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Abstract—We have proposed to perform statistical model ing to obtain exact steady-state samples of the underlying
checking by combining perfect sampling and statistical hypothesis Markov chain thus it avoids the burn-in time problem to
testing based on single sampling plan method in order to verify detect the steady-state. Propp and Wilson have designed

steady-state formulas. This approach allows us to consider very th lgorith f i f th tt f
large monotone models and to verify rare event properties '€ @gorithm of coupling irom the past 10 perform per-

efficiently. In this paper, we extend our proposed approach by fect simulation [9]. A web page dedicated to this approach
implementing different statistical methods in our verification is maintained by them (http://research.microsoft.com/en
engine and by comparing their efficiency when we verify steady- us/um/people/dbwilson/exact/). As a perfect sampler, s& u
state dependability properties for large non monotone models. 2 proposed in [18], designed for the steady-state evaluation

We show that SPRT statistical method is generally more efficient f . t . tworks [191. Thi | 118
than the other statistical methods. Moreover, we show that our of various monotone queueing networks [19]. is tool [18]

statistical verification approach is efficient and scalable when we P€rmits to simulate the stationary distribution or dirgeticost
consider large non monotone models. function or a reward of large Markov chains. The significant
Index Terms—Statistical model checking, Perfect simulation, 2dvantage of perfect sampling is that it providesuabiased
Dependability verification, Continuous Stochastic Logic (CSL)  sampling of the steady-state distribution, hence the acgur
of the verification result only belongs to the statisticatiteg.

In other words, we ensure the correctness of our results
considering a specified precision level. We have compared
Probabilistic model checking is an extension of the formah [10][11][12], the numerical model checker PRISM [7], the

verification methods for systems exhibiting stochasticaveh statistical module of MRMC [8] and our statistical verifiiat
ior. The system model is usually specified as a state transitiengine when they are applied to the verification of steady-
system, with probabilities attached to transitions, fosraple state properties for very large models. We have shown the
Markov chains. A wide range of quantitative performancefficiency and the scalability of our approach to considey ve
reliability, and dependability measures can be specifi¢aigus large monotone models and to verify rare event properties
temporal logics such as Continuous Stochastic Logic (CSkjficiently.
defined over Continuous Time Markov Chains (CTMC) [2] In this paper, we extend our proposed approach by imple-
and Probabilistic Computational Tree Logic (PCTL) definethenting in our verification engine other statistical method
over Discrete Time Markov Chains (DTMC) [2]. There are twexisting in the litterature and by comparing their efficignc
distinct approaches to perform probabilistic model chegki when we verify steady-state dependability properties.alt, f
the numerical model checking based on the computation wé consider two non-monotones queueing networks, such as
transient-state or steady-state distributions of the dyidg network of queues with negative clients, and with coxian
Markov chain and the statistical model checking based phase-type servers to show the efficiency and the scajabilit
statistical methods and on sampling by means of discret& evef our proposed approach also in the case of non monotone
simulation or by measurement. Statistical model checkimgodels. This paper is organized as follows: Section 2 briefly
techniques constitute an interesting alternative to nigaker presents the temporal logic CSL, the perfect sampling amd ou
model checking techniques for large scale systems. In #te lproposed approach for statistical verification based ofeper
years, different statistical model checkers have beengsepp sampling. We give a brief introduction of the implemented
[6][15][20] especially for properties specified by timetlmled statistical methods in Section 3. Section 4 is devoted to the
until formulas. In the statistical model checker MRMC [8Fase studies. First we present the models. Next, we compare
statistical model checking of CSL steady-state property hand analyze the results of our experiments. Finally, iniBect
been also considered. 5 we summarize the conclusions and provide the future works.
We have proposed in [13][14] to perform statistical proba-
bilistic model checking by combining perfect simulationdan
statistical hypothesis testing based on the single samplin
plan method in order to check steady-state properties Af Continuous stochastic logic (CSL)
large Markovian models. Perfect simulation is an extensionCSL is a branching-time temporal logic with state and path
of Monte Carlo Markov Chains (MCMC) methods allow-formulas and it is a powerful mean to state properties over

