
Dependable Ordering Policies for Distributed Consistent Systems

Matei Dobrescu, Manuela Stoian, Cosmin Leoveanu
General IT Directorate

Insurance Supervisory Commission
Bucharest, Romania

mdobrescu@csa-isc.ro

Abstract—A distributed system can be characterized by the
fact that the global state is distributed and that a common time
base does not exist. A linearly ordered structure of time is not
always adequate for distributed systems and many authors
have adopted a generalized non-standard model of time which
consists of vectors of clocks. The paper present an improved
algorithm where these clock-vectors are partially ordered and
form a lattice. By using timestamps and a simple clock update
mechanism the structure of causality is represented in an
isomorphic way and the causal consistency is obtained. Finally,
is presented the implementation of this new algorithm which
allow to compute a consistent global snapshot of a distributed
system for replicated services, where messages may be received
out of order.

Keywords- temporal ordering; distributed systems; causal
consistency; events structure; clock-vectors

I. INTRODUCTION

An asynchronous distributed system consists of several
processes without common memory which communicate
solely via messages with unpredictable (but non-zero)
transmission delays. In such a system the notions of global
time and global state play an important role but are hard to
realize. Since in general no process in the system has an
immediate and complete view of all process states, a process
can only approximate the global view of an idealized
external observer having immediate access to all processes.

The fact that a priori no process has a consistent view of
the global state and a common time base does not exist is
the cause for most typical problems of distributed systems.
Control tasks of operating systems and database systems
like mutual exclusion, deadlock detection, and concurrency
control are much more dificult to solve in a distributed
environment than in a classical centralized environment.
The great diversity of the solutions to these problems
exemplifies many principles of distributed computing to
cope with the absence of global state and time. To simplify
the design and the validation of algorithms for asynchronous
systems, one can try to simulate a synchronous distributed
system on a given asynchronous systems, simulate global
time (i.e., a common clock) and simulate global state (i.e.,
common memory), and then use these simulated properties
to obtain the desired result. The first approach is realized by
so-called synchronizers [1] which simulate clock pulses in

such a way that a message is only generated at a clock pulse
and will be received before the next pulse. The second
approach does not need additional messages and the system
remains asynchronous in the sense that messages have
unpredictable transmission delays. This approach has been
proposed by Lamport [2]. He shows how the use of virtual
time implemented by logical clocks can simplify the design
of a distributed mutual exclusion algorithm. The last
approach was pursued by Chandy and Lamport in their
snapshot algorithm [3], one of the fundamental paradigms of
distributed computing. More recent approaches ([4], [5], [6],
[7], [8], [9]) proved that to maintain the data consistency,
the special synchronization operations are reduced to the
minimum and are delivered using a global ordering
algorithm. Almost all this algorithms assure a time
complexity linear to network delays by utilizing timestamp
estimations.

The organization of the informational flow as a linear
sequence of discrete events is inappropriate for
asynchronous distributed systems, where information is
distributed and perception is delayed. Distributed
environments require a distributed notion of time and a
theory of distributed time provides a natural framework for
solving problems in distributed environments.

While a synchronous distributed computing model
provides processes with bounds on processing time and
message transfer delay, which can be used to safely detect
process crashes and allow consequently the non-crashed
processes to progress with safe views of the system state,
the asynchronous model is characterized by the absence of
time bounds (this model is sometimes called time-free
model). In these systems one can only assume an upper
bound on the number of processes that can crash (let denote
them by m) and consequently design protocols relying on
the assumption that at least (n − m) processes are alive, n
being the total number of processes. In a distributed
environment, the main drawback is the consensus problem,
that has no deterministic solution when even a single
process can crash. The consensus problem can be stated as
follows: each process proposes a value, and has to decide a
value, unless it crashes, such that there is a single decided
value to be proposed for assuring validity. The impossibility
of solving consensus has motivated researchers to find
distributed computing models, weaker than the synchronous
models but stronger than the asynchronous models, in which

