
A Dependable Microcontroller-based Embedded System

Amir Rajabzadeh

Department of Compute Engineering
Razi University

Kermanshah, Iran

rajabzadeh@razi.ac.ir

Mahdi Vosoughifar

Department of Computer Engineering
Islamic Azad University Arak Branch

Arak, Iran

mehdi_vosoughifar@yahoo.com

Abstract—This paper presents a method to make a dependable

microcontroller-based system for detecting any violation from

the program flow caused by transient faults. The method is

based on a duplication and comparison technique and employs

a “synchronous interrupt” in both microcontrollers to monitor

and compare the program counters (PCs) of the

microcontrollers. This is done by adding an interrupt service

routine in both microcontrollers and without any modification

of the application programs. The method has been

experimentally evaluated using AVR ATMega-32

microcontrollers. The results show that error detection

coverage of the method is 100% based on the fault models. The

error detection latency varies about 1184 cycles (74 sec) to

128147 cycles (8 msec) and the execution time overhead of the

method varies between 0.5% and 50% for different PC

exchange interrupt frequencies. The hardware and software
overheads are about 100% and less than 0.5% respectively.

Keywords- dependable system; control flow checking method;

concurrent error detection; microcontroller-based system;

embedded system.

I. INTRODUCTION

We are used to hearing about extended computer
applications and explosive growth in the computation ability
of processors. Based on usage patterns, processor cores can
be divided into four categories [1]:

1) Computational micros: they are 32-bit or 64-bit
general-purpose processors, and typically deployed as the
central processing unit of mainframes, workstations, and
personal computers. Most commercial off-the-shelf RISC
and CISC processors fall into this category. This group has
accounted for less than 2% of the volume of processors
shipped.

2) Embedded general-purpose micros: they are
general-purpose processors, usually 32-bit processors,
designed for embedded systems. These are often scaled-
down versions of existing computational micros. Embedded
general-purpose micros constituted about 8% of total
volumes of processors shipped.

3) Digital signal processors: they are specific-purpose
processors with the ability to execute arithmetic operations
efficiently. This group accounted for about 10% of the
volume of processors shipped.

4) Microcontrollers: they have 8-bit, 16 bit or 32-bit
processor core with memory, I/O, and peripherals on a chip.
Microcontrollers have been estimated to be about 80% of the
processors shipped.

Embedded systems are widely used in industrial control
systems [2]. Industrial control systems usually have fairly
low computational requirements and low memory capacity.
This is within the domain of 8-bit and 16-bit
microcontrollers. Small 8-bit CPUs still dominate the
market, representing about 70% of overall processor
shipments [1].

These embedded systems are usually involved with some
aspects of dependability issues and system failures can
severely damage human life or equipments. In these systems,
dependability is an important concern and error detection
mechanism has a key role in designing the system. On the
other hand, as the number of transistors per chip continues to
grow, the error rate per chip is expected to increase [3], the
fault occurrence rates are increasing by approximately 8%
per chip [4]. These trends show that to ensure correct
operation of embedded systems, they must employ
dependability methods against transient faults.

This paper actually presents a concurrent error detection
method for embedded systems based on microcontrollers.
The proposed method employs the synchronous external
burst interrupt in duplication microcontrollers and compares
the run time program counters of the microcontrollers in a
service routine. The method has been experimentally
evaluated on an AVR microcontroller-based system. The
results show that error detection coverage of the method is
100% based on the fault models. The error detection latency

varies about 1184 cycles (74 sec) to 128147 cycles (8
msec) and execution time overhead of the method varies
between 0.5% and 50% for different PC exchange interrupt
frequencies. The hardware and software overheads are about
100% and less than 0.5% respectively.

The next section depicts the related work. Section 3
discusses the error models in this experiment. Section 4
describes the proposed method. Section 5 gives method
evaluation and argues over a system under test. The results
are presented in section 6, and finally, section 7 summarizes
and concludes the paper discussion.

24

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

II. RELATED WORK

This section describes how embedded systems based on
microprocessor or microcontroller have been equipped to
detect transient faults.

