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Abstract—The usage of available online data is rising as
machines get equipped with more sensors to control and monitor
processes. The produced data can be used to directly fit existing
prediction models to enhance their accuracy, adapt to alterations
within the environment and avoid the training of new models.
During the online learning step, which is used for the adaptation
of the models using online data, catastrophic forgetting of already
learned tasks may occur. We propose a new framework that
utilizes several state-of-the-art methods in deep learning, as well
as machine learning to minimize catastrophic forgetting. The
methods range from memory-based approaches to methods for
loss calculation and different optimizers, whereat the framework
also provides possibilities to compare the methods and their
impact with each other. The proposed framework is specifically
tailored for regression problems, focusing on industrial settings
in the experiments section. It is able to cope with single and
multi-task models, is expandable and enables a high variety of
configuration possibilities for adaptation to a given problem.

Index Terms— Online Learning; Catastrophic Forgetting; Re-
gression; Domain Adaption.

I. INTRODUCTION

In manufacturing, the usage of sensors and microprocessors
on machines and their produced data is continuously increas-
ing. This trend is part of Industry 4.0 and enables a huge
source of structured and unstructured streaming data [1]. The
produced data stream is used to achieve a higher level of
operational efficiency, as well as productivity and furthermore
enables a higher level of automatization and flexibility [2]
[3]. Another important aspect regarding Industry 4.0 is the
customization of applications with small batch sizes enabling
flexible adaptions and optimizations [2].

At the moment, machine learning, especially deep neural
networks, are very effective in solving various tasks, including
classification and regression problems [4]. Industry 4.0 is
able to utilize such machine learning techniques to create
self-learning and adaptive systems for predictions, predictive
maintenance, outlier detection and various other evaluations
[2] [3]. The used techniques have to support domain adaptation
to provide models with the needed adaptability for expanding
and alternating environments, which is especially useful in
custom process industry.

Many of the current learning approaches are based on batch
settings, meaning the complete training data set has to be
available prior to the learning task [5]. As sensors in Industry

4.0 settings continuously produce new data [1] [2], which
are used to optimize models, the so-called offline learning
is often not sufficient enough. Online learning, on the other
hand, is able to deal with such continuous data streams and
dynamically changing environments and additionally enables
domain adaptation [6]. Online models have the ability to
gain new knowledge over time while retaining previously
gained knowledge to a certain extent [7]. The main issue of
online learning models is catastrophic forgetting, meaning the
forgetting or fading of previously learned knowledge due to the
stability-plasticity-dilemma [7] [8]. Researchers have worked
on solving this dilemma and came up with various solutions,
ranging from memory-based approaches [9] to parameter-
specific approaches, like Learning without Forgetting [10] or
Natural Gradient Descent [11]. As different scenarios need
different approaches, the need for a general framework cov-
ering various approaches to minimize catastrophic forgetting
arises.

The motivation for the creation of an online learning
framework is the easing of the path for the development of
models, especially in Industry 4.0 applications. Our approach
offers a high variety of configuration possibilities for various
online learning scenarios, whereat it is possible to select from
different models and solution approaches to identify the most
fitting approach. As a base for each online learning cycle,
an already pre-trained offline model is used, which is then
further trained using online data. The availability of various
configurations and models allows users to experiment with
similar and unresembling methods for easier comparisons
regarding which configuration is more suitable for a scenario.
Data can be added in mini-batches or per sample, enabling an
industry-like usage as clients often have varying requirements.
A main advantage of the framework is the visualization of
diverse metrics, e.g., mean-squared error, for each adaptation
step over time, that is further referred to as time-step. The
amount of time-steps can be dynamically adapted over time
and represents the next adaptation of a model with online data.
Using such a representation of the model development, it is
straightforward to estimate if a model adapts well to new data.

The paper covers the following points: Section 2 addresses
related work and highlights missings in current literature.
In Section 3, the problem setup and the basic idea of our
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framework are discussed. A more detailed description of the
framework structure is discussed in Section 4, followed by
experiments and results in Section 5. Closing, Section 6 covers
a conclusion and a prospective future work.