30

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

consensus can be solved. In such a model we can describe
the target in terms of distributed time, as a timeslice of
logical simultaneity in the temporal relations expressed by a
time model. The timed asynchronous model considers
asynchronous processes equipped with physical clocks to
ensure temporal ordering.
 Resuming, one can say that the principles for temporal
ordering in asynchronous distributed systems are: 1) Each
machine maintains its own time; 2) There is no global
shared clock; 3) Each target has a list of files on which it
depends; 4) At the target one compare the associated
timestamps; 5) If the target is older than some file that it
depends on, then target is re-built.
 A simple algorithm that respect these principles should
ensure the following steps: 1) A time server maintains
global notion of time; 2) Each machine periodically contacts
time server asking for current global time; 3) Machine
updates local time with global time. For implementation, the
problem to solve is to associate with each event a logical
timestamp T such that if A⇒B then T(A) < T(B), where
⇒means that event A precedes event B. Then, the ordering
algorithm keeps for each i-th process a non-negative
integer counter Ti, initially 0; when i-th process performs
computation event, Ti←Ti + 1 and when i-th process sends
a message m, it computes Ti←Ti + 1 and appends T(m) ←Ti
to m. Finally, when i-th process receives message m,
Ti←max{Ti, T(m)} + 1. For event A at i-th process, one
define T(A) = Ti computed during A. A scheme for such a
process is shown in figure 1 a. A better solution of Mattern
is based on clock vectors [10], i.e. the i-th process keeps a
vector Ti with n elements (see figure 1b). Each element
Ti[j] is a non-negative integer counter, initially 0. The
following statements work: when i-th process performs any
event, Ti[i] ←Ti[i]+ 1; when i-th process sends m, it also
appends T(m) ←Ti to m; when i-th process receives m, it
also computes Ti[j] ←max{Ti[j],T(m)[j] } for each j ≠ i; for
event A at i-th process, define T(A) = Ti computed during A
such that T(A) < T(B) = [∀ j: T(A)[j] ≤T(B)[j] ∃∨ j:
T(A)[j] < T(B)[j]] .

Figure 1. Ordered process using classical algorithms:

a) Lamport; b) Mattern

While in some sense the snapshot algorithm computes
the best possible attainable global state approximation,
Lamport's virtual time algorithm is not that perfect. In fact,
by mapping the partially ordered events of a distributed
computation onto a linearly ordered set of integers it is
losing information. Events which may happen
simultaneously may get diferent timestamps as if they
happen in some definite order. For some applications (in our
case the objective was the ordering of events in the alerts
flow of an emergency system) this defect is noticeable. In
this paper, we aim at improving Lamport's virtual time
concept, considering that a partially ordered system of
vectors forming a lattice structure is a natural representation
of time in a distributed system. In this non-standard model
of time all events which are not causally related are
considered simultaneous, thus representing causality in an
isomorphic way without loss of information.

II. EVENT STRUCTURES

In an abstract setting, a process can be viewed as
consisting of a sequence of events, where an event is an
atomic transition of the local state which happens in no
time. Hence, events are atomic actions which occur at
processes. Usually, events are classified into three types:
send events, receive events, and internal events. An internal
event only causes a change of state. A send event causes a
message to be sent, and a receive event causes a message to
be received and the local state to be updated by the values of
the message.

Events are related: Events occurring at a particular
process are totally ordered by their local sequence of
occurrence, and each receive event has a corresponding send
event. Formally, an event structure [11] is a pair (E;<),
where E is a set of events, and „<” is a partial order on E
called the causality relation.

Event structures represent distributed computations in an
abstract way. For a given computation, e < e' holds if one of
the following conditions holds:

1) e and e’ are events in the same process and e precedes
e’,

2) e is the sending event of a message and e’ the
corresponding receive event 3) ∃e” such that e < e” and
e”< e’ .

The causality relation is the smallest relation satisfying
these conditions.

