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Abstract—In order to enable a fast time to market for new
Database Management Systems (DBMS), we introduce two simple,
very easy to implement cardinality estimators and a build-plan
method that does not require any cost function. Experimentally,
we demonstrate that different plan generators incorporating these
ideas are quite competitive on the Join Order Benchmark (JOB):
the join ordering algorithm DPccp yields plans that are at most a
factor of 2.10 away from the optimum without using any runtime-
dependent cost function if cardinalities are known. Thus, using
our approach obviates the effort of implementing sophisticated
cardinality estimation methods and cost functions in a first version
of a DBMS.

Keywords-query optimization; hash join; cardinality estimation;
cost function; plan generation.

I. INTRODUCTION

Developing a new DBMS like DuckDB [1] from scratch
is a challenging task. To achieve a short time to market,
compromises in different modules of the system are required.
Two modules that are tedious to implement and test in the
context of query optimization are cardinality estimation (CE)
and cost functions (CF).

We observed recent attempts in the literature to simplify
query optimization [2][3]. However, these approaches are often
monolithic in the sense that they touch many of the different
‘moving parts’ involved in query optimization, without proper
modularization. Those modules are
• the join ordering algorithm that decides the logical join

order,
• the build-plan procedure (BP) used for selecting the most

suitable physical (join) operator,
• the cardinality estimator (CE) that provides a cardinality

estimate for any subset of relations considered by the plan
generator,

• the cost function (CF) to compare the cost of two plan
alternatives.

If implemented correctly, the modules are independent of each
other and can be exchanged without changing the rest of the
system, allowing for an extensive evaluation of the different
combinations.

In this paper, we pose the questions: How simple can
cardinality estimation, cost function, and build plan procedure
become while still yielding query evaluation plans (QEPs) with
an acceptable quality? Can we get acceptable plans even if BP
does not use any cost function at all?

In order to answer these questions, we propose two very
simple cardinality estimators: CEbase and CEsel. Further, we
propose a new build-plan method for query optimization
(BPsmart) that does not require any cost function and instead
relies only on cardinality estimates for its decisions. This is
in stark contrast to the traditional build-plan procedure BPtrad:
Given two (sub-) plans to be joined, it decides on the argument
order (e.g., build vs. probe side for hash joins) as well as on the
actual join implementation to be used in a purely cost-based
manner.

In order to evaluate and compare the performance of the
newly proposed cardinality estimators and build-plan method,
we implemented the Plan Generator Benchmarking Framework
PgBench. It allows to orthogonally test the performance of
combinations of join ordering algorithms, cardinality estimation
methods, cost functions, and build-plan procedures. In this
paper’s evaluation, we report on the performance of the join or-
dering algorithms DPccp [4], GooCost [5], and GooCard [6][7].
As cardinality estimation methods, we use our new cardinality
estimators CEbase and CEsel as well as the existing CEIA-M,
which relies on the independence assumption, and CEtru, which
provides the true cardinalities. As cost functions, we use CFtru
and CFest for the true and estimated execution costs. The
build-plan procedures used are BPtrad and the newly designed
BPsmart. As the set of queries, we use the Join Order Benchmark
(JOB) [8].

Since the implementations of BPsmart and CEbase or CEsel
require only little effort while being quite competitive, as seen
in the evaluation, this will help to achieve a short time to
market for a new DBMS.

The rest of the paper is organized as follows. Section II
presents basic notions like plan class, ccp, uniqueness, and
loss factor of a plan. Section III gives the details on the
new cardinality estimation methods CEbase and CEsel as
well as for CEIA-M. Section IV introduces the different join
implementations as well as the derivation of the cost functions
CFtru and CFest for them. Sections V and VI introduce the
two build-plan procedures BPtrad and BPsmart. Section VII
contains the evaluation. An overview of related work is given
in Section VIII. Section IX concludes the paper.