I. INTRODUCTION

Il. STATISTICAL MODEL CHECKING BY PERFECT
SAMPLING
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CTMCs. Thus it is useful to specify and to verify performance : X — R; The algorithm stops when all trajectories are
and dependability measures as logical formulas over CTM@sa set of states at time O that belongs to the same reward
[1]. The steady-state operator (formuld)= S.»(p) lets us value (going further in the past will inevitably couple in a
to analyze the long-run behaviour of the system. The steashate that belong to this reward value). To combine monotone
state formulaS.» () asserts that the steady-state probabilitgnd functional perfect sampling, the reward functiomust
for the set of the states satisfying meets the bound« ¢, be monotone, that is < y = r(z) < r(y). As |R| is smaller
where# is a probability threshold< a comparison operator, than |X|, this technique may lead to an important reduction
for examplexe {<, >, <, >}, ¢ is a state formula (a booleanof the coupling time. In a property verification context,cgn
expression of state properties). we focus on reward functions that correspond to properties
we want to checkR = {0,1}. In our statistical verification
B. Perfect sampling and statistical verification method we propose to apply functional perfect sampling, so
i . at time0, we test if the rewards are coupled at reward 0O or 1.
Propp and Wilson [9] have introduced the perfect/exagl gier words, we test if it is a positive or negative sample.

sampling method, Whi_ch is based on the backwa.rd couplinﬂqus we associate the reward(z) to each state: € X’ for
also called the coupling from the past: by coming from g given propertyy: r,(z) = 1 if = satisfiesy, otherwise

distant time—r sufficiently far in the past, if all trajectorlesw(m) — 0. Note that, as the reward function is monotone,

(trajectories that come from all possible initial statesAh 2, 650 and 1 cover contiguous zones of the state-space, The

at time —7) are coupled in one state at time 0, then thg, jneresting phenomenon happens when the property to be
sampled state is exactly distributed according to thestati checked has a small set of positive statesz X|r,(z) = 1}
o(r) =

ary distr.ibution. The ba'clfward coupling provides steatdyes (¢ corresponds to a rare property / event): coupling frequentl
sample in a controlled finite number of steps, that could Bot B /s in reward valué and the coupling time is very short.

obtained by a forwarq coupling s_cheme _unless the model haM%reover, if|{z € X|r,(x) = 1}| does not depend ok (case
a strong stationary time, which is rare in our examples [17}¢ oayration properties for example), then the perforraasfc
Let {X.}nen be an irreducible and aperiodic discrete imgg foct sampling algorithm will be as good for very largeesta
Markov chain with a finite spacé’ and a transition matrix 565 a5 for small ones. This intuition is validated byltesu
P = p; ;. Let = denote the steady-state distribution of thg¢ gaction 4.
chain:r = 7P. The evolution of the system can be given by 1he gecision method testsgfis satisfied (positive sample)
a stochastic recurrence: or not (negative sample) on each generated sample path by

Xns1 =10(Xn, ent1) (1) cou.nt.ing the number of positive samples. Then i.t provides

decision eitheiYesif the number of positive samples is greater
with {en} an independent and identically distributed sequeneg equa| to m ¢ is Satisfied) orNo otherwise ([) is not
of events ¢, € €). The transition functiom : X x e = X  satisfied). The input parameters of the algorithm are: théeho
verifies the property thalr(n(i,e) = j) = p;,; for every pair defined by a labelled CTMQV/, the propertyp (to be verified
of states(¢, j) and each random eveat An execution of the on each sample), the threshold paramétethe indifference
Markov chain is defined by an initial statg and an sequence region parametes, and o, 3 for the strength of statistical
of events. The sequence of states given by Eq. 1 is callethygothesis testing. In our work, we consider ergodic Markov
trajectory. Trajectories are generated with the same $@guechains M, hence there is a unique steady-state distribution
of events and if at timg = 0, two trajectories are in the jndependent of the initial state. The satisfaction propést
same state, we say that they couple. The backward coupliggsigned to the model but not to an inital state. (we check
is especially efficient when the underlying system is moneto \yhether the underlying model/ satisfies the steady-state
When the system is not monotone it is shown in [3] that thermula or not).M = Sws (i), if the property specified by
backward COUpIing can also be efficient. Given a partial Drdfhe Steady-state OperatSris satisfied by the model1. Note
X ond, an event is said to bemonotoneif it preserves the that the verification 0>4(y) is the same as-;_»(—~¢) and
partial ordering=< on X: also is the same asS_4(y).
V(z,y) €X z=y = nlz,e) Xn(y,e) )
I1l. STATISTICAL METHODS