A consistency mechanism guarantees that operations will
appear to occur in some ordering that is consistent with
some condition. Most of the research on this subject
addressed strong consistency conditions like sequential
consistency and linearizability. These conditions guarantee
that operations appear to be executed in some sequential
order that is consistent with the order seen at individual
sites. Unfortunately, supporting either sequential
consistency or linearizability requires a non-negligible cost.
A way around this cost is to define conditions that provide
weaker guarantees on the ordering of operations, and can be

31

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

efficiently implemented. These conditions can be roughly
classified into two categories: weak and hybrid conditions.
Weak conditions provide very little guarantee on the relative
ordering of events at different processes. These conditions
admit very efficient implementations, but they are too weak
to support conventional methods for concurrency control.
Hybrid conditions distinguish between two types of
operations, strong and weak. Strong operations appear to be
executed atomically, in some sequential order that is
consistent with the order seen at individual processes. The
only guarantees provided for weak operations are those
implied by their interleaving with strong operations. When
the consistency mechanism offers hybrid conditions, one can
define the synchronization as hybrid too.

Let’s now consider that a model of a distributed
consistent system (DCS) system is composed of a finite set
of sequential processes P1, P2,… Pn, one for each node. The
processes interact with the application program at the same
node using call and response events. The processes P1,
P2,… Pn interact through a finite set of x∈X shared objects
via message-send and message-receive events. The process
Pi can be also modeled as an automaton with states and a
transition function that takes as input the current state and a
call or message-receive event, and produces a new state, a
set of response events and a set of message-send events.

A history of a process describes what steps the process
takes and times they occur; it must satisfy certain
“consistency” conditions. An execution of a set of processes
is a set of histories, one for each process.

An execution of a set of processes is a set of histories,
one for each process, together with a one-to-one
correspondence between the messages sent by Pi to Pj and
the messages received by Pj from process Pi. We use the
message correspondence to define the delay of any message
in an execution to be the real time of receipt minus the real
time of sending. The execution is admissible if the delay of
every message is less than d, for fixed d ≥ 0, and for every
Pi, at any time at most one call at Pi is pending.

Every object is assumed to have a serial specification.
The specification defines a set of operations, which are
ordered pairs of call and response events, and a set of
operations sequences, which are the allowable sequences of
operations on that object. As an example, in the case of a
read/write object, the ordered pair of events [Readi (x),
Returni (x,v)] forms an operation for any process Pi, object
x, and value v, i.e. (v, (r(x,v))) as does [Writei (x,v), Acki (x)]
(w(x,v)).

A. Legal Operations in Distributed Consistent Systems

An execution history of a DCS is a partial order

()HHH →= ,
)

, formally:

U
i

ihH =

21 oo H→ if:

1) 21: ooP ii →∃ (in that case H→ is called a

process-order relation

2) () ()vxrvxw ,,,∃ such that () 1, ovxw ∈ and

() 2, ovxr ∈ (in that case H→ is called a read-
from relation)

3) 313 : ooo H→∃ and 23 oo H→ (transitivity)

Let’s now consider a history
∧
H . Informally, an operation

Ho∈ is legal if it does not read overwritten values, i.e.
the legality of an operation (causal dependency) is defined
as follows:

Definition 1. An operation o is legal if

() ':, oovxr ∃∈∀ such that:

oo H→′ (o’ precedes o)

() ovxw ′∈, (o’ is the operation that wrote v into x)

"o∀ such that oxwooo HH ′′∉→′′→′)(: (there is
no overwriting operation)

Definition 2 A history ()HHH →= ,
)

 is causally
consistent if, for each process Pi there exists a linear

extension of H
)

 in which all operations issued by Pi are
legal. In other words, the order of all operations of Pi
maintains causal dependency of the operations .