II. PRELIMINARIES

For a given conjunctive query, we denote by R :=
{R1, . . . , Rn} the set of relations in its from-clause. The set of
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attributes of Ri is denoted by A(Ri). The single-table selection
predicates for Ri are denoted by pi. Equijoin predicates for
a join between Ri and Rj are denoted by pi,j . The attributes
accessed by a selection or join predicate p are denoted by
F(p). The query graph (QG) has the relations in R as nodes
and an edge connecting Ri and Rj for every join predicate
pi,j . A plan class S ⊆ R is a subset of relations inducing a
connected subgraph of the query graph. In this case, we write
pc(S). The set of attributes of a plan class pc(S) is defined
as A(S) :=

⋃
Ri∈S A(Ri). Two subsets S1, S2 ⊆ R form a

ccp if pc(S1), pc(S2), S1 ∩ S2 = ∅, and there is at least one
join predicate pi,j such that Ri ∈ S1 and Rj ∈ S2 [4]. In this
case, we write ccp(S1, S2). The abbreviation ccp stands for a
csg-cmp-pair, which refers to a pair of connected subgraphs
(csg) of the query graph that are complements (cmp) to each
other. The notion of a ccp was first introduced by Moerkotte
and Neumann [4]. To find the optimal join order using dynamic
programming, all such pairs must be enumerated.

For both our new build-plan procedure and our new cardinal-
ity estimators, we need to determine whether the join predicate
connecting the two sets of a ccp(S1, S2) implies uniqueness
on S1 and/or S2.

The join predicate P (S1, S2) for ccp(S1, S2) is the con-
junction of all pi,j such that Ri ∈ S1 and Rj ∈ S2.
The set of join attributes of Si (i = 1, 2) is then defined
as J(Si, (S1, S2)) := F(P (S1, S2)) ∩ A(Si). We say that
ccp(S1, S2) determines Si uniquely if J(Si, (S1, S2)) is a
(super-) key of Si. If K(Si) denotes the set of keys of Si,
we can express this as

U(Si, (S1, S2)) := ∃κ ∈ K(Si) : κ ⊆ J(Si, (S1, S2)).

In order to derive this uniqueness, we need to determine the
keys for plan classes S. We start by assuming that for every
relation Ri the set of primary and secondary keys is given as
K({Ri}). For a ccp(S1, S2), we can determine the set of keys
K(S1 ∪ S2) as follows. If there exists a key κ ∈ K(Si) such
that κ ⊆ J(Si, (S1, S2)), then K(S3−i) ⊆ K(S1 ∪ S2). Note
that S3−i refers to S2 for i = 1 and vice versa. If this is true
for neither S1 nor S2, then K(S1 ∪ S2) contains κ1 ∪ κ2 for
all κ1 ∈ K(S1) and for all κ2 ∈ K(S2).

To measure the error between a true value and an estimate,
we use the q-error [9]. Let x > 0 be some true value and
x̂ > 0 be its estimate, then qerr(x, x̂) := max

(
x
x̂ ,

x̂
x

)
.

Finally, we define the loss factor of a plan. Given a plan
class S and a plan P for S, we define the loss factor of P as
the true cost of P divided by the true cost of the overall best
plan for S. This is a value greater or equal to 1.

III. CARDINALITY ESTIMATION

In this section, we present two new cardinality estimators
(CEbase and CEsel) which only differ in their treatment of single-
table selection predicates. CEbase ignores them, whereas CEsel
takes them into account. We start by defining both estimators
for plan classes containing a single relation Ri ∈ R:

CEX({Ri}) :=

{
|Ri| if X = ‘base’
|σpi

(Ri)| if X = ‘sel’
(1)

Then, for general plan classes, we define

CEX(S) := min
ccp(S1,S2): S=S1∪S2

CEX(S, (S1, S2)) (2)

where, with U(Si) abbreviating U(Si, (S1, S2)),

CEX(S, (S1, S2))

:=


min(CEX(S1),CEX(S2)) if U(S1) ∧ U(S2)

CEX(S1) if ¬U(S1) ∧ U(S2)

CEX(S2) if U(S1) ∧ ¬U(S2)

CEX(S1) · CEX(S2) if ¬U(S1) ∧ ¬U(S2)

The idea is to use the smaller cardinality if both arguments are
unique, the cardinality of the cross product if neither argument
is unique, and the cardinality of the non-unique side if one
of the argument relations is unique but not the other. Clearly,
both cardinality estimators may produce overestimates and
never produce underestimates, given true inputs. Note that
for an implementation of CEsel, an estimation procedure for
|σpi

(Ri)| is required. We propose to use sampling, as it is easy
to implement and universally applicable [10]–[12].