II. RELATED WORK

In this section, we briefly recap existing frameworks and
relevant topics for online and offline learning. The frame-
works’ advantages and drawbacks are highlighted regarding
their usage in industrial environments and applicability. The
second part of this section focuses on deep learning using
state-of-the-art methods for decreasing catastrophic forgetting.

A. Existing Frameworks

Currently, only few frameworks with the support for online
learning are mentioned in literature. An unsupervised online
learning framework for moving object detection was presented
2004 by Nair et al. [12], focusing on the adaptation of
the classifier. They start similar to our approach with an
offline trained model and fit it continuously with new data. In
comparison to their framework our framework has a broader
field of application, as it can deal with various regression
problems. An online multi-task learning framework for en-
semble learning was developed by Xu et al. [13], focusing
on time series data and insensitive loss functions. Both of the
mentioned frameworks have a fixed model structure whereat
Xu et al. also enable the selection of the loss function. Our
framework supports the usage of various models to select from
and provides additional configuration possibilities, e.g., loss
function and optimizer for neural networks. These features
enable the training of a broad variety of different models using
the same setup and provide straightforward comparisons as the
visualization of results is incorporated into the framework.

B. Relevant Deep Learning Topics

1) Multi-Task Learning: Multi-task learning uses the com-
mon knowledge of tasks to improve all tasks, whereat the
bottom layers of the model are usually shared and the top
layers are task-specific [14]. Such models are often used in the
industrial field, as they enable the training of similar tasks in
one model to save time and even enhance results. Continuously
adding new tasks or data to an already trained multi-task
model could lead to unwanted side-effects such as catastrophic
forgetting [10].

The proposed framework supports the use for (online)
domain adaptation [15], i.e., learning a model based on a
source domain that performs sufficiently well on different but
related target domains [16]. This scenario frequently arises
in industrial settings, e.g., when a previously learned model
needs to be applied in a different machine/tool setting or with
different materials. This is often achieved by finding a common
feature representation where source and target distributions
become as similar as possible [17] [18].

2) Catastrophic Forgetting: Catastrophic forgetting is one
of the main constraints in online learning and is caused by the
stability-plasticity dilemma. This dilemma states that a model
requires a certain plasticity for the integration of new knowl-
edge, but also stability to prevent the fading of previously
gained knowledge [19]. Researchers engaged themselves in
finding a solution for this problem and came up with various
approaches. Li et al. [10] propose a method which preserves
the original capabilities of a multi-task deep learning model by
taking the response of old tasks for the new data into account
for the loss calculation. Kirkpatrick et al. [4] developed an
algorithm analogous to synaptic consolidation in brains, which
decelerates learning on certain weights in deep learning mod-
els depending on how important they seem to previously seen
tasks. Zhang et al. [20] created a new optimizer where they
exploit a connection between natural gradient descents and
variational inference to enable further adaptive training. Rusu
et al. [21] propose an approach where the network can utilize
preliminary knowledge via lateral connections to previously
learned features. Castro et al. [9] store the most representative
samples of a task in the representative memory of the model
and later reuse them for the fitting process.

III. PROBLEM SETUP

Consider an unknown target function f : RN → R with
N input features, e.g., a virtual sensor in an industrial man-
ufacturing setting predicting an unobserved process quality
measure based on N physical sensor measurements. Typically,
the physical sensors are cost efficient, whereas the quality
measure can only be recorded with significant effort with
respect to hardware cost and setup time.

In a first step (offline step), a regression model h : RN → R
is trained using a homogeneous set (XS , YS = f(XS)) of all
(source) data available at this point in time. The trained model
is then used in production to cyclically predict the quality
measure in order to control the production process.

At some point (online step), the model is required to adapt to
additional operating environments, e.g., different machine/tool
settings or additional materials. At this point, new (target)
data (XT , YT = f(XT )) is gathered under the new operating
environment that is different but related to the original data
set (XS , YS). The framework then has to learn an updated
model h′ : RN → R, which is able to predict the new data
(XT , YT ) while still retaining the performance of the original
source data (XS , YS).