As an example let see Figure 2, where appears the model
of an execution that is only possible in a causally consistent
system. This shows processes Pi, Pj and Pk modifying
concurrently different objects. The operation oi,1 updates
object y at the same time that oj,1 updates object x. The
second concurrent update occurs when oj,3 writes to object x
and ok,4 writes to object y. Pk is able to read the update of Pj
in ok,1 but the update w(y,1) from Pi is not seen until ok,3.
These executions are acceptable because the two objects are
written concurrently and hence Pk makes no assumptions
about which object will be updates first. The model in
Figure 2 shows that the execution 2H

)
 is not serializable

since there does not exist a linear extension of 2H
)

 in which
all operations are legal. However, 2H

)
 is causally consistent

as there exists, for each process Pi, a linear extension
including all write operations plus all read operations issued
by Pi , in which all operations are legal.

Figure 2. Causal consistency executions

32

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

The causal ordering of messages deals with the notion of
maintaining the same causal relationship that holds among
“message send” events with the corresponding “message
receive” events. Events that occur at a single site are ordered
in time in the normal way. Informally, an event a at a site s
is ordered temporally after an event b at site t if, and only if,
there is a sequence of messages, the first one originating
from site t after the event b, the next message being sent
from the destination site of the first message after the first
message is received there, and so on, with the last message
being received at site s before the event a. The following
execution examples show how inconsistencies can appear if
the system does not ensure causal synchronization.

A conflict-free run is depicted in Figure 3. This is
normally the case, where due to the relatively low network
roundtrip times are small compared to user interaction
intervals. In this example, Process 1 modified and
unselected the object (released the lock over the object)
before Process 2 had sent a select message: Process 2 started
without waiting for any synchronization or
acknowledgement messages.

Figure 3. Normal execution with no conflict.

In Figure 4 it is presented a case when the system does

not provide any causal consistency mechanism. P2 received
the deselect message from P1 and immediately selected the
same object (message m2,1) before P3 received the previous
deselect message from P1. This case may occur if packets
travel between sites through different paths, and their
roundtrip times vary noticeably. If P2 modifies its local copy
before m1,3 arrives to P3, the database becomes inconsistent.
The last occurs because there is no causal synchronization.

Figure 4. Execution with conflict and no causal synchronization.

The execution diagram depicted in Figure 5 shows the

result of applying hybrid synchronization to the previous
example. P3 does not start a flow, it does not send any
update message, until it receives the message sent by m1,3.
Therefore, P2 cannot start any object processing until the
select strong select operation is globally ordered at every
site.

Figure 5. Causal synchronization

Causal consistency is attractive because not only it can

meet the sharing needs of many applications but it can also
be implemented efficiently. It is possible to complete send
and receive accesses to causally consistent objects without
synchronisation among processes (or sites) that store copies
of the objects. This can lead to a scalable architecture
because coordination among a large number of nodes is not
necessary with causally consistent shared objects. Among
these, service-oriented architectures (SOA) are typical for
the necessity to assure a dependable global ordering.

III. AN ALGORITHM FOR DEPENDABLE GLOBAL

ORDERING OPERATIONS IN SOA

This algorithm is an improvement of the classical

ordering algorithms based on timestamps. As framework
We considered a service-oriented architecture (SOA), which
actually is a collection of services. A service is a function
that is well-defined and does not depend on the context or
state of other services. These services communicate with
each other in the same way as interact processes in a
distributed system. Services is becoming a platform for
information interaction between applications.

Our approach can maintain the data consistency among
multiple service replicas while we still guarantee the loose
coupling and location transparency characteristics among
the service replicas. In the informational flow, consistent
operations are classified as either strong or weak.
Informally, flows consistency guarantees two properties:

1) Strong operations appear to be executed in some
sequential order.

2) If two operations are invoked by the same process and
one of them is strong, then they appear to be executed in the
order they were invoked.

Each replica of the editor holds a local copy of the entire
memory, a local timestamp counter and an array that keeps
conservative about the values of all other timestamp

33

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

counters in the system. A weak operation is executed
instantly on the local copy of the object. In case of writes,
update messages are sent to all other processes, which
update their local copies of the memory upon receiving
these messages. Timestamps are used to enforce global
ordering on the strong operations. Strong operations are
timestamped with the local timestamp counter, and a
message is sent to all processes; the initiating process then
increments its local timestamp counter by 1. The execution
of any strong operation is postponed until the timestamp of
that operation is smaller than all the estimated timestamp
counters of the system. If more than one strong operation
can be executed together, they are executed according to
their timestamps in increasing order.