If all events are monotone, the global system is S‘fi'd to beThe statistical decision method we have used in [11][12]
monotone. According to an ordex on X there eX|s-ts. 8 when performing our statistical hypothesis testing is iiresh
set M< C X of extremal states (maximal and m'mm&?lfrom the Single Sampling Plan (SSP) method. In this section

. d from¥ I bounded by traiectories i dqf e present the different statistical methods we implement i
issued fromX are always bounded by trajectories issued froq\ ' +«tical verification engine.

M<. Thus, it is sufficient to compute trajectories issued from

M < since when they couple, global coupling also occurs. As

the size of M is usually drastically smaller than the sizé®: Current methods

of X, monotone perfect sampling significantly improves the a) Statistical hypothesis testing

sampling time [9]. Efficiency of simulations is also imprave Suppose that we have generatedamples (simulations), and
by functional perfect sampling [19]. The algorithm samplea sampleX; is a positive sampléX; = 1) if it satisfiesy and
a reward value, according to a user defined reward functiopgative(X; = 0) otherwise.X; is a random variable with
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Bernoulli distribution with parametes. Thus the probability the sequential probability ratio test, it is computatibpatore
to obtain a positive sample js. In practice, two thresholds, practical to work with the logarithm af;. Then we accepkl
po andp; are defined in terms of the probability threshéld if f,, < log%, we acceptH; if f,, > log%.
and the half-widthé of the indifference regionpy = 6 + ¢ Note that, the sample size for a sequential test is a random
andp; =6 - 4. Then instead of testing/ : p > 6 againstX  variable, meaning that the required number of observations
i p <6, wetestHy : p > py againstH; : p < p;. In fact, can vary from one use of such a test to another. Furthermore,
the strength of the statistical test was determined by twar erthe expected sample size typically depends on the unknown
bounds,« and 8, wherea is a bound on the probability of parametep, so we cannot report a single value as was the case
acceptingH; whenH, holds (known as a type | error, or falsefor acceptance sampling with fixed-size samples. The eggect
negative) angs is a bound on the probability of acceptiffjy sample size varies with the distancepdrom the indifference
when H; holds (a type Il error, or false positive). There areegion (p1,po). It tends to be largest whem is close to the
several methods for statistical hypothesis testing deeigiith center of the indifference region, and decreases the furthe
constraints on error bounds, §) [22][21][16]: awayp is from the indifference region.

a.l) Single Sampling Plan (SSP): It is based on the b) Statistical estimation
acceptance sampling with fixed sample size f >, X; > An alternative statistical solution method, based on etion
m, then H, is accepted otherwisé{, is accepted, where instead of hypothesis testing [6]. This approach usebser-
m is the acceptance threshold. The hypotheis will be  vationsz,, ...,x, to compute an estimate gf p/=2i=1:,
accepted with probability”(m, n,p) and the null hypothesis The estimate is such tha®r[|p’ — p| < §] > 1 — a (E4).
Ho will be accepted with the probability — F(m,n,p), Using a result derived by Hoeffding [[21], Theorem 1], it can
where F(m,n,_p) is a b_inomial distribution:F(m,n,p) = be shown thah = [#log%} (E5)
ity C(n,i)p*(1 —p)*~* with C(n, ) is the combination of is sufficient to satisfy £4). If we accepty) as true whenp' >
i from n. It is required that the probability of acceptig; ¢ and rejecty as false otherwise, then it follows frof4)
when Hj holds is at mosty, and the probability of acceptingthat the answer is correct with probability at least v -f
Hy when H; holds is at most3. These constraints can beeither s= ¢ or s}~ ¢ holds. Consequently, the verification

illustrated as below: procedure satisfiegC'1) and (C2) with 8 = a. As with the
o Pr[H; is accepted| H, is true] < «, which implies solution method based on hypothesis testing, a definite@nsw
F(m,n,po) < (C1) is always generated (there is no undecided results).
« Pr[H, is accepted H; is true] < 3, which implies1 — ¢) Confidence interval
F(m,n,p1) <p (C2) Another alternative statistical solution method based amc