For comparison in our evaluation, we also use the cardinality
estimator CEIA-M, which applies the independence assumption
using the multiplicative rule [13]:

CEIA-M(S) :=
∏

Ri∈S

|σpi
(Ri)| ·

∏
pi,j : Ri,Rj∈S

sel(pi,j) (3)

where sel(pi,j) :=
|Ri⋊⋉pi,j

Rj |
|Ri|·|Rj | is the (true) selectivity of pi,j .

IV. COST FUNCTIONS

This section first introduces the two physical hash join
operators and their variants before outlining how their cost
functions are derived from runtime experiments.

A. The Join Implementations

We consider two physical main-memory hash join operators:
the chaining hash join (CH-join) and the 3D hash join (3D-
join) [14]. Their main difference is the hash table data structure
which is built and probed during the join. The CH-join uses a
hash table that resolves collisions by collecting all colliding
keys into one linked list for each hash table bucket. The 3D-
join uses a 3D hash table that groups duplicate keys together
in a hierarchical collision chain organization with main and
sub nodes. Further, for both physical operators, we consider
two variants for the physical design of collision chain nodes,
and three prefetching variants.

For the collision chain node design, there is an unpacked
(upk) and a packed (pkd) variant. The unpacked variant is the
original implementation [14], where each (main, sub) collision
chain node stores one tuple pointer. The idea behind the packed
variant is to improve the cache line utilization of a single
collision chain node. Here, each collision chain node of the
CH-join can store three tuple pointers. For the 3D-join, each
main node stores five tuple pointers with equal join attribute
values, and each sub node stores three tuple pointers.
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Prefetching is a known technique to hide memory latencies
of cache misses [15][16]. We therefore augment the non-
prefetching implementations (NoPF) of the physical join opera-
tors by two prefetching approaches: rolling prefetching (RoPF)
and asynchronous memory access chaining (AMAC) [16].
AMAC maintains a small ring buffer that keeps track of the
processing state of tuples during the build or probe phase
of a hash join, where the number of states depends on the
join phase and physical hash table implementation. Before
the next processing step of buffer element i, e.g., accessing
a hash table bucket or inserting into a hash table collision
chain node, a prefetch is issued for the necessary memory
address, and processing continues with the next buffer element.
Only after all other ring buffer elements have been examined,
processing continues for buffer element i, giving the prefetch
issued by i time to be completed. In AMAC, both hash
table directory entries and hash table collision chain nodes
are prefetched. There is obviously a tradeoff between the
time saved due to hidden latencies, and the time lost due
to branch misprediction penalties for handling the different
AMAC states. As a compromise between NoPF and AMAC, we
also implemented RoPF, which only prefetches the hash table
directory entries, but not the collision chain nodes, simplifying
the prefetching logic.

In summary, for each join in the plan, we can choose between
any of the following 36 physical operators and implementations:

{CH-join, 3D-join} × {upk, pkd} × {NoPF,RoPF,AMAC}2

Note that the prefetching variants can be applied independently
to the build and probe phase of a single hash join (hence the
squared term), while both phases must agree on the physical
node design.

B. Derivation of Cost Functions

The cost functions in this paper are constructed from
measurements of runtime experiments. We therefore first briefly
outline the experimental setup to obtain the measurements
before describing the process of constructing cost functions
from them.