The algorithm guarantees that if process Pi estimates Pj

counter as x, then the local timestamp of Pj is at least x (that
is, the estimate is conservative). This implies that all strong
operations ever invoked by Pj bearing timestamp smaller
than x have arrived at Pi, and ensures that all strong
operations are executed in the same order and that weak
operations that were invoked later are also executed later.

We assume a system of n processes, connected by an
interconnection network, each maintaining a local copy of
the entire database. Each process Pi has a local timestamp
counter, ltsi, initially 0, and an array tsi such that tsi[j]
contains Pi’s estimate of ltsi. Weak operations are executed
locally and instantly. If a weak operation is a write of v to
object x, then update messages are broadcast to all processes
(an update message includes the new value v to object x to
be updated). A process that receives an update message of v
to object x, updates its copy of object x with v. For any
strong operation (select or deselect messages), a strong-op
message is sent to all other process; this message not only
contains update information (path of the object to be
selected) but also a timestamp lts. Process Pi suspends the
execution of a strong operation with timestamp ts, until it
knows that the counters are at least ts+1. When several
pending strong operations may be executed, they are
executed according to their timestamps and ids in increasing
order.

Executing a strong select operation at process Pi is done
by updating the list of selected objects in the local copy. If
object x specified in the select message is marked as already
selected by another operation, the operation is ignored and
no action is taken. Otherwise, object x is added to the local
selection list. Executing a strong deselect operation at
process Pi is done by deleting the object x specified in the
message from the selection list.

Process Pi increases its timestamp in each of the
following cases:

1) After Pi sends a strong-op message to all processes.
2) After Pi receives a strong-op message with

timestamp equal to ltsi and for all j, tsi[j]≥ltsi.
3) A strong operation with ts=ltsi-1 was executed in

Pi, and there exists k such that tsi[k]≥ltsi.
In the last two cases, a ts-update message is sent to all

other processes.
Let’s now discuss how the proposed algorithm offers

dependable solutions. A crucial issue encountered in

distributed systems is the way each process perceives the
state of the other processes. To that end, the proposed model
provides each process pi with three sets denoted idlei, activei
and uncertaini. The only thing a process pi can do with
respect to these sets is to read the sets it is provided with; it
cannot write them and has no access to the sets of the other
processes. These sets, that can evolve dynamically, are
made up of process identities. Intuitively, the fact that a
given process pj belongs to one of the three sets provides pi
with some hint on the current status of pj . More
operationally, if pj∈ idlei, pi can safely consider pj as being
crashed. If pj∉ idlei, the state of pj is not known by pi with
certainty: more precisely, if pj∈activei, pi is given a hint
that it can currently consider pj as not crashed; when
pj ∈uncertaini, pi has no information on the current state
(crashed or active) of pj. The specification of the sets idlei,

activei and uncertaini, 1 ≤ i ≤ n, is the following:
S1 - Initial global consistency. Initially, the sets activei,

idlei and uncertaini of all the processes pi are identical.
Namely, for t = 0, ∀ i, j: statei(t) = statej(t), where state is
active, idle and uncertain respectively.

S2 - Internal consistency. The sets of each pi define a
partition idlei(t) ∪ activei(t)∪ uncertaini(t) = Π, ∀ i,t. and
any two sets in idlei(t), activei(t) and uncertaini(t) have an
empty intersection.

S3 Consistency of the idlei sets: an idlei set is never
decreasing, i.e. idlei(t) ∀ idlei(t + 1), ∀ i,t

S4 Consistent global transitions. The sets idlei and
uncertainj of any pair of processes pi and pj evolve
consistently. More precisely, ∀ i, j, k, t0 we have
(pk∈ activei (t0)) ∩ (pk ⊆ idlei (t0 + 1))⇒ ∀ t1 > t0 : pk
∉uncertainj (t1).