The sample size and the acceptance thresholdmust be fidence intervals has been proposed in [8]. To check whether
chosen under these constraints and their formulas for aptimi = P>o(y), an estimatep of the probability p starting
performance are given in [22]. in s is determined using standard discrete event simulation

a.2) Sequential Single Sampling Plan (SSSP)f we use techniques. Let¢ be the user-specified confidence of the
a sing|e Samp"ng plar(n7m) and the sum of the first result andd the maximum width of the confidence interval.
observationsd,=>""_, X;, i < n, is already greater tham The probability of obtaining a correct answer to the model

1 j= ] ]l H . .
then we can accepll, without making further observations.checking problems |= P,(p) is now guaranteed to be at
Conversely, ifd; +n—i < m, regardless of the outcome of thd€ast{ provided § < |6 — p|. In this solution method, a
remainingn — i observations we already know that the sum ctlight adaptation of standard sequential confidence iateis
H, after making onlyi observations. In the modified test?® adapted on demand. Although > |6 — |, this solution
procedure, after each observation, we decide whetherigufic Method provides more accurate answers as its algorithm first
or additional observations are required. then continues simulation until it reaches the definite amsw

a.3) Sequential Probability Ratio Test (SPRT): This {0 the model checking problem. This strategy increases the
method is based on the sequential probability ratio tedgcuracy because the width of the resulting confidenceviater

[21][22]: after making thei'” simulation (generating th¢ can be much smaller than. The penalty for this increased
sample), one computes the following quotient: accuracy is an increase in the simulation times thus larger

model-checking times.

4 = T PriXj =i lp=p]  pl(1l—p)%
. —

- X = — d; i—d; . .
j=1 PriX;=zj[p=pol  py(1—po)— B. Performance comparison of statistical methods

where d; denoting the number of positive sampledy is The estimation-based approach had been compared with the
accepted ify; < B, and H; is accepted if;; > A. Finding A approach based on hypothesis testing in [21], by consigerin
and B with a given strengthy, 8 is non trivial, in practiceA m = |nf+ 1] andd=np’=>"""_, z;. It had been demonstrated

is chosen as (B)/«a and B as5/(1-«). Then a new test whosethat p’ > 6 < d > m. This means that the estimation-
strength is &*, 5*) is obtained, but such that* 4+ 8* < a+/, based approach can be interpreted as a single sampling plan
meaning that eithen* < « or §* < (. In practice, it is (n,m). Therefore the approach proposed in [22], when using
often found that both inequalities hold. When implementing single sampling plan, will always be at least as efficient
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as the estimation-based approach. In fact, it will be mogenerating an observation for the verification of a prolistisl
efficient because: (i) the sample size is derived using tie trstatement, and this typically requires O(Iptj|) space where
underlying distribution, (iiyn is not restricted to bénf +1], |X| is the size of state space. For systems that do not satisfy
and (iii) 8 = o can be accommodated. The last property, ithe Markov property, it may also be needed to store additiona
particular, is important when dealing with conjunctive anthformation to capture the execution history during sinioka
nested probabilistic statements. The advantage of hypisthe

testing is demonstrated numerically in [21]. Note, als@tth IV. EXPERIMENTAL STUDY

the SPRT method often can be used to improve efficiency for
the approach based on hypothesis testing. In fact, if aesin%l

sampling plan is used with strengfh, 5) and indifference and scalability comparison. In fact, we verify the steady-

region of half-width§, then the sample size is roughly . . ;
roportional to loga and log 8 and inversely proportional state fo_rmula for these_: two case S“%d'es using the numerical
P verification approach implemented in PRISM tool and our

to 62 [22]. Using the SPRT method instead of a single_ .. . | verificati b impl 4R tool Usi
sampling plan can reduce the expected sample size by ordsmtlsma1 verification approach implemente tool using
ifferent statistical solution methods (Section 3), byywag