1) Runtime Experiments: We measure the runtime of a
single key/foreign key join between a key relation R and
a foreign key relation S separately for the build and probe
phase. The cardinalities for R and S are varied between 20

and 230 in half-steps of powers of two, i.e., {t · 2i | i ∈
[0, 30], t ∈ {1, 1.5}}. For validation purposes, we additionally
measured runtimes for t ∈ {1.3, 1.7} that were not used for
cost function generation. To generate the foreign keys for S,
we draw |S| random samples according to a (1) uniform and
(2) standard Zipf distribution from a domain [0, |S|/2d − 1]
with d ∈ [0, 10] for build, and d ∈ [0, 6] for probe. This
results in a total of 43 489 input parameter combinations
(without validation). For each of these combinations, we eval-
uate |{CH, 3D} × {upk, pkd} × {NoPF,RoPF,AMAC}| = 12
build and the same number of probe runs. The runtimes are
recorded in terms of timestamp counter clock ticks, a proxy
for the wall-clock time [17, Chap. 18.17].

cost(cbld) = 145.4207 + 71.4937cbld
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(b) non-unique build.

Figure 1. Measured runtimes and approximated functional cost functions for
the build phase of CH-upk-NoPF.

2) Cost Function Generation: To turn the discrete data
points from our runtime experiments into continuous cost
functions usable by the query optimizer, we apply existing
methods [9][18] to find an approximation function from a set
of functions (e.g., constants, linear functions, or polynomials of
a certain degree) that minimizes the maximum q-error between
the true measured value and the values given by the function.

For each of the physical operator implementation variants
from Section IV-A, we create separate cost functions for each
case from {build, probe} × {unique, non-unique}, i.e., for the
two join phases and depending on the uniqueness of the build
side. Each of the cost functions uses a subset of the following
input parameters: the join’s input build, probe and output
cardinality (cbld, cprb, cres), and the number of distinct values
of the foreign key attribute (nodv ).

Further, we construct cost functions in two levels of precision:
a more precise, but also more complex tabulated cost function,
and a less precise, but less complex functional cost function.

a) Functional Cost Functions: The functional cost func-
tions capture all measurements of a single case (build/probe,
uniqueness) in a single mathematical function. All cost func-
tions are linear. For the build phase, the cost functions are
1-dimensional with cbld as input, while they are 3-dimensional
for the probe phase and use all three join cardinalities, cbld,
cprb, and cres. Figure 1 shows the measured runtimes from
our experiments for the CH-join (unpacked, no prefetching)
alongside the respective cost functions generated by approx-
imation. Observe that the cost functions produce both over-
and underestimates.
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b) Tabulated Cost Functions: The tabulated cost functions
use one- or two-dimensional lookup tables (hence the name)
to map a subset of the measurements to an n-dimensional
approximation function for that subset. To compute cost values
for input parameter values between lookup table entries, we
apply (bi-) linear interpolation. If the requested values are
above the maximum values in the table, linear extrapolation is
applied.

First, consider the build phase. For unique builds, each
lookup table entry simply maps cbld to the respective experi-
mental runtime (a constant). For non-unique builds, each cbld
is associated with either a constant or a linear function that
takes nodv as its only input.

All lookup tables for the probe phase are two-dimensional
in cbld and cprb. In the case of unique build sides, each lookup
table entry contains a constant or a linear function that takes
nodv as its only input. For non-unique builds, each (cbld, cprb)-
pair is associated with either a constant or a two-dimensional
linear function in nodv and cres.

We use the more precise tabulated cost functions as CFtru
and the simpler but less precise functional cost functions as
CFest. Note that both CFtru and CFest exhibit errors with regard
to the true execution cost of the respective join, even though the
name CFtru might suggest otherwise. We merely assume CFtru
to be the true execution cost in order to have a notion of ‘true
optimality’. This distinction, however, is of minor importance
towards the evaluation in Section VII, as the maximum q-error
of CFtru is well below 2 across all runtime measurements.

V. TRADITIONAL BUILD PLAN

The task of finding a join tree for a given query graph can be
split into two distinct problems: the join ordering that decides
which relations and subtrees to join next, and the operator
selection that chooses the most suitable physical operator and
argument order to join two subtrees. The former problem
is tackled by optimal join order ordering algorithms like
DPccp [4], or heuristics, like GooCard [6][7] and GooCost [5].