To design a dependable embedded system at least two
options are available:

 Using Application-Specific-IC (ASIC) processors:
such as ERC32 processor [5], LEON-FT processor
[6] and THOR processor [7] with internal error
detection mechanisms.

 Using Commercial Off-The-Shelf (COTS)
processors: such as Intel Pentium family, PowerPC
and ARM processors, or AVR and PIC
microcontrollers.

Designing an embedded system with fault tolerant ASIC
processor is a useful way of making a dependable system.
Fault tolerant ASIC processors have many facilities for
tolerating faults and have a high percentage of error
detection coverage.

Concurrent error detection or fault masking mechanisms
in ASIC processors are often applied at VLSI, transistor, gate
or RTL levels. Chip-level and behavioral-based mechanisms
may be used as well. ERC32 is a 32-bit processor [5] and it
is compatible with SPARC V7 ISA. The processor has been
designed for embedded space flight applications. The
hardening techniques in the VLSI level (layout hardening)
have been applied to reach the radiation tolerance. All
registers in integer and floating unit have been provided with
parity bits (gate level). Program flow control has been
implemented using embedded signature monitoring
(behavioral-based mechanism) and master/checker
mechanism at chip-level is supported by the processor.
LEON-FT is a 32-bit processor [6] and it is compatible with
SPARC V8 ISA. Internal cache memory and register file in
the processor has been provided with error-detection in form
of parity bits. Flip-flops are implemented using triple
modular redundancy (TMR) and master/checker mechanism
at chip-level is supported by the processor as well.

Although fault tolerant ASIC processors present a good
way of designing a dependable system, nevertheless, the use
of commercial off-the-shelf (COTS) processors are
phenomenally popular, because it decreases the cost
significantly.

COTS processors have a low or moderate percentage of
error detection coverage, but short time-to-market [8],
availability in the market [8], trust in products [9], low
development, test equipment and maintainability cost [10] of
the systems are important matters to design a low-cost
dependable system. Meanwhile, engineers can make use of a
wide range of facilities in available market [8], [9].

Since COTS microcontrollers have not been designed for
fault tolerant applications [9], [11], they require additional
methods to enhance error detection capability in these
systems [9]. The use of COTS processor incurs additional
error detection mechanisms that must be employed.

Concurrent error detection methods are extremely
popular among dependability methods, against transient

faults. Concurrent error detection mechanisms in COTS-
based systems have been classified as follow:

 Structural-based mechanisms

 Behavioral-based mechanisms
Structural-based mechanisms are based upon hardware
replication. For COTS-based systems, hardware replications
can be applied at chip-level, such as master/checker [12]
mechanism, and system-level.

Behavioral-based mechanisms extract an abstraction
from the application program, memory access etc., usually
performed during “compile time”, and checking the
abstraction during runtime. It has been indicated that more
than 70% of all transient faults lead to deviation from the
program’s normal instruction execution flow, i.e., Control
Flow Errors (CFE) [13]. Control Flow Checking (CFC)
techniques (i.e., techniques to detect CFEs) have been known
as an effective concurrent error detection method [14]. Most
of the CFC techniques are using signature monitoring
technique. In this technique, at setup time, the program is
decomposed into basic blocks of instructions and a signature
is derived from each basic block and saved somewhere,
during runtime the signatures based on the basic blocks will
be regenerated and compared with the saved one. CFC
techniques can be implemented by pure software such as
CFCSS [15] and feature specific CFC [16], pure hardware
such as watchdog direct processing (W-D-P) [17] and
CFCET[9], or hybrid (combined hardware-software) such as
TTA[18] and CIC[19].

The workload program in CFCSS [15] is divided into
basic blocks. The blocks in the program are assigned
different arbitrary signatures, which are embedded into the
program during compile time. A run-time signature is
generated using XOR function and compared with the
embedded signatures when instructions are executed.

