteristic makes this type of storage
interesting especially for applications with very high data

volume and few sporadic changes only (preferably as bulk
upload), as it is the case in, e.g., data warehouses, business
intelligence systems or text retrieval systems. Interest in
column store systems has recently been reinforced by steady
growth of main memory capacities that meanwhile allow
for main memory-based database solutions and additionally
by the constantly increasing CPU-memory gap [1]: Today’s
processors can process data much quicker than it can be
loaded from main memory into the processor cache. Conse-
quently, modern processors for database applications spend
a major part of their time waiting for the required data.
Column stores and special cache-conscious [2] algorithms
are attempts to avoid this “waste of time”. A number of
commercial and academic column store systems have been
developed in the past. In the research area, MonetDB [3] and
C-Store [4] are widely known. Open Source and commercial
systems include Sybase IQ, Infobright, Vertica, LucidDB,
and Ingres. All these systems are more or less complete
database systems with an SQL interface and a query opti-
mizer.

As column stores are a young field of research, numerous
aspects remain to be examined. For example, separation
of datasets into individual columns result in a series of
additional degrees of freedom when processing a query.
Abadi et al. [5] developed several strategies as to when
a result is to be “materialized”, i.e., at which point in
time result tuples shall be composed. Depending on the
type of query and selectivity of predicates, an early or late
materialization may be reasonable. Interesting studies were
published about compression methods [6], various index
types as well as the execution of join operations, e.g., Radix-
Join [1], Invisible Join [7] or LZ-Join [8]. In addition to
that, there are attempts at creating hybrid approaches that
try to combine the advantages of column and row stores.
The main objective of this paper is to present a number
of low-level building blocks for constructing applications
based on column store systems. Instead of copying the
low-level constructs of existing sophisticated column stores,
our research work is focused on identifying components

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

ID Name Firstname date-of-birth sex

31 Waits Tom 1949-12-07 M

45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

Ro
w-
St
or
e Column-Store

31 45 65 77 81 82 Waits Benigni Jarmusch

Tom Roberto Jim

1949-12-07 1952-10-27

M M M F

Ryder Rowlands Perez

Winona Gena Rosa

1953-01-22 1971-10-29 1964-09-06

F F

31 Waits Tom 1949-12-07 M 45 Benigni

65 Jarmusch Jim

81 Rowlands Gena 1930-06-19 F

Perez Rosa 1964-09-06 F

Roberto 1952-10-27 M

1953-01-22 M

82

77 Ryder Winona 1971-10-29

F

Figure 1. Comparison of the layouts of a row store and a column store

and operations that allow for building specialized column
store based applications in rapid prototyping fashion. As our
components can be composed in a “plug and compute”-style,
our contribution is column-store-kit, which is a building
block for experimental and prototypical setup of applica-
tions within the field of column stores. A possible field of
application is the rapid development of high-performance
components in various data-intensive areas such as text-
retrieval systems.

The paper is structured as follows: In the next section,
requirements for our column-store-kit will be outlined. Then,
the identified components and corresponding operations will
be explained on a logical level. On this basis, various
implementations of logical components and operations will
be presented. Finally, results will be summarized and an
outlook will be given on future research activities.

II. COLUMN STORE PRINCIPLES

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache
is a small and fast memory which resides between main
memory and the CPU. In case the CPU requests data from
main memory, it is first checked, whether it already resides
within the cache. In this case, the item is sent directly from
the cache to the CPU, without accessing the much slower
main memory. If the item is not yet in the cache, it is
first copied from the main memory to the cache and than
further sent to the CPU. However, not only the requested
data item, but a whole cache line, which is between 8 and
128 bytes long, is copied into the cache. This prefetching of
data has the advantage, that requests to subsequent items
are much faster, because they already reside within the
cache. Meanwhile, the speed gain when accessing a dataset
in the first-level cache is up to two orders of magnitude
compared to regular main memory access [9]. Column stores
take advantage of this prefetching behaviour, because values
of individual columns are physically connected together

and therefore often already reside in the cache when re-
quested, as the execution of complex queries is processed
column by column rather than dataset by dataset. This
also means that the decision whether a dataset fulfills a
complex condition is generally delayed until the last column
is processed. Consequently, additional data structures are
required to administrate the status of a dataset in a query.
These data structures are referred to as Position Lists. A
PositionList stores the TIDs of matching datasets. Execution
of a complex query generates a PositionList with entries of
the qualified datasets for every simple predicate. Then, the
PositionLists are linked by and/or semantics. As an example,
Figure 2 shows a possible execution plan for the following
query:

select name
from person

where birthdate < ’1960-01-01’
and sex=’F’

