
A System Overview for netCDF-FastBit Integration

David Marks, Elias Ioup, John Sample, Kevin Shaw

Geospatial Computing

Naval Research Laboratory

Stennis Space Center, Mississippi

{dmarks,eioup,jsample,kshaw}@nrlssc.navy.mil

Mahdi Abdelguerfi

Computer Science Department

University of New Orleans

New Orleans, Louisiana

mahdi@cs.uno.edu

Abstract—This paper discusses the creation of a FastBit

bitmap index from the contents of a netCDF file. Using a two-

step transformation, netCDF is loaded into a FastBit bitmap

index which can then be used to perform quick and highly

efficient data queries. Metadata from the original netCDF is

utilized along with the bitmap indexes and the output is

extracted and visualized in several formats. The performance

of the netCDF-FastBit indexes is shown to be far greater than

accessing the netCDF file without.

Keywords-netCDF; geospatial processing; bitmap indexing

I. INTRODUCTION

As highly advanced sensors began to penetrate into the
awareness of the disparate scientific fields, many researchers
found themselves grappling with the need to store and usably
interact with vast amounts of data. Unfortunately, the real
world scientific data that was being collected violated several
of the classical assumptions about data in database design.
The largest hurdle of all for traditional database structures
was the high multidimensionality of the scientific data,
lacking any field or even reasonable combination of fields
that could serve as a unique identifier for a gathered data.

In contrast to traditional database design, bitmap indexes
do not require a unique key identifier, and indeed work quite
well with very multidimensional data. Bitmap indexes are
usually overlooked in lieu of traditional databases because of
their inefficiency in handling update and delete operations,
but in the case of scientific data that is written once this
inefficiency does not matter. The other detriment normally
levied against bitmap indexes, the “Curse of Cardinality”,
has largely been solved using the process of order-preserving
bin-based clustering [1]. Indeed, bitmap indexing serves as
an excellent form of indexing for write-once highly
multidimensional data, which real world scientific data is a
prime example of.

NetCDF is a popular scientific data storage format, and it
provides a very compact encoding of large multidimensional
data sets. It is not, however, optimized for the retrieval,
analysis, and mining of the data stored within its format.
Performing efficient queries over data stored within netCDF
files is difficult, especially if a large number of netCDF files
are involved.

FastBit is an open source bitmap indexing toolkit. FastBit
creates highly efficient bitmap indexes, and provides an

interactive SQL interface into its generated indexes. Its
WAH based compression has been proven to provide
optimal query response time with the compressed bitmaps
smaller than comparable B-trees [2].

Using the system outlined within this paper, a netCDF file
can be loaded into a FastBit bitmap index, providing efficient
and interactive query access to the data stored within. The
process requires only a one-time cost of bitmap index
creation time and room to store the generated indexes.
Further, a number of different ways to envision the produced
query results are demonstrated.

In the next section, the method used to create bitmap
indexes from netCDF data is discussed, with experimental
results generated from testing provided. In System
Architecture, we present the structure and functions of the
proposed system. Screenshots of our proposed graphical user
interface are provided, as well as a schematic for the system
architecture. In Query Processing, the benefits of such a
system are described, both in terms of speedup of
generalized data access and by a number of advanced spatio-
temporal queries. Finally, in Conclusions we reiterate the
goals and benefits of this system and stress the benefits its
use could provide.

II. METHODS

Because FastBit currently only accepts comma separated
values as input for bitmap generation, the first step in
netCDF-FastBit integration involves a transformation of the
netCDF data into the comma separated value format
employed by FastBit. A number of tools are already existent
for the purpose of netCDF to comma separated values, but as
the concept of comma separated values is only loosely
defined, different tools produce outputs in different formats.
One tool, ncks (short for netCDF Kitchen Sink), offers a
correctly formatted comma separated value transformation
however, and with the correct configuration of options our
source netCDF files can be converted into a comma
separated value format readable by FastBit. After FastBit
ingests the transformed netCDF data, the process is
complete. In testing, a 1.4 GB netCDF file required slightly
over 30 minutes to transition from netCDF to FastBit bitmap
index. The resulting index used up 6.8 GB of space.

154Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

III. SYSTEM ARCHITECTURE

The main purpose of the netCDF-FastBit integration is to
provide an efficient and interactive SQL interface into the
data stored within. To maximize the search capability of a
user’s queries, however, requires more than just the netCDF
extracted indexes. Further, retrieved data may require
different formats for different questions. Thus, the below
system in Fig. 3 is proposed.