As we can see from these specifications, at any time t
and for any pair of processes pi and pj, it is possible to have
activei(t) = activej(t) (and similarly for the other sets).
Operationally, this means that distinct processes can have
different views of the current state of each other process.
The rules [S1-S4] define a distributed computing model that
satisfies the strong consistency property. That property
provides the processes with a mutually consistent view on
the possibility to detect the crash of following a given
process. More specifically, if the crash of a process pk is
never known by pi (because pk continuously belongs to
uncertaini), then no process pj will detect the crash of pk
(because pk ∈ idlej). Conversely, if the crash of pi is known
by pj, the other processes will also know it.

IV. THE IMPLEMENTATION OF THE APPLICATION

We will present an application that uses the proposed

ordering algorithm in a distributed system for emergency
management. The main objective is the consistent
synchronization of alerts. That implies to have complete
information about the temporal dimension of alerts,
compatibility with the alert standards and with the software
and hardware resources running the application. The

34

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

participants in the alert process are computers acting as
nodes in a network which communicate using standard ISO-
OSI protocols. The application is realized in Java, in order
to be supported on a large set of hardware platforms.

The application is composed from several classes, as
follows:

AlertNode – is the class for instantiation of the matricial
logical clock of the node that contains the function main()
which launch the client and server execution threads. In the
initial state one must specify the node ID, the number of
active nodes in the whole network and the port of the server
which take the alert.

AlertServerThread – is the class that implements the
several able to receive alerts. For each connection a
dedicated thread is created, so many clients can be
simultaneously serviced.

AlertProtocol – is the class that implements the
communication protocol between the server and the alert
client. This class contains the function readAlert, that
initiate the class CAPHandler, which parses the client alert
in the Common Alerting Protocol (CAP) XML format.
When the alert is received, one launch the method
receiveAction of the matricial clock that implements the
clock logic.

MatrixClock – is the class that implements the matricial
logical clock.

AlertClientThread – is the class which allows to transmit
alerts from client to server, only in CAP format.

As an example, let now consider the following scenario,
as shown in figure 6:

Figure 6. An alert secenario

The ellipses represent the network nodes, each node

having an unique identifier. In the rectangle above the node
appears the number of the listening port. The arrows
represent the direction of the transmitted alert, and the
associated numbers represent the sequential order for alerts
transmission. On each node is running a software agent with
double functionality (client and alert server). The alert is
connection oriented, using TCP stream sockets. A socket is
unique identified by an IP (node address) and a port (which
directs the data to destination).

When a node has to transmit an alert to other node, the
server try to connect the destination node through a separate
execution thread), but it maintains the idle state in order to
accept other connections also. The client is addressed by a
command line, on the associated port. But it is noticeable
that the client can interrogate periodically a data base were

are registered the out of limits parameters, without a special
command of the server, and can decide himself is another
node must be alerted. Figure 7 shows the values of the
timestamps at the matricial clocks, for the first steps of the
scenario depicted in figure 6. At the end of the process the
clocks have the value of the arrows end.

Figure 7. Alerts flow and the matricial clocks of the nodes

The main contribution of the proposed scheme is the

correlation of alerts in emergency systems, introducing as a
new element in the classical Lamport algorithm a matriceal
clock which acts as a component of the advertising
protocols structure. The efficiency of this mechanism is
improved by adding a fault detection component of the
timestamp assignment that verifies if each secondary vector
of the matrix is smaller than the principal vector of the
current node.

The algorithm imposes to send dedicated messages for
the matriceal clock refresh, at the same frequency as that of
the information messages, if in a specified interval a process
does not succed to perform a send-receive operation.

