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Abstract—Huge quantities of data arriving in chronological
order are one of the most important information resources,
and stream mining algorithms are developed especially for the
analysis of the fast streams of data. A stream mining algorithm
usually refers to the input data only once and never revisits them
(read-once-write-once), while the conventional data intensive
applications refer to the input data in a write-once-read-many
manner. That is, once the stream mining falls behind, the process
drops the input data until it catches up with the input data
stream. Therefore, the fast execution of the stream mining
leads the perfect analysis on all the input data, and it is very
critical for the quality of the service. We propose a dynamic
resource management for the stream mining in the distributed
environment. The resource management utilizes the discrepancy
between data access time and CPU usage time inside the stream
mining, and speeds up the mining process. We implemented the
methodology and proved successfully to process all the input data
of such a fast data stream, whereas the serial execution drops
more than 90% of the input data.

Keywords-Load Balancing; Resource Management; Stream Min-
ing.

I. INTRODUCTION

A data stream, which is a sequence of data arriving in
chronological order, is one of the significant information
resources. The data streams include consumer generated media
and mini blogs and many projects are trying to extract useful
information through the analysis of the data streams. One of
the technical obstacles for the scalable and real-time analysis
of the data streams is their characteristic data access pattern.
A stream mining algorithm is often utilized for the analysis
of the data streams, and the stream mining algorithm refers
to the input data only once. The input data themselves are
never stored anywhere and never revisited. Additionally, the
data stream rate is not consistent in the actual situation, and the
computational cost of each stage is hard to clarify in advance.
Therefore, this paper proposes a dynamic resource manage-
ment focusing on the discrepancy between data access time
and CPU usage time for the purpose of the practical speed-
up of the stream mining algorithm in the highly distributed
computational environment.

The rest of this paper is organized as follows. Section 2
introduces a stream mining algorithm, analyzes its model,
and defines the problem to address in this paper. Section 3
describes the resource management methodology, and Section
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Fig. 1. A model of stream mining algorithms.

4 discusses the effect of the resource manager through some
validations in the actual cloud environment. Section 5 covers
the related work, and Section 6 concludes this paper.

II. PROBLEM DEFINITION

A. A model of the stream mining algorithms

A stream mining algorithm is an algorithm specialized for
a data stream analysis. Gaber et al. reviewed the theoreti-
cal foundations of the stream mining algorithms [1]. There
are also many variations of the stream mining algorithms
including clusterings [2]–[11], classifications [6], [12]–[16],
frequency countings [17], [18], and time series analysis [19]–
[24]. Regardless of the difference among the details of the
stream mining algorithms, general stream mining algorithms
share a fundamental structure and a data access pattern as
shown in Figure 1, which Akioka et al. proposed [25].

A stream mining algorithm consists of two parts, which are
the stream processing part and the query processing part. The
major responsibility of the stream processing part is to process
each data unit and extract the essence of the data for the further
analysis by the query analysis part. The stream processing part
needs to finish the processing of the current data unit before
the next data unit arrives, otherwise, the next data unit will
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be lost as there is no storage for buffering the incoming data
in a stream mining algorithm. On the other hand, the query
processing part takes care of the further analysis such as a
frequent pattern analysis and a hot topic extraction based on
the intermediate data passed by the stream processing part,
which a database system stocks usually. This clear difference
between the responsibilities of these two parts indicates that
only the stream processing part needs to run on a real-time
basis. The successful processing of all the incoming data
simply relies on the speed of the stream processing part.

The process flow for a single data unit in the stream
processing part is as follows. First, the stream processing
module picks the target data unit, and executes a quick analysis
over the data unit, such as a morphological analysis and a
word counting. Second, the stream processing module updates
the data cached in one or more sketches with the latest
results through the quick analysis. That is, the sketches keep
the intermediate analysis, and the stream processing module
updates the analysis incrementally as more data units are
processed. Third and finally in the stream processing part,
the analysis module reads the intermediate analysis from the
sketches, and extracts the essence of the data, which is passed
to the query processing part for the further analysis.