A. Internal Components

The Bitmap Index Manager is the component charged

with the building and maintenance of the bitmap indexes as

described in Methods above. The Manager allows for both

single and multiple file indexing for netCDF scientific data.

Further, the netCDF files may be accessed either locally or

across a network.

The Metadata Repository holds any relevant metadata

found within the netCDF file’s header. Often these headers

contain comments and notes about the data that would not

be immediately obvious in an examination of the data itself,

such as the data’s provenance. This metadata will aid in

maintaining organization between the bitmap indexes of

several netCDF files, as well as providing a boost to query

speed by screening out queries from which no point (or

perhaps all points) meets the desired criteria.

The Query Processor’s role is to transform the user

submitted high level queries into sequences of bitwise

logical operations executed in the reduced search space

generated using the Metadata Repository. Further, the

Query Processor will optimize the processing of a number

Figure 1. Index Manager Screen

Figure 2. Query Manager Screen

of primitive operations found in a recent study on query

processing of mesh data in forming the basis of higher level

queries [3].

B. Graphical User Interface

To utilize the outlined system, a graphical user interface
is provided, as seen in Fig. 1 and Fig. 2. A user either selects
a locally available netCDF file(s) or points to one available
over the network. A list of already processed indexes saved
with the Metadata Repository are then displayed for the
selected netCDF file, and can be instantly used via the “Use
In Query” button.

Alternatively, a new index can be created from a selected
netCDF file, with a number of different bitmap indexing
options made available via the index options tabs. These
options will alter the generated bitmap index’s underlying
structure, and can be used to fine tune the created index for
specific tasks and queries. The default values will serve for
most general purposes, however, and the most common
usage will simply consist of selecting which attributes to
include in the generated index.

Once an index to query have been selected, the user can
submit a query either freehand with the SQL textbox or by
using the dropdown Where boxes to programmatically
generate one. When submitting their query, a user will also
select which kind of output is desired, either in the form of
text or as a visualization of the results. Note that more than
one form can, of course, be chosen, although some forms are
not appropriate for all results. Animations, for example, are
useless unless the results include some concept of passing
time.

IV. QUERY PROCESSING

The system outlined above allows for an unprecedented

level of access into the contents of a netCDF file. Absent the

created bitmap indexes, any kind of search on the netCDF

155Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

could only be accomplished via a linear search of the file

itself. Using our test data, this linear search took

approximately 20 minutes to complete, and all values of

speedup given below are based on this figure.
The simplest types of queries examined were simple

equality queries, such as “return all points where the
temperature was X”. These queries returned in only 1
second, a 1200x speedup. Retrieving all temperatures for a
single point in time returned in 4 seconds, a 300x speedup.
The slowest execution time was found in inequality queries,
such as “return all points where the temperature was above
Y”, which took 4 minutes to compute. That still represented
a 5x speedup, however.

But this system is not limited to only simple queries. More
complex queries are possible given the powerful SQL
interface afforded by FastBit. A range query was created and
implemented to return all points within a specified distance
of a chosen point. Using a two-step bounding box filter and
the haversine function, this range query often returned results
within a second or less, resulting in a 1200+x speedup.
Further, by ordering the returned results based on distance to
the chosen point and returning only a specified k number of
results, a pseudo-KNN search was built, with equivalent
performance results [4].

V. CONCLUSION

This system provides a way to efficiently process data
stored within netCDF files and to produce data output in a
number of formats. The graphical user interface allows for an
easy to use interface into the system and allows a user to
leverage a number of different bitmap index customization
options in the creation of their index. Beyond providing an
otherwise unavailable amount of access into the contents of a
netCDF file, our query results demonstrate the massive gains
in performance inherent in this approach. Using this system,
querying the contents of a netCDF file not only becomes
possible, but easy and efficient.

REFERENCES

[1] Kesheng Wu, Kurt Stockinger, and Arie Shoshani. “Breaking the

curse of cardinality on bitmap indexes.” Scientific and Statistical
Database Management. Ed. Bertram Ludäscher & Nikos Mamoulis.
Springer, 2008, pp. 348–365.

[2] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. An efficient

compression scheme for bitmap indices. ACM Transactions on
Database Systems 31:1 (2006), pp. 1-38

[3] B.S. Lee and R. Musick. MeshSQL: the query language for

simulation mesh data. Information Sciences, volume 159, issue 3-4,
2004, pp. 177-202.

[4] David Marks, "An Analysis of netCDF-FastBit Integration and
Primitive Spatial-Temporal Operations" (2009). University of New

Orleans Theses and Dissertations. Paper 984.
http://scholarworks.uno.edu/td/984 Retrieved 12/2011

Figure 3. System Architecture

156Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