V. CONCLUSIONS

This paper proposed an improved global ordering

algorithm for dependable distributed computing, that
encompasses both the synchronous model and the
asynchronous model. The algorithm guarantees the order of
messages delivery to the application and respect temporal
and causal relationships. In this aim the strong operations
are timestamped with a local timestamp counter, and a
message is sent to all processes. If more than one strong
operation can be executed together, they are executed
according to their timestamps and in increasing order. We
have chose to focus on the distinction between performing a
data operation locally at a process, based on its local state,
and performing an operation that requires communication
between processes before the control can be returned to the

35

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

application. When collaboration involves communicating
via a single or multiple flows, causal relationships among
messages sent over the flows must be maintained to
preserve the context in which a message is sent.

Other contributions which derive from the conceptual
framework can be summarized as it follows: the
implementation and testing of a general protocol for data
replication in a distributed architecture; a scheduler for
operations of a collaborative process; the definition of a
formal consistency criteria of the flows framework; the
classification of strong and weak operations that allows the
implementation of this consistency criteria; the definition of
the form that a process state perceives each other’s states by
accessing the contents of three local non-intersecting sets,
(uncertain, active, and idle). The proposed system has been
implemented in JAVA and tested over a set networked
LINUX workstations, equipped with QoS capabilities

Future work will be oriented on: strong operations’
generalization for different type of operations, specially
those operations that modify the topology of a scene tree,
i.e. addition or deletion of nodes; the implementation of a
policy that allows to support latecomers and early leaving in
to the distributed system; the implementation of a multicast
protocol for supporting many users simultaneously; the
evaluation of the benefits of the admission control policies
with respect to the media quality of the serviced clients, the
average latency time, and the throughput of the system.

REFERENCES
[1] C. J. Fidge, „Timestamps in Message-Passing Systems that Preserve

Partial Ordering”. In Proceedings of 11th Australian Computer
Science Conference, pp. 56-66, 1988

[2] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System”, Comm. of the ACM, 21(7), pp. 558-565, 1978.

[3] K. M. Chandy and L. Lamport, „Distributed Snapshots: Determining
Global States of Distributed Systems”, ACM Transactions on
Computer Systems, 3(1), pp.63-75,1985.

[4] H. Kopetz, A. Ademaj and A. Hanzlik, „Combination of clock-state
and clock-rate correction in fault tolerant distributed systems”, Real-
Time Systems, Vol. 33, pp.139-173, 2006

[5] Yang, J., Q. Zhang and N. Gu (2006) A Consistency Maintenance
Approach in Replicated Services, Proc. of the Sixth IEEE Int. Conf.
on Computer and Information Technology, pp. 248 – 258

[6] A. Hanzlik, „SIDERA - A Simulation Model for Time-Triggered
Distributed Real-Time Systems”, Int. Review on Computers and
Software (IRECOS), Vol. 1, N. 3, pp. 181-193, 2006

[7] R. Dobrescu and M. Dobrescu, A “flows consistency” model for
message ordering in collaborative distributed systems, 13th IFAC
Symposium on Information Control Problems in Manufacturing, 2009

[8] V. Cholvi, A. Fernández Anta, E. Jimenez, P. Manzano, M. Raynal.
"A Methodological Construction of an Efficient
Sequentially Consistent Distributed Shared Memory". The Computer
Journal, 53(9), pp.1523-1534, 2010

[9] R. Jimenez-Peris, M. Patiño-Martinez, D. Serrano, J. Milán and B.
Kemme, „Leveraging the Scalability and Availability of Replicated
Databases with Autonomic Capabilities”, 3rd Int. Conf. on Autonomic
Computing and Communication Systems, 2009.

[10] F. Mattern, “ Virtual Time and Global States of Distributed Systems”,
Proceedings of the Parallel and Distributed Algorithms, pp.215-226,
1989

[11] S. Gorender, R. Macedo and M. Raynal, “A Hybrid and Adaptive
Model for Fault-Tolerant Distributed Computing”, Proceedings of the
Int. Conf. on Dependable Systems and Networks, pp.412-421, 2005

36

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