Feature specific CFC [16] is a pure software control flow
checking technique. In this technique, the program is
decomposed into basic blocks of instructions and partition
blocks between them. A signature is derived from each block
(i.e., basic block and partition block) at the compile time,
which is the number of instructions in the block. At runtime,
the technique uses performance monitoring in modern COTS
processors and employs their internal counters to regenerate
the signatures (i.e., instructions executed in each block) and
compares them with saved ones.

Usually, the big problem of software-based CFC is the
weakness of detecting an error in program crash or CPU
crash states. The above drawback of the software-based CFC
techniques can be eliminated in hardware based approaches.

The watchdog direct processing (W-D-P) [17] and the
CFCET [9] techniques are pure hardware and they do not
need any program modification.

The W-D-P verifies the application program using a
separate checking program executed by a watchdog
processor (watchdog program). In this technique, each
application program is represented by a reference control
flow graph (i.e., sequencing nodes and destination nodes)
and the watchdog program shadows the application program
and contains one instruction for each node in the application
program.

25

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

The CFCET uses the internal execution tracing feature in
modern COTS processors, which provides the ability to
monitor the addresses of the taken branches in a program at
run-time, and an external watchdog processor to detect any
violation from branch address saved at compile-time.

As these techniques control some processor pins signals
to extract signatures, they cannot be applied to
microcontrollers-based system.

TTA [18] and CIC [19] are hybrid CFC techniques. The
TTA technique decomposes the workload program into
branch-free blocks (BFBs) and partition blocks (PBs). The
scheme uses an external watchdog processor and combines
five error detection mechanisms. The TTA uses three timers
into the watchdog processors; BFB-timer, PB-timer and WL-
timer to check each BFB, PB and whole workload execution
time respectively. The address mechanism in TTA sends the
size of a BFB in bytes when the BFB is entered. At the same
time, the watchdog processor reads the start address of the
BFB from the address bus and calculates the exit address of
the BFB. At the end of the BFB, the watchdog processor is
signaled. An error has occurred if the calculated exit address
is different from the observed exit address. The phase
mechanism in TTA checks the entering and exiting of each
BFB and PB.

The CIC uses two external special pins, called event-
ticking pins PM0 and PM1, which can signal out when an
instruction is committed into the processor pipeline. The
number of instructions executed in each BFB and PB, and
also whole workload program are counted externally by the
watchdog processor using the processor event-ticking pins.

This paper actually presents a concurrent error detection
method based on HWSW-CFC technique. The proposed
method employs the synchronous external burst interrupt in
duplication microcontrollers and compares the run time
program counters of the microcontrollers in a service routine.
The main advantages of the proposed method are:

 Instead of using high costs ASIC components, the
method uses low cost COTS processors to perform on-
line system-level error detection

 It can be applied to the microcontroller-based system,
and can also be applied to the processors with pipeline
and on-chip caches.

 It can detect control flow errors caused by data errors.

 No modification of the workload programs is required,
but it needs to add an interrupt service routine.

 Program size overhead is very low (only an interrupt
service routine must be added)

III. ERROR MODELS

The basic model of errors used in this work is a violation
of program’s normal instruction execution flow which will
be explained in this section. These violations can be caused
by transient or permanent faults in the memory or address
circuits [21]. Based on these faults, five types of error
models are defined as follows:

Error model 1: Program Counter Error (PCE): a PCE
occurs when a fault changes program counter bits and an
illegal jump occurs.

Error model 2: Branch Condition Error (BCE): a BCE
occurs when a data fault (data register, flag register or data
memory) causes the condition of a branch instruction is
changed and a taken branch changes to non-taken branch or
vice versa.

Error model 3: Branch Insertion Error (BIE): a BIE
occurs when one of the non-branch instructions in the
program is changed to a branch instruction as the result of a
fault and the branch instruction actually causes a taken
branch.

Error model 4: Branch Target Modification Error
(BTME): a BTME occurs when the target address of one
branch instruction is modified as the result of a fault and this
instruction actually causes a taken branch.

Error model 5: Branch Deletion Error (BDE): a BDE
occurs when a fault causes a branch instruction of a program
changes to a non-branch instruction.