OLZ:Z?]gtggZlaamgstgct?:?bitg?flijcgzgr e SPRT method is e problem size (state space size related to the maximakque
g Y i . _capacity). We illustrate the statistical verification tinfe
On the other hand, the method proposed by Sen et al. in []76] scoupling time) in seconds, Whet¥, .., is the sample

is not more efficient than the methods proposed by Younes_gi*™? . : .
. . size, for these case studies as a function of the maximalequeu
al. in [22]. In fact, Sen et al. manually selected the samigless

S . . capacity (state space size) and we determine the memoty limi
for their single sampling plans. The selected sample siges pacity ( P ) y

. i r each case when using the verification tools. Since the
not sufficient to achieve the same strength as used to prod% g

fisidered Markovian models are ergodic (by construction)
the results for the SPRT method reported by Younes et § i . hifial
in [22]. Finally, the confidence intervals statistical teictue fius the steady-state probabilities are independent oh

; . . . state. Thus, the considered steady-state formula is edtisfi
requires to use confidence interval of the widthy, whereas y

" . . . not whatever the initial states.
under the same conditions in hypothesis testing we would hav . i .
a) Negative clients queueing network

e s e e considr the olowng queeig model wih b posiv
samples than needed for the ones based on the hypothand negative clients (Figure 1). The non-monotonicity @ th

: odel (negative clients) is shown and its perfect sampling
testing. ; T : .

by envelope functions is given in [3]. We have implemented

this non monotone model as® model as explained in [3]
C. Statistical model checking complexity and we have validated the correctness of our implementation
. . - . In fact, queueing models with negative clients, have found
The time complexity of any statistical solution method for .~" . . 2 X
aPpllcanns in computer communications and manufaagurin

probabilistic model checking can be understood in terms 2 ttings. When a negative client arrives at the queue, it has

two main factors: the number of observations (sample sizt > effect of a signal, which kills ordinary (positive) aiis

required to reach a decision, as well as the time required .10 : .
. . in"the node. An example of a queueing system with both
generate each observation that depends of perfect siomlati

o T .. positive and negative clients (jobs) is computer networkk w
effort (coupling time). If an observation involves the Vma- . . : . . . .
i . .virus infection, which deletes jobs or failures, which cesis
tion of a path formula over a sample trajectory then the tlmcﬁher failures and removes jobs. Lit,,.. to be the maximal
complexity depends also of the length of trajectory prefixes J0DS. ar
(in terms of state transitions) required to determine if thpa P
formula holds. The sample size depends on the method used L FO
for verifying probabilistic statements, as well as the dasi 1O
strength (o, §) and of ¢ and 4. In fact, the sample size for "~ as
a single sampling plan SSP is approximately proportional to [~
the logarithm ofo and 3, and inversely proportional t6? . If s as
we use a sequential test SPRT, then the expected sample size
also depends on the unknown probability meaguoé the set feedback
of trajectories that satisfy. Moreover, the perfect simulation
effort (coupling time) can be both model and implementatidﬂg' L
dependent, then it can be state space dependent, but mogafgcity of each queue then the state spacq (&,,q,+1)°).
often have structure (monotone structure) [4] that can Bebs arrive from exterior at the first queue with rates
exploited by the simulator to avoid such dependence. Tkgositive clients) and; (negative clients), and exit the system
length of trajectories depends on model characteristick &fftom the second queue with ratg and from the sixth queue
the property that is being verified but may be independewith rate ;. Jobs arrive also to the first queue from feedback
of the size of the state space. The space complexity lofk with rate A7, , and A7, ,. Jobs arrive to the'" queue
statistical probabilistic model checking is generally resid It where 2 < i < 6 with rates /\;r (positive clients) and
is needed to store the current state of a sample trajectogpwh\;” (negative clients). Also negative clients can arrive from

We now evaluate two non monotone models, taken fion
nd PRISM benchmarks, on which we will base our efficiency