B. Motivation

There is a certain market requesting the complete analysis of
one or more data streams on the fly. However, there is no solid
solution for this problem targeting a large-scale, general stream
mining algorithm yet. The model of a stream mining algorithm
shown in Figure 1 indicates that the data access pattern of the
stream mining algorithms are totally different from the data
access pattern of so-called data intensive applications, which
is intensively investigated in the high performance computing
area. The data access pattern in the data intensive applications
is write-once-read-many [26]. That is, the application refers
to the necessary data many times during the computation;
therefore, the key for the speed-up of the application is to place
the necessary data close to the computational nodes for faster
data access. On the other hand, in a stream mining algorithm,
a process refers to its data unit only once, which is read-once-
write-once style. Therefore, conventional techniques for the
data intensive applications are not simply applicable for the
speed-up or the complete analysis of the data stream.

III. METHODOLOGY

Following the discussion up to Section 2, there are two
technical challenges to address. One of the challenges is the
resource management for a scalable and complete analysis
of the fast data stream. The other challenge is a generic
framework for various stream mining algorithms. We propose
a resource manager as a solution for these challenges, which
enables execution of stream mining algorithms in the pipeline.
The resource manager accepts data streams and scatters anal-
ysis tasks over the distributed computational environment
such as the cloud and the grid. The resource manager also
accommodates the number of the computational nodes to

utilize dynamically according to the speed of the input data
stream and the load of the analysis process. The rest of this
section describes the details of the resource manager focusing
on the stream processing part. As we already discussed in
Section 2, only the stream processing part needs to run in a
real-time manner.

A. Data Dependency and CPU occupancy

In a stream mining algorithm, one process of a data unit
generates data dependency to the processes of the successive
data units, and this is the major reason why the resource
manager allocates the processes in a pipeline manner. As
described in Section 2, the stream processing module updates
the data in the sketches. That is, the sketches produce the data
dependency across the processes. Figure 2 illustrates the data
dependencies between two processes processing data units
in line and the data dependency inside the process. More
concretely, there are three data dependencies in Figure 2. One
of the data dependencies is that the processing module in the
preceding process should finish updating of the sketches before
the processing module in the successive process starts reading
the sketches (Dep.1 in Figure 2). Another data dependency
is the processing module should finish updating the sketches
before the analysis module in the same process starts reading
the sketches (Dep.2 in Figure 2). The last data dependency
is that the analysis module in the preceding process should
finish reading the sketches before the processing module in
the successive process starts updating the sketches (Dep.3 in
Figure 2). These three dependencies are essential to keep the
analysis results consistent and correct.

The data dependencies indicate that the access to the
sketches reasonably divides the processing module into the
two parts. That is, the stream processing module and the
analysis module are reasonably managed independently, and
these two modules in the same process are ideally allocated
on the same CPU for the purpose to minimize the access cost
to the sketches. Once we decide to allocate the processing
module and the analysis module independently, the possible
situation is that the processing module in one process occupies
the CPU resource only waiting for the access to the sketch by
the analysis module in the same process or the processing
module in the successive process. This is the discrepancy
between data access time and CPU usage time. The flexible
resource management avoids this waste of the CPU resources.
We revisit this problem and give the details in the next section.

B. Dynamic Resource Management

Following the discussion above, the resource manager al-
locates tasks taking care of both the three data dependencies
and the discrepancy between data access time and CPU usage
time. Here, the unit of the task is the former half or the latter
half of the stream processing part, as shown in Figure 3.

The resource manager maintains three tables, which are the
processing modules table, the analysis modules table, and the
CPUs table, as shown in Figure 4 in order to manage the
resources and tasks. Each entry of the processing modules
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Fig. 3. The processing part consists of the two parts; the processing module
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task, and decides the resource allocation.
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Slot for the processing module Slot for the Analysis moduleCPU ID

...

The CPUs Table

Fig. 4. The resource manager maintains the three tables; the processing
modules table, the analysis modules table, and the CPUs table. These tables
tell the resource manager the availability of the CPU resources, and the
statuses of the ongoing tasks.

table and the analysis modules table represents each task.
The entry consists of the task id of this task, the CPU id
where this task runs on, the task ids those this task has data
dependency with, the start time of this task, and the current
status of this task. Each field of the entry of the tables lets
the resource manager know the data dependencies among the
ongoing tasks, and whether the ongoing task occupies the CPU
resource only waiting for the data access or not. The resource
manager also maintains the CPUs table, and each entry of the
table represents each CPU resource. Each entry consists of two
fields, which are one field for the processing module task, and
the other field for the analysis module task. The CPU table
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Fig. 5. The procedure of the resource manager.

tells the resource manager the availability of CPU units.