IV. PROPOSED METHOD

The proposed method uses a duplication and comparison
technique at chip level for checking the correctness of the
program's instruction execution flow. The program flow
checking is done using motivation of synchronous external
interrupts in both microcontrollers and comparison the run
time program counters of the microcontrollers in the service
routine regularly.

The hardware part of the method is shown in Fig. 1. It
contains two microcontrollers that run an identical program
with an identical external clock.

Power on Reset: It resets both microcontrollers when
turn power supply is on.

Pulse Generator for Synchronization: this unit generates
a pulse to motivate an interrupt for synchronization of the
microcontrollers to start program execution.

Pulse Generator for PC exchange: this unit generates
periodic pulses to motivate interrupts periodically for
exchanging and comparing PCs between the
microcontrollers to check the existence of any discrepancy.

The software part of the method is shown in Fig. 2. It
contains two programs that run in both microcontrollers: 1)
Synchronization Program and 2) PC Exchange Routine.

The Synchronization Program synchronizes two
microcontrollers' program to start. It contains a sleep
instruction and an interrupt routine that sets PC to the
address of the original program. This microcontroller has an
internal power on reset that delays (for several milliseconds)
starting the program. This delay makes the microcontrollers
execution asynchronous, because the two microcontrollers
do not have exactly the same delay.

The PC Exchange Routine is regularly invoked. This
routine sends its own PC register to another microcontroller,
and then gets another microcontroller's PC and compares two
PC contents (i.e., its own PC and got PC) to check the
existence of any discrepancy.

The assembly or C codes of workload programs can be
used to add the extra instructions needed to implement the
method. The pseudo code of the Synchronous Program and
PC Exchange Routine are shown in Fig. 3.

26

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Microcontroller 1

Microcontroller 2

Power on

Reset
Clock

Pulse Gen.

for Sync.

Pulse Gen. for

PC Exchang

Exchange

PCs

Figure 1. Hardware part of proposed method.

Original

Program

Original

Program

Sync.

Program

PC Exchange

Routine

Figure 2. Software part of proposed method.

V. METHOD EVALUATION

The architecture of the experimental system is shown in
Fig. 4.

ORG 0
Initial Ports & Interrupts
start: sleep /* wait until sync. interrupt is occurred*/

--
Int_Sync_Routine(){
 Read PC from Stack
 PC = Begin /*set PC to address of original program*/

 Write PC to Stack
 reti /*after return from interrupt, original program is beginning*/

 }

Begin:

/* main body of the Original Program */

PC_Exchange_Routine(){
 OwnPC = Read PC from stack
 Send OwnPC to another micro
 OtherPC = Get PC from another micro
 If (OwnPC =! OtherPC){
 ErrorReport()

 }
 reti
 }

Figure 3. Pseudo codes of extra software codes

Host Computer

Clock

Puls Gen. for

PC Exchang

Power on

Reset

Puls Gen.

for Sync.

Error

Injection

Time

Reset Command

Sync. Interrupt Command

Start Workload Execution

Error Injection Command

Error Detection Report
Error

Detection

Latency

Microcontroller 2

Microcontroller 1

C
o

n
tr

o
ll

er
 a

n
d

E
rr

o
r

In
je

ct
o

r

b
o

ar
d

USB to

RS232

Enable Command

Figure 4. Software part of proposed method.

The system consists of three parts: an AVR
microcontrollers board, a controller and fault injector board,
and a host computer.

AVR microcontrollers board: the board has been
equipped with two AVR microcontrollers that run an
identical program, a 16 MHz clock generator for
microcontrollers' clock pins, a monostable circuit to generate
a pulse to invoke synchronization interrupt, and a clock
generator with 100Hz, 1KHz and 10KHz frequencies to
invoke PC exchange interrupts.

Two types of programs were executed on the AVRs
board; the workload programs and a fault injector routine.

The workload programs: Three programs written in
assembly language have been used in the experiment: 1) a 10
× 10 matrix multiplication (M = A × A-1), 2) a linked list
(List) containing 100 records, and 3) a quick sort (QSort)
containing 100 elements. 184 copies of the Matrix program,
124 copies of the List program, and 93 copies of the QSort
program were consequently stored in the memory. These
copies fill microcontrollers' flash memory (i.e., 32KB) with
program codes. They were executed one after another in a
loop until a fault occurs. The workload program were started
when the system were reset.