Q6

Negative clients queueing network
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exterior to thei*” queue where < i < 6 with ratesx; . Letz; respectively, andv = 3 = 102 the verification time for the

denote the number of jobs currently in queudVe define the same steady-state formutay (negsysfu)l by using statistical

atomic proposition that one queue of the system is full with t verification methods implemented 2 (Section 3). In fact,

formulanegsysfullE (z1 = Npaz) V (2 = Npaz) V(3 = for Ny.. = 21 we obtain an out of memory message with

Niaz) V(24 = Npaz) V(5 = Nmaz) V (6 = Nmaz).  PRISM. In all of the tables we denote by:

Based on this atomic proposition, we check the following PRISM : numerical verification time in seconds for the

Steady-state formulaS<y (negsysfu)l to check whether the steady-state formula by using PRISM hybrid engine.

probability that the system is full in steady-state is lessnt  outm : an out of memory message in PRISM tool.

6 or not. The statistical verification time in seconds is given by
b) Tandem Queueing Network with coxian phase (TQN) combining with statistical techniques given in Section 3:

The TQN model (Figure 2) is taken from PRISM benchmarl?(SSP) for SSP, ?(SPRT) for SPRT, ¥?(SEst) for

that consists of arl//Cox,/1 queue sequentially composedstatistical estimation?(CI) for confidence interval.

with an M/M/1 queue . In [11], we have implemented this

. 2 2 2 2
non monotone model as®2 model by using non monotone Ymes ‘7"2‘9* T s 4‘1’1(SSP f’S(SPRT) :I’S(SES“ 2’8(01)
. . . . . . . . . .
techniques (envelope function) such as defined in [3] and wg  |4.09 + 10% ||0.05 5.4 2.1 8.6 9.1
have validated the correctness of our implementation. Bme n 5 4.66 % 10 ||0.10 9.4 4.4 15.6 21.5
monotonicity of this model is shown in [5][11]. We consider 47 |62 10;[[1:32 144 J9.6 .7 258
yort ’ ! . "9 1.00 % 10° ||98.67  |24.2 15.3 29.3 34.9
TQN connected in series then our considered system consists |4.82 «10°||276.6  |33.2 20.1 39.5 43.4
. . 7 < 3
of 4 M/Coxs/1 queues. LetV,,,., be the maximal capacity !4 |1-13*10119213 42,6 29.7 547 67.1
. 9 1.13 % 10° ||outm 65.9 42.2 73.1 81.7
of each queue then the state spac@i§ Ny + 1)%) for g9 |1.00+ 10" outm [08.1 53.1 126.1 155.4
each TQN. In each TQN, jobs arrive at the first queue withp9o [1.00« 10" outm 365.3  |173.3 422.4 485.2
rate \, and exit the system from the second queue with rat@2?2 1100 10" jloutm |1315  [633 1713 1929
k. If the first queue is not empty and the second queue is not TABLE |
full, then jobs are routed from the first to the second queu@lecaTive CLIENTS NETWORK: VERIFICATION TIME AS A FUNCTION OF
In each TQN, the routing time is governed by a two-phase STATE SPACE SIZE|X'| FOR S<0.001 (negsysful

Coxian distribution with parameteys;, p2, anda. Here, y;

is the exit rate for the’* phase of the distribution, and 1 b) Tandem network with coxian phase (4 TQN)

verification results: For numerical application, for each

- a is the probability o.f skipping the.secon.d phase. bet TQN in the overall system (4 TON in series) we consider
denote the number of jobs currently in queyeandz,,, € N—dx N 4 =2 iy =2, a=01andx =4. We give
- maxy M1 — 4 — 4y — U. -

{1, 2}, for 1 < k < 4, denote the current phase of the Coxiaf - — -4 .
distribution. We define the atomic proposition that one TQIKIn Table I for ¢ = 0.001 and fore = 10", the verification

: . time for the considered steady-state formdlay (sys-ful)
component of the overall system is full with the formusigs- b . ; . S )
using PRISM Hybrid engine and Jacobi iterative method.
full = [(21 = Noaw) A(@2 = Nopaz) A (@pny = D]V [(23 = i y d