First, the predicates birthdate <’1960-01-01’ and
sex =’F’ must be evaluated against the correponding
columns (birthdate and sex) which results in the Position-
Lists PL1 and PL2. These two evaluations could also be
done in parallel. Next an and-operation must be performed
on these two PositionLists, resulting in the PositionList PL3.
As we are interested in the names of the persons that
fulfil the query conditions, we have to perform another
operation (extract), which finally returns the entries for a
TID, specified by the PositionList PL3.

III. CONCEPT

The main focus of our components is modeling the
individual columns, which can occur both in the secondary
store as well as main memory. Their types of representation
may vary. To store all values of a column, for example,
it is not necessary to explicitly store the TID for each
value, because it can be determined by its position (dense

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

and/or

 Dense ColumnArray

 ColumnFile
 PositionList

 PositionListFile

 Sparse ColumnArray

load

filter

filter/split/sort/(project)

filter

 load

 store

split/sort/(project)
filter/split/sort

store

store

filter/sort

filter/extract

merge

sort and/or

Figure 3. Components and Operations

name

Waits
Begnini

Jarmusch

Ryder
Rowlands

Perez

birthdate

1949-12-07
1952-10-27
1953-01-22

1971-10-29
1930-06-19

1964-09-06

sex

 M
 M

 M

 F
 F

 F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

name

Rowlands

extract

Figure 2. Processing of a query with PositionLists

storage). To handle the results of a filter operation however,
the TIDs must be stored explicitly with the value (sparse
storage). Another important component is the PositionList
presented in the previous Section II. Just like columns, two
different representation forms are available for main and
secondary storage. To generate results or to handle inter-
mediate results consisting of attributes of several columns,
data structures are required for storing several values (so-
called multi columns). These may also be used for the
development of hybrid systems as well as for comparing
the performance of row and column store systems. The
operations mainly focus on writing, reading, merging, split-

ting, sorting, projecting, and filtering data. Predicates and/or
PositionLists are applied as filtering arguments. Figure 3
illustrates a high level overview of the most important
operations and transformations between the components. In
Section IV they will be described in detail. Moreover, the
components are to be developed for use on both secondary
store and main memory as well as designed for maximum
performance. This particularly implies the use of cache-
conscious algorithms and structures.

IV. PRESENTATION OF LOGICAL COMPONENTS

In the following sections, the aforementioned components
will be presented together with their structure and their cor-
responding operations. Section V will then outline potential
implementations to reach highest possible performance.

A. Structure

1) ColumnFile: The ColumnFile serves to represent a
column on the secondary storage. Supported primitive data
types are: uint, int, char, date und float. Moreover, the
composite type SimpleStruct (see below) is supported, which
may consist of a runtime definable list of the previously
mentioned primitive data types. As a standard, the TID of a
value in the ColumnFile is given implicitly by the position of
the value in the file. If this is not the case, a SimpleStruct is
used, which explicitly contains the TID in the first column.

2) SimpleStruct: SimpleStruct is a dynamic, runtime de-
finable data structure. It is used within ColumnFile as well as
within ColumnArrays (see below). The SimpleStruct plays a
role in the following cases:

• Result of a filter query, in which the TIDs of the original
datasets are also given.

• Combination of results consisting of several columns.
• Setup of hybrid systems having characteristics of both

column and row stores. For example, it may be advan-

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

tageous to store several attributes in a SimpleStruct that
are frequently requested together.

• Representation of sorted columns, where TIDs are re-
quired. This is particularly reasonable for Join operators
or a run-length-encoded compression on their basis.

3) ColumnArray and MultiColumnArray: A ColumnAr-
ray represents a column in main memory, which consists
of a flexible number of lines. The data types correspond
to those of the previously defined ColumnFile. If the data
type is a SimpleStruct, it is referred to as MultiColumnArray.
In addition to the actual column values, the TIDs of the
first and last dataset and the number of datasets stored are
given in the header of the (Multi)ColumnArray. Two types
of representations are distinguished:

• Dense: The type of representation is dense, if no gaps
can be found in the datasets, i.e., if the TIDs are
consecutive. In this case, the TID is given virtually by
the TID of the first data set and the position in the array
and does not have to be stored explicitly (Figure 4,
left side). This type of representation is particularly
suited for main memory-based applications, in which
all datasets (or a continuous section of them) are located
in main memory.