As during the production process data can be generated
continuously or in bulk, the framework needs to be able to
train the updated model incrementally, i.e., using only the next
available sample or alternatively all the available data from the
new operating environment at once.

IV. FRAMEWORK

In this section, we describe the main parts of our frame-
work, focusing on the central configuration file, as well as
the learning algorithm. The framework was implemented in
Python 3, using the PyTorch deep learning framework.
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CONFIG = {
’ App Scen1 ’ : {

’TASK DICT ’ : {
’ t a sk 1 ’ : [ ( 1 , 50 , F a l s e ) ,

( 2 , 20 , True , True ) ,
( 3 , 10 , F a l s e , True ) ]

’ t a sk 2 ’ : [ ( 2 , 40 , F a l s e ) ,
( 3 , 30 , True , True ) ]

}
# a d d i t i o n a l d i c t i o n a r y e n t r i e s

}
’ App Scen2 ’ : {

# o t h e r s c e n a r i o e n t r i e s
}

}

Fig. 1. General Configuration Dictionary.

A. Configuration

The configuration file is the core of our framework and is
represented as a dictionary.

1) Application Scenario Configuration: The dictionary, see
Fig. 1, is able to store configurations for more than one
application scenario in sub-dictionaries, making it possible to
access a specific scenario setup by using its key. The scenario
dictionary contains, next to information about loading and
saving paths for models and (training) data, information about
the training process represented in a dictionary containing the
different tasks of a scenario.

2) Task Training Configuration: The task dictionary con-
sists of n entries, each containing a task name and an array
of tuples, which represent the processing of the available data.
One tuple contains four pieces of information. First of all, the
time-step is specifying at which time-slot the task data is used
in the model. Time-slots represent the the course of adding
new online data in our mock-up scenario and are defined by
the data assigned to the single time-steps. As the results and
intermediate models are stored, it is straightforward to add
new time-steps and start the model at specific steps, which
enables a dynamic training. The second tuple value defines
the used percentage of the available task data. It has a range
between 1-100 whereat the sum of percentages for one task
should not exceed 100. If the overall percentage of a task is
below 100, the remaining data is used for testing. The third
element of the tuple is a boolean flag indicating if the data
should be trained elementwise or batchwise.

3) Optimizer and Loss Configuration: The framework can
be used with arbitrary regression models as long as they are
supported by the frameworks wrapper class (see Section IV-B).
In case neural networks are used as training models, the
framework enables the selection of an optimzer and a loss
function. Currently, the framework supports the following
optimizers and loss functions:
◦ Stochastic Gradient Descent (Optimizer)

◦ Noisy Natural Gradient Descent (Optimizer), as described
by Zhang et al. [20]

◦ Mean Squared Error (Loss)
◦ Learning without Forgetting (Loss), as described by Li et

al. [10]
◦ Elastic Weight Consolidation (Loss), as described by

Kirkpatric et al. [4]
We adapted the Learning without Forgetting approach [10]
by using mean squared error instead of multinomial logistic
loss used for the loss calculation of the new task in order
to support regression tasks. We also had to adapt the elastic
weight consolidation approach [4] by using mean squared error
instead of cross entropy loss.

4) Other Configurations: Furthermore, the framework en-
ables the selection of source and target column(s) as maybe
not all features are used during training in order to allow
different experiments with the available data for new models.
Additionally, it is possible to define at which steps to start
and end a learning run. This is especially useful for stopping
training at a specific step and continuing later, as the model
can be reloaded and trained further at a later time.

B. Wrapper

A wrapper stores the model and enables equal treatment of
models. It is used as intersection point between the model and
the learning algorithm of the framework and stores additional
information, e.g., prediction results. The wrapper class also
contains the calculation methods for the metrics, of which
Root Mean Squared Error (RMSE), Maximum Absolute Error
(MaxAE), sigma, sigma2 and R2 are available. Currently, the
wrapper supports neural networks, linear regression models,
elastic net models and random forest models.