Also we give in the same table fér = 0.001, § = 10~4/2
Ninaz) N (24 = Nmaz) A (2phy = 2]V [(25 = Ninaz) A respectively,a = 8 = 102, the verification time for the
(@6 = Nmaz) A (2phy, = 2)] V [(27 = Ninaz) A (28 = o0 steady state formuliy (sys-ful) by using statistical
Nimaz) N (xpn, = 2)]. Based on this atomic proposition, .. . y . o (Sys- 9 y using
maw pha 'verification methods implemented #° (Section 3). In fact,
e e for N,,.. = 10 we obtain an out of memory message with

pe = PRISM.
R T
N N e A A
(l—a)yiT— Npad | X| PRISM|92(SSPYW2(SPRT)[[W2(SEst)|v?(CI)
””””””””” 2 6.5+ 10% 0.4 7.1 4.22 8.5 9.8
3 6.5 10% |[0.5 9.4 5.12 11.4 17.1
Fig. 2. Tandem queueing network with Coxian phase 4 3.9 % 10° ||1.93 17.9 8.14 20.3 22.8
5 1.6 % 10° ||33.2 21.8 12.3 23.6 26.4
6 5.7+10°([150.6  [34.3 21.3 39.6 44.2
. 7 - - q
we check the followingSteady-state formulaS<y (sys-ful) 7 L7x1071/290.6  153.2 34.1 60.9 71.5
to check whether th bability that th st s full in® 4.3%107 ||476.6  |78.6 57.3 98.7 117.1
0 check whether the probability that the system IS full Iy 11 0, 108 8615 |265.9 [153.3 3201 [371.3
steady-state is less th@nor not. 10 [2.1%10°% ||outm  [386.6  |233.1 422.6 192.6
99  |1.0 % 10*Y|outm  [498.1 263.3 547.1 605.4
999 [1.0 % 10%Y|outm  |565.3 302.1 626.3 715.2
A. Experimental results 9999 [1.0 * 10°%|outm  |1415 565.3 1826 2153
a) Negative clients network verification results: We TABLE Il
considerA;{=0.8, A\;=0.2, /\}'eed:OJ, Ateea=0-3, all service  TQN: VERIFICATION TIME AS FUNCTION OF STATE SPACE SIZEX| FOR
rates will be state-independent with rata = us = 1; S<0.001 (sys-ful)

AF=0.6, \;=0.4 andx; =0.1 for2 < i < 6. We give in

Table | for § = 0.001 and e = 10~4, the verification time _ )

for the considered steady-state formuiay (negsysfu)l by B. Discussions

using PRISM Hybrid engine and Jacobi iterative method. In Tables | and I, we have illustrated the statistical ver-
Also we give in the same table féF = 0.001, § = 10~%/2 ification time & Nqmp*coupling time) in seconds for two
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non monotone models as a function of the maximal ques&ady-state dependability properties for large non nuweot
capacity (state space size), whée¥g,,,, is the sample size. models. We show that SPRT statistical method is generally
In fact, the sample sizey,,n, is the only factor that varies more efficient than the other statistical methods when per-
between the different statistical solution methods, rdigas forming steady state dependability verification for verygta
of implementation details. The sample size depends on timedels. Moreover, we show that our statistical verification
method used for verifying probabilistic statements, ad @&l approach is efficient and scalable when we consider large non
the desired strengtfw, 3) andd andd. Note that, the coupling monotone models and lets us to verify rare event properties
time of the perfect simulation varies with the state spaze, si efficiently on these models. Also we have found that our
with the implementation and with the verified property. statistical verification approach scales better with thregest

In Tables | and Il, we show that the Single Samplingpace size and it is faster than PRISM tool especially faelar
Plan (SSP) method is at least as efficient as the statistioabdels. In the future, we plan to complete our verification
estimation method and it will be more efficient since theesults for the CSL unbounded until formulas [14].
sample size of the SSP method is derived using the true
underlying distribution [21] (Section 3). We show also iesk REFERENCES
tables that the Single Sampling Plan (SSP) method is mo[g A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Modehecking
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. X ) . 170, 2000.
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