• Sparse: This type of representation explicitly stores the
TIDs of the datasets (Figure 4, right). The primary
purpose of a sparse ColumnArray is the storage of
(intermediate) results. As will be outlined in more detail
in Section V, it may be chosen between two physical
implementations depending on the concrete purpose.

4) ColumnBlocks and MultiColumnBlocks: Apart
from the (Multi)ColumnArrays of flexible size,
(Multi)ColumnBlocks exist, which possess a random,
but fixed size. They are mainly used to implement
ColumnArrays with their flexible size. In addition, they
may be applied in the implementation of an custom buffer
management as a transfer unit between secondary and main
memory and as a unit that can be indexed.

StartPos:1024
EndPos :2047

11

21

45

51

89

93

..

StartPos: 1024
EndPos :2047

11

21

45

51

89

93

name sex
name sex

..

StartPos : 1024
EndPos : 2047
Entries : 351

StartPos : 1024
EndPos : 2047
Entries : 351

ColumnArray MultiColumnArray ColumnArray MultiColumnArray

Dense Sparse

Figure 4. Types of ColumnArrays

5) PositionList: A PositionList is nothing else than a
ColumnArray with the data type uint(4) as far as structure is

concerned. However, it has a different semantics. The Posi-
tionList stores TIDs. A position list is the result of a query
via predicate(s) on a ColumnFile or a (Multi)ColumnArray,
where the actual values are of no interest, but rather the
information about the qualified data sets. Position Lists
store the TIDs in ascending order without duplicates. This
makes the typical and/or operations very fast, as the cost for
both operations is O(|Pl1| + |Pl2|). As will be outlined
in Section V, various types of implementations may be
applied. Analogously to the (Multi)ColumnArray, there is
a representation of the PositionList for the secondary store,
which is called PositionFile.

B. Operations
1) Transformations on ColumnFiles: Several operations

are defined on ColumnFiles. A filter operation (via predicate
and/or PositionList) can be performed on a ColumnFile and
the result can be written to another ColumnFile (with or
without explicit TIDs). Other operations are the splitting of
a ColumnFile as well as sorting among different criterias
(see Section IV-B6) with and without explicitly storing the
TID.

2) Transformations between ColumnFile and (Multi)-
Column-Array: ColumnFiles and (Multi)ColumnArrays are
different types of representation of one or more logical
columns. Physically, ColumnFiles are located in the sec-
ondary storage, while ColumnArrays are located in main
memory. Consequently, both types of representations can
also be transformed into each other using the corresponding
operators.

A ColumnFile can be transformed completely or par-
tially into a dense (Multi)ColumnArray. If not all, but only
certain datasets that match special predicates or Position-
Lists are to be loaded into a (Multi)ColumnArray, this can
be achieved using filter operations that generate a sparse
(Multi)ColumnArray. A sparse (Multi)ColumnArray may
also be transformed into a ColumnFile. In this case, the
TIDs are stored explicitly in combination with the values.
Other operations refer to the insertion of new values and
the deletion of values. An outline of the most important
operations of ColumnFiles is given in Table I.

3) Operations on ColumnArrays: Filter operations
can be executed on (Multi)ColumnArrays using predi-
cates and/or PositionLists. This may result in a sparse
(Multi)ColumnArray or a PositionList. Furthermore, Colum-
nArrays may also be linked with each other by and/or seman-
tics. If the (Multi)ColumnArrays have the same structure, the
result also possesses this structure. The results correspond to
the intersection or union of the original datasets. The result
is a sparse (Multi)ColumnArray. If (Multi)ColumnArrays
of differing structure are to be combined, only the and
operation is defined. The result is a (Multi)ColumnArray
that contains a union of all columns of the involved
(Multi)ColumnArrays and returns the values for the datasets

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Table I
OUTLINE OF OPERATIONS ON COLUMNFILES