The fault injector routine: The fault injection method
used in these experiments is based on the software
implemented fault injection (SWIFI). This paper focuses on
the transient effects called SEUs (single event upsets).
Several reports have mentioned that the SEU is important not
only for the circuits operating in the space, but also for the
digital equipments operating at the ground level [20]. It is
reported in [21] that the majority (>60%) of control flow
errors differ from the correct ones in only a single bit (i.e.,
SEU) of an address. SEUs are responsible for the
modification of memory cells content (registers, internal
memory, etc.). Usually, memories are protected against
SEUs by means of error detecting/correcting codes
(Hamming code, CRC code, Reed-Solomon code, etc.) [20].
In such cases, internal registers are of much important.
Several reports have mentioned that SEU in the PC register
are a major source of CFEs in comparison to other internal
registers [21]. Therefore, to generate CFEs, the bits of the
program counter (PC) are changed, one bit for each fault.
This is done as follows: 1) the fault injector logic activates
the INT0 pin of the microcontrollers, 2) the interrupt service

27

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

routine reads the return address from the stack, changing a
bit of the return address and then writing it back to the stack,
3) after returning from the interrupt service routine, the
execution continues at an unexpected address due to the
change of the value of the return address. To make sure
about the coverage results, we assume that the probability
distribution of the error occurring in PC bits (14 bits for
16K×16bits flash memory in AVR ATmega-32) will be
uniform. The manager program on host computer issues the
error injection command randomly in time during the
execution of the workload program.

Controller and Error Injector board: the board has
been equipped with a microcontroller and interface logic.

The interface logic establishes communication between
the host computer and the controller board.

 The controller board has five main tasks: 1) waiting to
get a start command from the host and sending a Reset
Command to reset the AVR Microcontroller Board, 2)
waiting for the Start Workload Execution from the AVR
Microcontroller Board and sending the Synchronization
Command, 3) sending the Enable Command to activate pulse
generator for PC exchange interrupts, 4) getting an Error
Injection Time from the host and waiting until the time
elapses and sends a command to activate INT0 pin of the two
microcontrollers on AVR microcontroller board when a fault
is to be injected, and 5) initialization of a timer to record the
coverage and latency information.

Host Computer: The host computer contains a manager
program and an offline data analyzer. The task of the host
computer is to manage and control the whole experiment.

The offline data analyzer program analyses the raw data
collected from the experiments and extracts the results.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of the
program size overhead, execution time overhead, error
detection coverage, and error detection latency. Three
programs written in assembly language, i.e., quick sort
(QSort), matrix multiplication (Matrix) and linked list (List),
have been used in this experiment.

 Error Detection Coverage: Table 1 shows error
detection coverage for each workload. The basic model of
errors used in this evaluation is Program Counter Errors
(PCE). Although, five types of errors have been modeled in
Section III, all of them change the PC finally. The changed
PC causes a violation of the program normal instruction
execution flow. These violations can be caused by transient
faults in the memory or address circuits. The error detection
coverage is 100% based on fault model for all workloads.
Although, it is obvious that the method can detect all PC
errors, this method has been implemented for feasibility
checking and to obtain other parameters.

Program Size Overhead: The assembly (or C) codes of
workload programs can be used to add the extra instructions
needed to implement the method. The structure of a program
after inserting the extra instructions is shown in Fig. 3. Three
programs (i.e., Matrix, List, and QSort) have been used as
workloads and the extra codes needed to implement the
method were added to the workloads. The extra instructions

inserted in the workload programs incur program size. As
shown in Table 1. program size overhead is about 0.47%.
This parameter achieved similar results for different
workloads because several copies of each workload were
consequently stored in the flash memory. These copies fill
microcontrollers' flash memory (i.e., 32KB) and extra codes
for each workload is constant (i.e., 152 bytes), therefore, the
program size overhead is approximately constant (i.e.,
0.47%).