Figure 5 illustrates the procedure of the resource manager.
On the arrival of the data unit, the resource manager generates
two tasks. One task is for the processing module, and the
other task is for the analysis module. The resource manager
generates a task id and an entry of the corresponding table in
Figure 4. Once the processing module task and the analysis
module task are ready, the resource manager decides the
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TABLE I
THE SPECS OF THE COMPUTATIONAL NODES AND THE RESOURCE

MANAGER.

Node Type Num. of nodes CPU+Memory
Node Type A 32 nodes Xeon X5550+32GB
Node Type B 14 nodes Xeon X5450+8GB
Node Type C 6 nodes Xeon X5430+8GB
Resource Mngr. 1 node Xeon E5520+24GB

resource allocation for these tasks. Here, there are three
possible situations. First situation is that there is an available
CPU whose slots are available both for the processing module
and for the analysis module. In this case, the resource manager
allocates the corresponding tasks onto this CPU, and returns
to wait for the successive data units. Second situation is that
there is an available CPU only the slot for the processing
module is available. This time, the resource manager allocates
only the processing module onto this available CPU, and waits
until the slot for the analysis module on any CPU becomes
available. As the processing module of this data unit never
starts before the analysis module of the preceding data unit
starts, the allocation of the analysis module is not urgent. Third
and the worst situation is that there is no available slot for the
analysis module. In this situation, the resource manager tries
to find an available slot until the next data unit arrives, and
finally gives up the corresponding data unit when no slot turns
to be available.

IV. VALIDATION

We implemented the resource manager as a Java program
and validated the effect of the resource manager in the actual
computational cloud environment. We utilized 53 nodes of
IBM Computing on Demand (CoD) as the cloud environment,
and all the computational nodes are connected each other
via Gigabit Ethernet. Table I summarizes the specs of the
computational nodes of CoD. As shown on Table I, the compu-
tational environment was heterogeneous. However, this version
of the resource manager does not consider the variations of
the computational nodes, and the further functionality with
the heterogeneous environment is reserved as future work.

The input data stream was generated inside of CoD under
the assumption of a very fast data stream. More concretely,
we took Twitter as a model of the input data stream. The data
stream generator randomly chooses one post from the 1000
tweets pool, which is the actual sample from Twitter timeline.
As the total number of the tweets per day is approximately
100 million, therefore, the tweet generator posts one tweet
every millisecond in order to form a real Twitter like input
data stream. We concluded this is the best way to simulate
Twitter data stream, because collecting all the posts via Twitter
API is practically almost impossible. Each computational node
performs morphological analysis over the data unit in the
processing module, and counts the appearances of the specific
expressions such as URL or referred accounts in the analysis
module. If either the processing module or the analysis module
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Fig. 6. The rates of the processed of the incoming data. The higher is better.

takes longer and results to break the dependencies discussed
in Section 3, the corresponding data unit is given up as the
analysis qualitywill not be ensured anymore. All the analysis
modules are implemented with Java and Java RMI.

Figure 6 plots the rates of the processed of the incoming data
units in comparison between the pipelined executions with the
proposed resource manager and the serial executions. Here, let
ntotal be the total number of the incoming data units, and let
nprocessed be the total number of the successfully processed
data units among the incoming data units. Following these
definitions, the rate of the processed of the incoming data units
Rprocessed is defined as follows.

Rprocessed = 100(1− nprocessed

ntotal
)

In Figure 6, the white bars represent the rates of the
processed of the incoming data units with the pipelined execu-
tions, and the black bars represent the rates of the processed of
the incoming data units with the serial executions. The x-axis
indicates the numbers of tweets packed into one data unit, and
the y-axis indicates the rates of the processed of the incoming
data units in percentile. The higher is better. Ideally, each tweet
should be located to one computational node, however, this
scenario was not effective even with all the available 52 nodes
in the experimental environment this time; both the pipelined
version and the serial version lost more than 80% of the
incoming data. Therefore, we decided to group several tweets
into a data unit, and let each computational node process each
data unit. Figure 6 indicates that the pipelined version dropped
about 60% of the incoming data with six tweets packed into
one data unit. However, the pipelined version processed all
the incoming data when one data unit contains eight or more
tweets. The drop rate decreases if you pack more tweets into
one data unit, because you have longer time slot for the
larger data unit, and you have more relaxed deadline for the
dependencies discussed in Section 3.