Algorithm 1 DPccp [4].
1: function DPCCP
2: Input: a connected QG w/ relations R = {R1, . . . , Rn}
3: Output: an optimal bushy join tree
4: for all Ri ∈ R do BestPlan({Ri})← Ri

5: for all ccp(S1, S2), S ← S1 ∪ S2 do
6: T1 ← BestPlan(S1), T2 ← BestPlan(S2)
7: Tcurr ← BUILDPLAN(T1, T2)
8: if COST(BestPlan(S)) > COST(Tcurr) then
9: BestPlan(S)← Tcurr

10: return BestPlan(R)

For illustration, we show DPccp in Algorithm 1: it iterates
over each ccp and stores the (cost-wise) optimal join tree for
each plan class in a data structure. The operator selection
problem is decided by a build-plan subroutine (called in
Line 7), like BPtrad, shown in Algorithm 2, or BPsmart (see

Algorithm 2 BPtrad [19, p. 62].
1: function BUILDPLANTRAD(T1, T2)
2: Input: two join trees T1, T2

3: Output: the best join tree for joining T1 and T2

4: BestTree ← null, COST(BestTree)←∞
5: for each impl ∈ Implementations do
6: T ← T1 ⋊⋉impl T2

7: if COST(BestTree) > COST(T ) then
8: BestTree ← T
9: T ← T2 ⋊⋉impl T1

10: if COST(BestTree) > COST(T ) then
11: BestTree ← T
12: return BestTree

TABLE I. MAXIMUM LOSS FACTORS OF TWO PLANS FOR DIFFERENT INPUT
CARDINALITY SITUATIONS.

CH-upk- 3D-upk-
(RoPF, RoPF)-bun (RoPF, AMAC)-bnu

2|R| < |S| 1.79 7.71
2|R| = |S| 1.54 2.63
|R| = |S| 1.40 2.84
|R| = 2|S| 1.43 2.55
|R| > 2|S| 4.45 2.01

Section VI). Build-plan decides which physical join operators
(Implementations in Algorithm 2, Line 5) are considered, and
which argument order is better, T1 ⋊⋉ T2 or T2 ⋊⋉ T1. In case
of BPtrad, this requires a total of 72 cost function evaluations
for both join argument orders and 36 physical operator variants
(see Section IV-A).

Both join ordering and build-plan apply cost functions to
decide on the best alternative. Note that both could use different
cost functions independently of each other: Build-plan could use
cost functions based on join runtime (Section IV-B), whereas
DPccp could pick the partial plan based on CFcout (minimizing
the sum of the cardinalities of the intermediate results) [20].
This flexibility is exploited for BPsmart in our evaluation.

VI. SMART BUILD PLAN

It is the main goal of the build-plan procedure BPsmart to
make all required decisions based only on the cardinalities of
the input relations to the join, i.e., without any reference to a
cost function. At the same time, it should try to minimize the
loss factor of the produced (partial) plan.

One common heuristics is to always build on the smaller
input relation. However, we will see that we need to slightly
relax this rule when determining the order of the join’s
arguments.

Having chosen the build relation, we need to decide which
join implementation and variant to apply. Based on runtime
experiments [14], we come up with the following rule: If the
join attributes of the build side cover a key of the build side
(i.e., unique builds, bun for short), the CH-join is the clear
favorite. Otherwise, for non-unique builds (bnu for short), the
3D-join is used. Since the experiments indicate that the packed
versions of the algorithms only provide limited improvements
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in rare cases (many duplicates, uniform distribution), BPsmart
uses only the unpacked versions.

For the CH-join with unique build sides, rolling prefetching
is superior to AMAC in most cases. Further, it provides only
little overhead for small builds compared to no prefetching.
This applies to both the build and the probe phase. For the
3D-join with non-unique build-sides, we found that rolling
prefetching is the best compromise for build and AMAC the
best compromise for probe.