Operation Result type
read(ColumnFile) ColumnArray (dense)
read(ColumnFile, start, length) ColumnArray (dense)
filter(ColumnFile, predicate) ColumnArray (sparse)
filter(ColumnFile, predicate-list) ColumnArray (sparse)
filter(ColumnFile, positionlist) ColumnArray (sparse)
filter(ColumnFile, positionlist-list) ColumnArray (sparse)
filter(ColumnFile, predicate-list, ColumnArray (sparse)

positionlist-list)
fileFilter(ColumnFile, predicate) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, predicate-list) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, positionlist) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, positionlist-list) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, predicate-list, ColumnFile (explicit TIDs)

positionlist-list)
split(ColumnFile, predicate) ColumnFile, ColumnFile
split(ColumnFile, position) ColumnFile, ColumnFile
sort(ColumnFile, column(s), direction) ColumnFile
sort(ColumnFile, Orderlist) ColumnFile
insert(ColumnFile, value) Tupel-ID
delete(ColumnFile, Tupel-ID) boolean
delete(ColumnFile, Positionlist) integer
delete(ColumnFile, predicate) integer
delete(ColumnFile, predicate-list) integer

having identical TIDs. If the (Multi)ColumnArrays used as
input are dense and if they have the same TID interval, the
resulting MultiColumnArray is also dense. An outline of the
most important operations of ColumnArrays is given in Ta-
ble II. ColumnArray may also refer to a MultiColumnArray.
A MultiColumnArray, however, only refers to the version
having several columns.

4) Transformation from PositionList to ColumnArray: If
the column values of the stored TIDs inside a PositionList
are needed, an extract operation must be performed. Input
to this operation is a PositionList as well as a dense (multi)
ColumnArray. The result is a sparse (Multi) ColumnArray.

5) Operations between PositionLists: Several Position-
Lists may be combined by and, or semantics, with the result
being a PositionList. The result list is sorted in ascending
order corresponding to the TIDs. In addition, operations exist
to load and store PositionLists. An outline of operations of
PositionLists can be found in Table III.

6) Sorting: One basic operation on (Multi) ColumnArrays
as well as ColumnFiles is sorting. Beside the obvious
task to bring the result of a query in a specific order,
sorting also plays an important role regarding performance
considerations. For the elimination of duplicates, for join
operations and for compression using run-length encoding,
previous sorting can dramatically improve performance. As
a consequence of sorting, the natural order is lost. This is
critical for dense columns with implicit TIDs, because the
relation to the other column values is lost. The problem
can be solved by an additional data structure, similar to a
PositionList which contains the mapping information to the
orginal order of the datasets. Figure 5 gives an example of

Table II
OUTLINE OF OPERATIONS ON ColumnArrays

Operation Result type
filter(ColumnArray, predicate) ColumnArray (sparse)
filter(ColumnArray, predicate-list) ColumnArray (sparse)
filter(ColumnArray, positionlist) ColumnArray (sparse)
filter(ColumnArray, positionlist-list) ColumnArray (sparse)
filter(ColumnArray, predicate-list, ColumnArray (sparse)

positionlist-list)
filter(ColumnArray, predicate) PositionList
filter(ColumnArray, predicate-list) PositionList
filter(ColumnArray, positionlist) PositionList
filter(ColumnArray, positionlist-list) PositionList
filter(ColumnArray, predicate-list, PositionList

positionlist-list)
and(ColumnArray, ColumnArray) ColumnArray
or(ColumnArray, ColumnArray) ColumnArray
and(ColumnArray, ColumnArray) PositionList
or(ColumnArray, ColumnArray) PositionList
project(MultiColumnArray, columns) (Multi)ColumnArray
asPositionList(ColumnArray, column) PositionList
split(ColumnArray, predicate) ColumnArray (sparse),

ColumnArray (sparse)
split(ColumnArray(dense), position) ColumnArray (dense),

ColumnArray (dense)
split(ColumnArray (sparse), position) ColumnArray (sparse),

ColumnArray (sparse)
store(ColumnArray (dense)) ColumnFile
store(ColumnArray (sparse)) ColumnFile (explicit TIDs)

Table III
OUTLINE OF OPERATIONS ON PositionListS

Operation Result type
load(ColumnFile) PositionList
store(PositionList) ColumnFile
and(PositionList, PositionList) PositionList
or(PositionList, PositionList) PositionList
read(PositionListFile) PositionList
store(PositionList) PositionListFile

this situation. The Multi ColumnArray on the left side is to
be sorted according to the column “name”. Additionally to
the sorting of the MultiColumn (top right), a list is generated
which holds the information about the original positions
(down right). The list can then be reused by applying it
as a sorting criterion to other columns later, as shown in
Figure 6.