On the other hand, the serial execution always drops more
than 80% of the incoming data regardless of the number of
tweets contained into a data unit. For example, we observed the
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PipelinedSerial

Fig. 7. The rates of waiting for the tasks for data dependencies.

serial execution processed only less than 20% of the incoming
data even with 60 tweets packed into one data unit. This
situation is equivalent to the batch process of all the tweets
every second, and the result indicates that the batch process
invoked every second is not practical at all for the purpose
of the realtime analysis of the actual fast data stream such
as Twitter. The series of the experiments concludes that the
pipelined execution is indespensable and effective for on-the-
fly analysis of the realistic fast data streams.

Figure 7 plots the rates of the waiting in the pipelined
execution with the resource manager. That is, the values
in Figure 7 represent how many processes had to wait for
another process to read from the sketch. The more idle tasks
occupy more CPU resources as the rate for the wait increases.
The x-axis represents the rates of the waiting and the y-axis
represents the number of the tweets packed into one data unit.
The black bars indicate the rates of the wait for the serial
executions, and the white bars indicate the rates of the wait for
the pipelined executions. Apparently, the pipelined tasks face
the wait state more often than the serial tasks, which is natural
because the pipelined version drops the incoming data less
and tries to process all the incoming data. Figure 7, however,
reveals that almost all the tasks had to wait for another task
because of the data dependencies. We can assume that more
tasks might be processed with less number of computational
nodes once this situation is resolved and, therefore, we are
planning to investigate this problem further in the future work.

We also recognize the experimental results shown here are
possible to change according to the balance between the speed
of the incoming data stream and the time cost for the analysis
process on each tweet. Figure 8 shows the overheads of Java
RMI calls and the actual times costs for the analysis processes
on the incoming 1000 different tweets as a reference in order
to give an overview of the balance of the time costs in the
experiments in this section. In Figure 8, the gray line indicates
the overheads of Java RMI calls, and the black line indicates
the actual time costs for the analysis processes. The x-axis
represents the number of the trials, and the y-axis represents
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Fig. 8. Overheads of Java RMI calls and the actual time costs for the analysis
processes on the incoming 1000 different tweets.

the time costs in nano seconds. We also implemented a
simulator to simulate the behavior of the resource manager
in the distributed computational environment with the various
settings of the speed of the incoming data stream, the time
cost of the analysis process on each incoming data unit, and
the overheads of the network communications and remote
procedure calls. For the limitation of the space, we leave
out the detailed results of the simulations and the further
disucssion on the results here. We just add the simulation
results showed quite similar tendency to the results already
discussed in this section.

V. RELATED WORK

The high performance computing area has been energet-
ically developed serveral speed-up techniques targeting the
applications with the huge input data [26]–[31]. Such an
application is called the data intensive application. However,
these techniques are not simply applicable for the stream
mining because of the data access patterns. A data intensive
application accesses data in a write-once-read-many manner,
and, therefore, the speed-up techniques for a data intensive
application is to mainly for the purpose of the speed-up of the
access to the well utilized data. On the other hand, a stream
mining usually refer to the input data only once and, therefore,
the speed-up techniques for the data intensive applications do
not work well.

There are several researches on the speed-ups of the stream
mining algorithms through static resource management [32]–
[34]. Those resource managers request a solid estimation for
each stage of the computation, and also put an assumption
that the input data stream rate is consistent. As the actual data
stream is not consistent and the estimation of the computa-
tional cost in advance is practically impossible in the actual
applications and, therefore, a dynamic resource management
just as proposed in this paper needs to be developed.

VI. CONCLUSION

This paper proposed a dynamic resource management for
the perfect analysis of the fast and realistic data streams
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such as Twitter, focusing on the discrepancy between data
access time and CPU usage time. The proposed methodology
was implemented as the resource manager in the acutual
cloud environment, and validated its efficiency. The results
demonstrated that our approach is indispensable to process
the fast data stream without a drop; otherwise, 80-90% of the
incoming data will be lost.
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