Execution Time Overhead: The method uses
synchronous external interrupts in both microcontrollers and
compares their run time programs in a service routine.
Interrupt handling incurs execution time. A workload is run
in two cases, with presence and no presence of PC exchange
interrupts, and a timer is set for measuring the relevant
execution times. The execution time overhead based on
different PC exchange interrupt is shown in Table 2. As
Table 2 shows, the percentages of execution time overhead
in the method vary between 0.5% and 50%.

Error Detection Latency: error detection latency is the
average time between fault injections to error detections. A
timer is set to work after each fault injection. After each fault
detection, the timer is read and saved. The error detection
latencies are shown in Table 2 .The mean latencies varied
between 1184 and 128147 cycles for different interrupt
frequencies. The latency values were calculated with respect
to the processor external clock frequency which was 16
MHz.

Power Consumption Overhead: Two microcontrollers
were connected together to be able to work in a duplicate
configuration. The microcontrollers have all inputs
connected together, but only one of them drives the outputs.
It is reasonable to assume that a duplicate configuration can
make duplicate of power. In this method, the total
consumption of power is risen about 100%.

TABLE I. DETECTION COVERAGE AND PROGRAM OVERHEAD

Workloads

QSort Matrix List

Errror Detection Coverage(%) 100% 100% 100%

Original Program Size (bytes)
32600

bytes

32482

bytes

32360

bytes

Extra Codes (bytes)
152

bytes

152

bytes

152

bytes

Program Size Overhead(%) 0.47% 0.47% 0.47%

TABLE II. TIME OVERHEAD AND DETECTION LATENCY

Frequencies of interrupt

100Hz 1KHz 10KHz

Execution Time Overhead (%) 0.5% 5% 50%

Error Detection Latency (CLK)
128147

CLK

12162

CLK

1184

CLK

Error Detection Latency (msec)
8009

sec

760

sec

74

sec

28

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

VII. CONCLUSION AND FUTURE WORK

A hardware-software-based control flow checking
method for COTS-microcontroller-based applications has
been presented and evaluated. The method is based on
duplication of microcontrollers and employs synchronous
burst interrupts in both microcontrollers to monitor and
compare their program counters (PCs). An implementation
of the method has been experimentally evaluated. The
method has been experimentally evaluated using AVR
ATMega-32 microcontrollers and software-based error
injection method. The results show that error detection
coverage of the methods are 100% based on the fault models.
The hardware and software overheads are about 100% and
0.5% respectively. The distinctive advantages of the
proposed method over previous hardware-software-based
error detection methods are the ability to apply in
microcontrollers and the ability to detect control flow errors
caused by data errors. For future works, we are going to add
a system recovery mechanism after error detecting.

REFERENCES

[1] J. A. Fisher, P. Faraboschi, and C. Young, ”Embedded
Computing: A VLIW Approach to Architecture, Compilers
and Tools”,Morgan Kaufmann Publishers, ISBN: 1-55860-
766-8, 2005.

[2] Y. He and A. Avizienis, “Assessment of the applicability of
COTS microprocessors in high-confidence computing
systems: a case study,” Proceedings of the international
conference on dependable systems and networks (DSN2000),
pp. 81–86, June 2000.

[3] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A.
Connors, ”PLR: A Software Approach to Transient Fault
Tolerance for Multicore Architectures”, IEEE Transaction on
Dependable and Secure Computing, vol. 6, no. 2, pp. 135-
148, APRIL-JUNE 2009.

[4] S. Borkar, ”Designing Reliable Systems from Unreliable
Components: the Challenge of Transistor Variability and
Degradation,” IEEE Micro, vol. 25, issue: 6, pp. 10-16,
November-December 2005.

[5] V. Stachetti , J. Gaisler, G. Goller, and C.L. Gargasson, ”32-
bit processing unit for embedded space flight applications”,
IEEE Tranaction on Nuclear Science, 43(3), pp. 873–878,
1996.