7) Compression: Compression plays an important role
in column stores [6], as it reduces the data volume that
needs to be loaded. Nevertheless, we decided not to include
compression in the first prototype. To a certain extent, this
constraint can be compensated by the use of dictionary-
based compression [10], which will be implemented above
the basic components. In later versions, various compression
methods will be integrated.

V. IMPLEMENTATION-SPECIFIC CONSIDERATIONS

After presenting the logical structure and the required
operations, this section shall now focus on considera-
tions for achieving a performance-oriented implementation.

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

StartPos: 1024
EndPos : 1029
name sex

Waits M

Begnini M

Jarmusch M

Ryder F
Rowlands F
Perez F

1024

1025
1026

1027
1028
1029

sort(name)

StartPos: 1024
EndPos : 1029

name sex

Waits M
Begnini M

Jarmusch M

Ryder F
Rowlands F

Perez F

Figure 5. Sorting with explicit generation of an additional mapping list

StartPos: 1024
EndPos : 1029

birthdate

1949-12-07
1952-10-27
1953-01-22

1971-10-29
1930-06-19

1964-09-06

1024

1025
1026

1027
1028
1029

sort()

StartPos: 1024
EndPos : 1029
birthdate

1949-12-07

1952-10-27
1953-01-22

1971-10-29
1930-06-19

1964-09-06

Figure 6. Sorting with explicit given sort-order

Due to the constantly increasing CPU-memory gap, cache-
conscious programming is indispensable. For this reason,
the implementation was made in C/C++. All time-critical
parts were implemented in pure C using pointer arithmetics.
The uncritical parts were implemented using C++ classes.
The ColumnBlock was established as a basic component of
the implementation. It is the basic unit for data storage.
Its size is defined at creation time and it contains the
actual data as well as information on its structure and the
number of datasets. The structurization options correspond
to those of the (Multi)ColumnArray. The ColumnBlock also
handles all queries by predicates and/or PositionLists. A
(Multi)ColumnArray consists of 1 − n ColumnBlock in-
stances. All operations on a (Multi)ColumnArray are trans-
ferred to the underlying ColumnBlocks.

PositionLists play a central role in column store appli-
cations. If the PositionLists are short (i.e. if they contain
a few TIDs only), representation as ColumnArray is ideal.
Four bytes are required per selected entry. If the lists
are very large, however, memory of 40 MB is required
for ten million entries, for instance. In this case, a bit
vector is recommended for representation. This bit vector
indicates using a fixed bit whether every dataset belongs
to the set of results or not. If, for example, 100 million
data sets exist for a table, only 12.5 MB are required to

represent the PositionList for certain selectivities. Moreover,
the two important operations and and or can be mapped
on the respective primitive processor commands, which
makes the operations extremely fast. If PositionLists are
sparse, bit vectors can be compressed very well using run-
length encoding (RLE) (e.g. to a few KB in case of 0.1%
selectivity). The necessary operations can be performed very
efficiently on the compressed lists, which further increases
the performance. An implementation based on the word-
aligned hybrid algorithm [11] with satisfactory compression
for medium-sparse representations was developed within
the framework of the activities reported here [12], [13].
MultiColumnArrays may exist in two different physical
layouts. In the first version, the n values are written in a
physically successive manner and correspond to the classical
n-ary storage model (NSM). This type of representation is
particularly suited, if further queries are to be performed
on this MultiColumnArray with predicates on the respective
attributes. The individual values of a dataset are stored
together in the cache and all attribute values are checked
simultaneously rather than successively with the help of
additional PositionLists (Figure 7, left). The second type of
representation corresponds to the PAX format [14]. Here,
every column is stored in a separate ColumnArray. In ad-
dition, a PositionList is stored, which identifies the datasets
(Figure 7, left). This type of representation is recommended,
for instance, for collecting values for subsequent aggregation
functions. Several (Multi)ColumnArrays may share a single
PositionList.

11

21

45

51

89

93

name sex

...

StartPos:1024
EndPos :2047
Entries: 351

StartPos:1024
EndPos :2047

13

17

18

28

33

41

...

67

43

Entries: 351
PositionList:
Column[name]:
Column[sex]:
...

Figure 7. Comparison of storage formats for ColumnArrays

VI. CONCLUSION

This paper presented a collection of basic components
to build column store applications. The components are
semantically located below those of the existing column
store database implementations and are suited for building
experimental (distributed) systems in the field of column
store databases. It is planned to use these components to
obtain further scientific findings in the area of column stores
and to develop data-intensive applications.