C. Algorithm

For an outline of our main learning loop see Fig. 2. At
first, the data is loaded and stored in memory according to
the definition in the configuration, see Fig. 1. Afterwards, an
offline model is either loaded or trained and placed into a
wrapper, which is described in section IV-B. After this step, the
main part of the algorithm starts. As long as the last time-step
is not reached, the data belonging to the time-step is fetched
from the dictionary and used to fit the model. Depending
on the configuration of the task at the time-step, the model
is either fitted batchwise or elementwise with the available
task data. Adding new tasks is performed in the wrapper
and, therefore, not incorporated in the algorithm, see Fig. 2.
After fitting of the model, it is evaluated with the test data.
After the last time-step is completed, the model can be saved
depending on the configuration. Finally, the selected metrics
are calculated and visualized.

D. Visualization

The framework enables visualizations of the training and
testing results as Portable Document Format (PDF) plots, e.g.,
see Fig. 3 and Fig. 4. Numerical results are additionally stored
in Excel sheets. In the configuration files, a user can specify
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Step 1 : Load data and partion data according to
configuration file into train/test,
batchwise/elementwise and online/offline

Step 2 : Load or train offline model
while time-steps available do

Step 3 : Get data for time-step
Step 4 : Fit model with according data
Step 5 : Evaluate model with test data
Step 6 : Get next time-step

end
Step 7 : If required, save model
Step 8 : Calculate and visualize metrics

Fig. 2. Learning Algorithm. The algorithm can be started multiple times with
varying time-steps and, therefore, enables a dynamic type of online learning.

Fig. 3. Visualization example with black mean-line. Dots represent training
results, half-filled squares testing results.

which metrics are visualized (multiple metrics are possible)
and whether training and testing results should be visualized
separately. Additionally, it is possible to anonymize the results
in case of sensitive information has to be visualized.

V. EXPERIMENT

A. Dataset

We show the usability of our proposed framework using
a resin production dataset provided by the Austrian company
Metadynea. The dataset consists of three different recipes, each
containing 5639 samples. Each sample of the dataset consists
of 2692 features, which are composed of the following values:
sample id, sample time, date, batch, spectrum light intensity,
process pressure, process temperature, condensation time and
various values representing the spectrum trend. The target is
represented by a reference value measured in C.

B. Setting

1) Dataset Partition: For the experiment, we use five time-
steps to simulate online learning whereat the first one is used
to train an offline model. To simulate a real world application,
with regards to adding new tasks and enhancing existing tasks,
we partitioned the dataset the following way:

Fig. 4. Visualization example including elementwise adding of data.

◦ Recipe 166: 30% used in offline training at step 1; 40%
added at step 4; 25% added at step 5; 5% used for testing

◦ Recipe 162: 25% used in offline training at step 1; 25%
added at step 2; 25% added at step 3; 25% used for testing

◦ Recipe 361: 80% added at step 3; 19% added at step 4;
1% used for testing

2) Deep Learning Models: We use the following network
architectures for our learning scenarios:
◦ Feed-Forward Network with 5 hidden layers, containing

35/30/25/15/7 hidden nodes
◦ Feed-Forward Multi-Task Network with 4 hidden lay-

ers, containing 300/50/30/15 hidden nodes
The models use learning rate schedulers and early stopping,
as well as warm starts in the online learning part.

3) Model Configurations: To demonstrate the framework’s
possibilities, we chose the following model configurations for
our experiments:
◦ Feed-Forward (Single and Multi-Task) with Stochastic

Gradient Descent and MSE
◦ Feed-Forward Multi-Task with Stochastic Gradient De-

scent and Learning without Forgetting (LwF)
◦ Feed-Forward (Single and Multi-Task) with Natural Gra-

dient Descent and MSE
◦ Feed-Forward Multi-Task with Natural Gradient Descent

and LwF
◦ Feed-Forward Multi-Task with Stochastic Gradient De-

scent and Elastic Weight Consolidation (EWC)
◦ Linear Regression
◦ Random Forest
◦ Elastic Net

C. Results

The results of the experiments are presented in Table I,
which contains the RMSE results of the training and testing
environments. It is possible to see an improvement in nearly
every model configuration regarding the first and last step of
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TABLE I
RMSE TRAIN AND TEST VALIDATION RESULTS.