Let us come back to the problem of deciding which relation
to use for the build. If we have a key relation R and a foreign
key relation S, we can use the CH-join with build on R
and the 3D-join with build on S. For a key/foreign key join,
Table I contains the maximum loss factor of these two plans
for different cardinality situations of the input relations. The
header line shows the two physical plans used. For instance, 3D-
upk-(RoPF, AMAC)-bnu refers to the 3D-join in the unpacked
variant with a non-unique build side using rolling prefetching
for build and AMAC for probe. The table indicates that we
should use the CH-join if the cardinality of the key relation
does not exceed twice the cardinality of the foreign key relation.
If both or none of the input relations are unique, BPsmart uses
the smaller one as the build relation.

The details of BPsmart are given in Algorithm 3. By con-
vention, the right-hand side of the join symbol is the build
side. The function relset returns the set of relations joined in
a (partial) plan. Further, we abbreviate CH-upk-(RoPF, RoPF)
by ch and 3D-upk-(RoPF, AMAC) by 3d . We always use a
CH-join if the build is unique, otherwise we use the 3D-join.
If neither or both of the input relations are unique, then the
build is on the smaller input. In Line 16, we make sure that T1

is unique and T2 is non-unique by a conditional swap. Then,
we proceed as deduced in the above analysis.

VII. EVALUATION

As our evaluation dataset and workload, we use the Join
Order Benchmark (JOB) [8][21]. It consists of 33 query
templates on the Internet Movie Database (IMDb) schema
and dataset, which are instantiated as 113 queries, each with
four to 17 relations. Queries from the same template only differ
in their conjunctively connected single-table filter predicates.
JOB’s challenging analytical select-project-join queries justify
its frequent use in the literature to evaluate the quality of plan
generators [2][3][22]–[24].

In order to answer the question from the introduction whether
the generation of acceptable plans is possible without a runtime-
related cost function, we consider two cases in particular. Recall
that our BPsmart makes all decisions without any notion of cost.
We consider the combination of BPsmart with DPccp and CFcout,
and with GooCard, entirely eliminating runtime-related cost
functions from the process of plan generation. We compare this
to the usual approach where both join ordering and build-plan
rely on runtime-related cost functions like CFtru and CFest.

Before going into a more detailed analysis, let us illustrate
the general impact of join ordering on the given workload: If
we modify plan generation such that it produces the overall

Algorithm 3 BPsmart.
1: function BUILDPLANSMART(T1, T2)
2: Input: two join trees T1, T2

3: Output: a join tree for joining T1 and T2

4: if U(relset(T1)) ∧ U(relset(T2)) then
5: if card(T1) ≤ card(T2) then
6: ResultTree ← T2 ⋊⋉ch T1

7: else
8: ResultTree ← T1 ⋊⋉ch T2

9: return ResultTree
10: if ¬U(relset(T1)) ∧ ¬U(relset(T2)) then
11: if card(T1) ≤ card(T2) then
12: ResultTree ← T2 ⋊⋉3d T1

13: else
14: ResultTree ← T1 ⋊⋉3d T2

15: return ResultTree
16: if U(relset(T2)) then swap(T1, T2)
17: if card(T1) ≤ 2 · card(T2) then
18: ResultTree ← T2 ⋊⋉ch T1

19: else
20: ResultTree ← T1 ⋊⋉3d T2

21: return ResultTree

TABLE II. LOSS FACTORS FOR DPCCP, GOOCARD, AND GOOCOST.

DPccp
BP CF CEtru CEIA-M CEbase CEsel
trad tru 1.00 10.51 16.47 7.39

1.00 1.39 2.32 1.98
est 3.99 3.02 6.90 6.18

1.82 1.51 2.67 2.57
smart tru 2.52 17.88 6.84 6.09

1.43 1.75 2.45 2.38
est 2.10 20.98 6.94 6.09

1.38 1.65 2.41 2.30
smart cout 2.10 18.11 6.10 6.10

1.41 2.07 2.57 2.31
GooCost

BP CF CEtru CEIA-M CEbase CEsel
trad tru 2.18 2.51 7.39 8.80

1.11 1.32 2.10 2.19
est 4.54 3.66 8.92 8.20

1.97 1.72 2.57 2.52
smart tru 2.86 2.32 6.90 12.23

1.57 1.57 2.17 2.39
est 2.66 2.66 6.90 5.74

1.45 1.49 2.14 2.17
GooCard

BP CF CEtru CEIA-M CEbase CEsel
trad tru 1.43 13.52 7.39 13.65

1.06 1.51 2.16 2.35
est 3.15 6.52 8.92 8.30

1.73 1.78 2.59 2.61
smart — 2.10 15.53 6.90 6.71

1.42 1.94 2.27 2.32
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worst possible join order (using DPccp with cost maximization),
the maximum (average) loss factor across all JOB queries is
35 785 (1168). As we will see, all subsequent loss factors are
orders of magnitude away from this worst case.