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

VII. FUTURE WORK

A first version of the column-store-kit is available without
support for compression. The next steps planned are the
integration of compression and the use in concrete areas,
such as text retrieval systems. A future activity will be
the implementation of a scripting language interface for
the components. With the help of this interface, it will be
possible to assemble the developed components more easily
without losing the performance of the underlying C/C++
implementation. In this case, the scripting language act as
glue between the components, allowing the developer to
build up complex high performance applications with very
little effort [15]. As an alternative, a custom domain-specific
language (DSL) [16] may be used for building column store
applications. A bachelor’s thesis [17] focused on the extent
to which various degrees of flexibility regarding the structure
of MultiColumnArrays and expression of the predicates
affect the performance. According to the thesis, structural
definition at the time of compilation is of significant advan-
tage compared to the runtime behavior. If the implemented
flexibility of the SimpleStruct is not required at runtime, an
alternative implementation may be used. It may be realized
by defining a language extension for C/C++, for example.
Thus, the respective structures and operations can be defined
using a simple syntax. With a number of macros of the C++
preprocessor or a separate inline code expander [18], these
could then be transformed into valid C/C++ code.

REFERENCES

[1] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing
database architecture for the new bottleneck: memory access,”
The VLDB Journal, vol. 9, no. 3, 2000, pp. 231–246.

[2] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming
language design and implementation. New York, NY, USA:
ACM, 1999, pp. 13–24.

[3] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the
memory wall in monetdb,” Commun. ACM, vol. 51, no. 12,
2008, pp. 77–85.

[4] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil,
P. O’Neil, A. Rasin, N. Tran, and S. Zdonik, “C-store:
A Column-oriented DBMS,” in VLDB ’05: Proceedings of
the 31st international conference on Very large data bases.
VLDB Endowment, 2005, pp. 553–564.

[5] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden,
“Materialization strategies in a column-oriented dbms,” in In
Proc. of ICDE, 2007, pp. 466–475.

[6] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating com-
pression and execution in column-oriented database systems,”
in SIGMOD, Chicago, IL, USA, 2006, pp. 671–682.

[7] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: How different are they really,” in In SIGMOD,
2008, pp. 967–980.

[8] L. Gan, R. Li, Y. Jia, and X. Jin, “Join directly on heavy-
weight compressed data in column-oriented database,” in
WAIM, 2010, pp. 357–362.

[9] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100:
Hyper-pipelining query execution,” in CIDR, 2005, pp. 225–
237.

[10] C. Binnig, S. Hildenbrand, and F. Färber, “Dictionary-based
order-preserving string compression for main memory column
stores,” in SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data. New York,
NY, USA: ACM, 2009, pp. 283–296.

[11] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Trans. Database
Syst., vol. 31, no. 1, 2006, pp. 1–38.

[12] A. Schmidt and M. Beine, “A concept for a compression
scheme of medium-sparse bitmaps,” in DBKDA’11: Proc-
ceedings of the The Third International Conference on Ad-
vances in Databases, Knowledge, and Data Applications.
iaria, 2011, pp. 192–195.

[13] M. Beine, “Implementation and Evaluation of an Efficient
Compression Method for Medium-Sparse Bitmap Indexes”,
Bachelor Thesis, Department of Informatics and Business In-
formation Systems, Karlsruhe University of Applied Sciences,
Karlsruhe, Germany, 2011.

[14] A. Ailamaki, D. J. DeWitt, and M. D. Hill, “Data page layouts
for relational databases on deep memory hierarchies,” The
VLDB Journal, vol. 11, no. 3, 2002, pp. 198–215.

[15] J. K. Ousterhout, “Scripting: Higher-Level Programming for
the 21st Century,” IEEE Computer, vol. 31, no. 3, 1998, pp.
23–30.

[16] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domain-specific languages,” ACM Comput. Surv.,
vol. 37, no. 4, 2005, pp. 316–344.

[17] M. Herda, “Entwicklung eines Baukastens zur Erstellung von
Column-Store basierten Anwendungen” Bachelor’s thesis,
Department of Informatics, Heilbronn University of Applied
Sciences, Germany, Jun. 2011.

[18] J. Herrington, Code Generation in Action. Greenwich, CT,
USA: Manning Publications Co., 2003.

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