[6] J. Gaisler, ”A Portable and fault-tolerant microprocessor
based on the SPARC 8 architecture”, Proceedings of
international conference on dependable systems and
networks, pp. 409–415, June 2002.

[7] S. Asserhall, T. Petersson, and P. Blomqvist, ”RAD HARD
THOR microprocessor description”, Saab Ericsson Space,
Document No P-TOR-NOT-0004-SE, issue 2, Jan 1999.

[8] P. Croll and P. Nixon, ”Developing safety-critical software
within a CASE environment,” Proceedings of the IEE
colloquium on computer aided software engineering tools for
real-time control, pp. 8, April 1991.

[9] A. Rajabzadeh and S. Gh. Miremadi, ”CFCET: A hardware-
based control flow checking technique in COTS processors
using execution tracing,” Elsevier Journal of Microelectronic
Reliability, vol. 46, issue 5-6, pp. 959-972, May-June 2006.

[10] P. Chevochot and I. Puaut, ”Experimental evaluation of the
failsilent behavior of a distributed real-time run-time support
built from COTS components,” Proceedings of the
international conference on dependable systems and networks
(DSN-2001), pp. 304–313, July 2001.

[11] H. Madeira, R. R. Some, F. Moreira, D. Costa, and D.
Rennels, ”Experimental evaluation of a COTS system for
space applications,” Proceedings of the international
conference on dependable systems and networks (DSN-2002),
pp. 325–330, June 2002.

[12] A. Rajabzadeh, S. G. Miremadi, and M. Mohandespour,
“Experimental Evaluation of Master/Checker Architecture
Using Power Supply- and Software-Based Fault Injection”,
Proceedings of the 10th IEEE International On-Line Testing
Symposium (IOLTS 2004) Madeira Island, Portugal, pp. 239-
244, July 2004.

[13] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray,
”Low-Cost On-Line Fault Detection Using Control Flow
Assertions,” Proceeding of the 9th IEEE International Online
Testing Symposium (IOLTS'03), pp. 137-143, July 2003.

[14] A. Mahmood, and E. J. McCluskey, ”Concurrent error
detection using watchdog processors-a survey,” IEEE
Transaction on Computers, vol. 37, issue 2, pp. 160-174,
February 1998.

[15] N. Oh, P. P. Shirvani, and E. J. McCluskey, ”Control-Flow
Checking by Software Signatures”, IEEE Transactions on
Reliability, vol. 51, no. 1, pp. 111-122, March 2002.

[16] A. Rajabzadeh, ”Feature Specific Control Flow Checking in
COTS-based Embedded Systems”, Third IARIA International
Conference on Dependability (DEPEND 2010), Venice, Italy,
pp. 58-63, July 2010.

[17] T. Michel, R. Leveugle, and G. Saucier, ”A new approach to
control flow checking without program modification,”
Processding of the 21st international symposium on fault-
tolerant computing, pp. 334-341, June 1991.

[18] S. Gh. Miremadi, J. Ohlsson, M. Rimen, and J. Karlsson,
“Use of Time, Location and Instruction Signatures for Control
Flow Checking”, Dependable Computing and Fault Tolerant
System, IEEE Computer Society Press, vol. 10., ISBN 0-
8186-7803-8, 1998, pp. 201–221.

[19] A. Rajabzadeh, S. Gh. Miremadi, and M. Mohandespour,
”Error detection enhancement in COTS superscalar
processors with performance monitoring features,” Journal of
Electron Testing: Theory and Applications (JETTA), pp. 553-
567, 2004.

[20] B. Nicolescu, R. Velazco , M. Sonza-Reorda, M. Rebaudengo
, and M. Violante, ”A software fault tolerance method for
safety-critical systems: effectiveness and drawbacks”,
Proceedings of the 15th symposium on integrated circuits and
systems design (SBCCI-02), pp. 101-106, 2002.

[21] M. Rimen, J. Ohlsson, and J. Karlsson, ”Experimental
evaluation of control flow errors”, Proceedings of the Pacific
Rim international symposium on fault tolerant systems
(PRFTS-95), pp. 238-243, December 1995.

29

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