Table II contains the plan loss factors for DPccp, GooCost,
and GooCard. The first two columns indicate which combina-
tion of build-plan (BP) and cost function (CF) was applied.
Typically, BPtrad uses the same cost function as the join ordering
algorithm. In contrast, BPsmart does not require a cost function,
so CF refers only to the join ordering algorithm for these cases.
For every BP-CF-combination, there exist two lines. The first
(second) line contains the maximum (average) loss factor taken
over all JOB queries. The four numbers in each row correspond
to the cardinality estimator used, as shown in the header line.

To start our discussion, we consider the first two lines of
Table II. Here, we evaluate the loss factor of DPccp under
BPtrad and CFtru for different cardinality estimators. We see
that the maximum loss factor under CEtru is 1, which is the
smallest possible value. The maximum (average) loss factors
for the different cardinality estimators are 10.51 (1.39) for
CEIA-M, 16.47 (2.32) for CEbase, and 7.39 (1.98) for CEsel.
Thus, CEbase is the worst for the maximum loss factor and
CEsel the best. For the average, CEIA-M is the best. However,
we still use CFtru here, thus no cost function errors occur.

The next two lines are for BPtrad and CFest. Here, the more
realistic case of an erroneous cost function is evaluated. We
see that even for the true cardinalities CEtru, the maximum loss
factor is 3.99 and the average is 1.82. Interestingly, the errors
of CEIA-M and CFest seem to compensate each other in the
worst case, since the maximum loss factor decreases to 3.02,
whereas the average increases to 1.51. For our new cardinality
estimators, we have maximum loss factors of 6.90 (CEbase)
and 6.18 (CEsel), and average loss factors of 2.67 (CEbase) and
2.57 (CEsel). Thus, they perform worse than CEIA-M if BPtrad
and CFest are in use.

This picture changes if we consider our newly introduced
build-plan procedure BPsmart, where DPccp uses CFest. Here,
the maximum loss factor of CEIA-M (20.98) is far worse than
that of CEbase (6.94) and CEsel (6.09). On average, however,
CEIA-M performs slightly better than these.

One of the goals of this paper is to provide a possibility to
generate plans without the need for any runtime-related cost
functions as, e.g., constructed in Section IV. For that purpose,
we evaluated DPccp using CFcout [20], which sums up the
intermediate result sizes of joins as provided by the cardinality
estimator in place. Further, BPsmart makes all decisions based
only on cardinalities and uniqueness properties. Thus, we next
report on the performance of DPccp without any reference to a
runtime-related cost function. The last two lines of the DPccp-
block contain the loss factors for this scenario. We see that if
true cardinalities are used, the maximum loss factor is only
2.10 with an average of 1.41. If CEIA-M is used, the maximum
loss factor increases to 18.11, which is much higher than the
worst case for CEbase and CEsel. On average, CEIA-M performs
slightly better than CEbase and CEsel. Further, under these
conditions, both CEbase and CEsel perform slightly better than

under BPtrad and CFest. Comparing CEbase and CEsel, we see
that the maximum loss factor is the same, but CEsel performs
slightly better than CEbase on average. This indicates that in a
first version of a new DBMS, one could use CEbase. In some
later version, CEsel could be implemented. Remember that CEsel
requires the estimation of single-table selection predicates, for
which, e.g., sampling needs to be implemented.