Train/Test Step 1 (Offline) Step 2 (Online) Step 3 (Online) Step 4 (Online) Step 5 (Online)
FF S with SGD/MSE Train 10.73 13.49 10.15 7.80 9.11
FF S with SGD/MSE Test 8.85 9.93 9.97 6.65 7.26
FF S with NGD/MSE Train 12.87 12.7 9.81 8.32 8.28
FF S with NGD/MSE Test 8.35 11.34 7.36 7.15 6.34
FF M with SGD/MSE Train 13.24 11.76 10.30 10.38 9.19
FF M with SGD/MSE Test 12.59 13.32 10.18 10.31 8.99
FF M with SGD/LwF Train 10.72 13.71 10.15 7.08 9.11
FF M with SGD/LwF Test 8.85 13.24 9.97 6.65 6.27
FF M with SGD/EWC Train 19.13 18.47 20.01 18.78 21.46
FF M with SGD/EWC Test 17.19 17.46 18.67 18.13 20.33
FF M with NGD/MSE Train 10.91 12.42 9.80 10.02 10.50
FF M with NGD/MSE Test 10.64 11.43 9.48 9.71 9.26
FF M with NGD/LwF Train 12.87 12.70 9.81 8.32 8.20
FF M with NGD/LwF Test 9.33 11.34 7.36 7.16 6.29
Linear Regression Train 2.06E-11 1.89 5.98 5.45 5.8
Linear Regression Test 41.92 21.34 9.54 7.32 7.47
Random Forest Train 6.44 2.30 4.67 5.43 9.78
Random Forest Test 12.14 10.28 10.12 10.10 10.13
Elastic Net Train 14.12 12.69 11.50 10.32 10.75
Elastic Net Test 10.32 10.37 10.10 10.05 10.08

both training and testing results. The first time-step, Step 1
(Offline), represents the base model, which is trained offline
from scratch. Step 2 to Step 5 represent the adaptation of
models with online data over time. The models should not
have a decreasing performance due to the integration of online
data, as a worse RMSE would indicate a less fitting model.

In general, the models performed quite differently at the
same steps as for some models the RMSE is increasing
whereat the RMSE is decreasing for others. The best per-
forming machine learning model in our experiment is the
linear regression model, although it is stagnating during the
training process. The best performing neural network model
is the Feed-Forward Multi-Task model with Natural Gradi-
ent Descent using Learning without Forgetting (FF M with
NGD/LwF). It is one of the few models continually improving
during the online training process.

The insertion of a new task at the third step enhances all
of the neural network models, except the one model using
the Elastic Weight Consolidation. The linear regression model
and the random forest model are not able to deal with the
new task as well as other models, which decreases their
improvement although they still have good results. According
to our experimental setting, a feed-forward multi-task model
using LwF to minimize catastrophic forgetting fits best to our
scenario and should be considered for further usage.

VI. CONCLUSION AND FUTURE WORK

Concluding, we present a framework which is able to
improve offline learning models with online data. The need
for such a framework increases as continuously more data
is produced, especially in Industry 4.0 environments, and the
training of a new model is either computationally expensive
or not possible, e.g., old data may not be available any-
more. The online learning setting in our framework enables
the adaption of models using new data, either batchwise or

elementwise, and additionally allows the inclusion of new
tasks. The learning process of a model can be visualized
to enable the evaluation of its development using different
metrics. The framework enables various configuration possibil-
ities regarding the training process and the models itself. The
main focus of the model configuration is on the avoidance of
catastrophic forgetting and, therefore, includes different state-
of-the-art approaches for decreasing this problem. The amount
of possible configurations make the framework flexible and
adaptive regarding new regression problems The framework
can easily be extended regarding supported models as currently
only neural network and some selected machine learning
models are available.

As the framework is still under development and we pre-
sented its current state in this paper, we will briefly outline
further steps. Currently, we are working on the handling
of censored online data, which are highly likely to cause
negatively biased models, to reach a broader application area.
Additionally, we want to enable more flexible neural network
architectures and the parallel training of selected models
resulting in the automatic selection of the best to continue
working with.
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