Let us now turn to the heuristics GooCost and GooCard.
Under optimal conditions (BPtrad, CFtru, CEtru), the maximum
(average) loss factors of GooCost is 2.18 (1.11) and for
GooCard 1.43 (1.06). Thus, we can conclude that under optimal
conditions, GooCard outperforms GooCost. For heuristics, both
perform quite well. Using the estimated costs CFest in BPtrad
instead, these numbers increase to 3.15 (1.73) for GooCard
with CEtru. For BPsmart, the loss drops to 2.10 (1.32). It might
not be intuitive why GooCard produces different loss factors
for CFtru and CFest, although it only uses cardinalities and not
costs for its join ordering decisions. In this particular case, the
cost function is used by BPtrad. This also explains why there
is no cost function shown for GooCard and BPsmart, as neither
needs a notion of cost.

Turning to erroneous cardinality estimators for GooCard
using BPsmart, we see that CEIA-M performs worse (15.53/1.94)
than both CEbase (6.90/2.27) and CEsel (6.71/2.32). No runtime-
related cost function is needed here, similar to DPccp with
BPsmart (last two lines of the DPccp-block). Comparing these,
we see that going from DPccp to GooCard only slightly
increases the maximum loss factor, while the average loss
factor decreases for CEbase and remains about the same for
CEsel. CEbase has a slightly higher worst case than CEsel.

Most DBMSs provide at least two different join ordering
algorithms: one like DPccp for queries with moderate numbers
of relations (say at most 15–20), and one heuristics for larger
queries. The above numbers suggest that we can obviate DPccp
and only implement GooCard in a first version of a newly
developed DBMS without compromising performance too
much, if we use CEbase or CEsel. If we compare this scenario to
the one where we implemented the cardinality estimator CEIA-M
and some cost function CFest, as well as the join ordering
algorithm DPccp with the build-plan procedure BPtrad, we see
that the combination of GooCard and BPsmart loses only a factor
of about 2 in the worst case (going from 3.02 to 6.90/6.71 for
CEbase/CEsel) and a factor of 1.70 = 2.57/1.51 for CEbase and
1.50 = 2.31/1.51 for CEsel on the average case.

VIII. RELATED WORK

Simplification of query optimizers is not a new idea. For
example, Datta et al. propose the algorithm Simpli-Squared for
join ordering without cardinality and cost estimation [2]. The
basic idea is to first execute key/foreign key joins and then
n:m-joins. Since no notion of cost/cardinality is available to
Simpli-Squared, the ordering of relations for a star-query is
random, depending on the order in which key/foreign key joins
are enumerated (e.g., depending on the order of the relations
in the from-clause).

63Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications



Another example for query optimizer simplification is
proposed by Hertzschuch et al. [3][25]. However, their approach
highly intertwines the proposed cardinality estimation proce-
dure with a newly proposed join ordering heuristics. Further,
besides some cardinality estimates for filtered base relations,
it also requires knowledge about the maximum multiplicity of
the distinct values in the join attributes. Thus, it is much more
complex than our cardinality estimators which are, in contrast,
also independent of the join enumeration algorithm.

Notably, neither approach uses proper cost functions and
leaves significant parts of the plan generation to PostgreSQL,
relying on PostgreSQL’s simple cost model whose errors remain
unknown.

IX. CONCLUSION AND FUTURE WORK

Since implementing and testing cost functions can be quite
tedious, we showed that we can implement a competitive plan
generator that does not rely on any cost function. Instead, the
new build-plan procedure BPsmart makes all decisions based
only on cardinality estimates. Further, we demonstrated that
a very simple cardinality estimator CEbase, which does not
even require cardinality estimation for single-table selection
predicates, is quite competitive. Our evaluation shows that if
the effort is undertaken to implement cardinality estimation for
this case, e.g., based on sampling, then the average loss factor
decreases when using CEsel. Last but not least, we showed
that implementing only GooCard and no other join ordering
algorithm with optimality guarantees like DPccp results in only
a limited loss of plan quality. Taking these findings together
allows for an easy to implement query optimizer enabling a
short time to market for a new DBMS.

For future work, we intend to perform an in-depth analysis
on the granularity of individual queries and plans to extend
our evaluation of plan quality.
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