
Fuzzy Event Assignment for
Robust Context-aware Computing

Hannes Wolf, Jonas Palauro, Klaus Herrmann
Institute of Parallel and Distributed Systems, Universität Stuttgart, Germany

Email: {hannes.wol f |klaus.herrmann}@ipvs.uni-stuttgart.de, jonas@palauro.de

Abstract—User acceptance of context-aware applications relies
on unobtrusive interaction and perceived dependability of the
application. The accurate recognition and handling of high-level
context information is a key factor , to achieve both. Currently,
applications mostly work as isolated pieces of software and have
to deal individually with the high uncertainties when recognizing
and ambiguities when consuming high level context information.
We use Adaptable Pervasive Flows (APF), to overcome these
limitations and present our Fuzzy Event Assignment (FEvA)
algorithm to resolve the ambiguities when assigning context
information to the applications. Our simulation results show
assignment accuracies between 83% to 97% and an improved
performance when dealing with false positive, out-of-order and
missed context information.

I. Introduction

Context-aware applications provide users support for a
broad range of activities in everyday life. But unobtrusive
application, demand for little explicit user interaction and
context information as the main source of input, driving the ex-
ecution [1]. Throughout the paper we consider an application
that automatically documents a nurses tasks in daily patient
care without the necessity of explicit user interaction as an
example for this kind of unobtrusive support. However, the
nurse will only accept this kind application if it deals with the
uncertainties of context recognition in a robust way.

Recognizing the actions and other high-level context infor-
mation of the nurse from the environment involves reading
data from (uncertain) sensors, processing the data and compos-
ing the context information from different sources. The sensor
readings can be quantified by accuracy and precision, but
the processing amplifies the degree of uncertainty. A context
management system (CMS) [2], [3] provides the context
information to the application via a query interface or in an
event-based fashion. If the CMS also supports uncertainty
handling, it further supplies the application with the degree
of uncertainty for the requested information. The application
decides if the received context information is consumed from
the CMS so that it will no longer be available for other appli-
cations. This is necessary because the uncertain information
could be interpreted in multiple ways, leading to inconsistent
behavior of the informed applications. If the uncertainty is
too high, the application discards the context. Similarly, the
application could provide some policy, which allows the CMS
to make those decision instead, but either approach leads to
ambiguities when consumerist context.

We claim, that the perceived dependability, i.e. dependabil-
ity from a user’s point of view, of a context-aware application
is conditioned by two factors: 1) the handling of uncertainties
in context information and 2) the resolution of ambiguities
when actually consuming context.

CMS provide sophisticated methods dealing with uncer-
tainty of primary context, like location information [4] and for
high-level context information – like needed to document the
activities of the nurse – uncertain context reasoning or event
correlation can be applied [5], [6]. However there is no system
that takes the structural or contextual relation between the
different applications into account to resolve the ambiguities,
when assigning context information to the right application.

The algorithm we propose to robustly solve the assignment
builds on Adaptable Pervasive Flows (APF) or flows for
short. Flows originate from classical workflows, and were
recently proposed as a programming paradigm for pervasive
applications [7]. A flow basically consists of a number of
activities a ∈ A that with directed transitions t ∈ T , which
define a partial execution order for the activities. An activity in
a flow either represents some computational task, e.g. writing
a database record or invoking a Web Service, or it specifies a
task that a human has to perform in the real world, such as
our nurse administering medicine to a patient.

Our newly developed Fuzzy Event Assignment (FEvA) al-
gorithm supports the execution of flows, providing a robust
yet flexible dynamic assignment of context events to single
activities in the flow. FEvA determines all the activities, that
could be interested in the available context information, based
on the flows structural information and its current execution
state. FEvA coordinates a competition between the activities,
that is based on fuzzy logic, weighting the events and selecting
the most appropriate candidates. Finally, the candidates are
assigned, in such a way that a successful execution becomes
more probable. We have implemented a simulation and tested
our algorithm against false positive context information, con-
text that occurs out-of-order, and missing context. The results
show an avg. assignment accuracy of 91%.

The rest of this paper is structured as follows: In the next
Section we introduce the assumptions we make in our system
including the context model. After that, we present FEvA in
Section III. Then, we show and discuss the results of our
evaluation in Section IV. Finally we put our approach in
perspective to related work in Section V and conclude the
paper in Section VI.

37

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



II. Basic Assumptions andModels
First, we introduce some basic concepts of flow execution

and then introduce our context model. Following that, we
define the failure model on the context information the ap-
plication has to deal with.

Applications that run in our system are flows. At devel-
opment time, a programmer creates a flow model F of the
application (documenting the daily routine of a nurse) that acts
as a template. An instance of the flow is created at runtime,
e.g., for a specific nurse, specific day, and executed on a flow
engine. Most of the activities in this flow map to real-world
activities of the nurse. Therefore we use a CMS that provides
the flow engine with context events.

Definition 2.1 (Context Event): A situation that can be rec-
ognized in the real world is referred to as event e ∈ U, where
U denotes the universe of all events that the CMS can measure.

As the recognition relies on (uncertain) sensor readings,
processing and composition of low-level context, an event is
always uncertain. Currently, we assume that this uncertainty
solely arises from the recognition process, i.e. the nurse in the
real world always behaves correctly wrt the flow.

Events that represent semantically similar context can be-
long to a common event type, where each event belongs to at
least one.

Definition 2.2 (Event Type): An event type E ⊂ U contains
a number of individual events E B {e1, . . . , en}. A single event
can be a member of different event types.

The purpose of an event type is twofold: First, it allows
the programmer to simply select the most appropriate context
the activity should respond to. A flow F defines a function
ε : A×N→ P(U) that maps activities to a number of distinct
event types. P(U) denotes power set over the universe of
events and epsilon(a, i) yields the ith event type of activity
a and ∅ otherwise. We write ε(a) for short, when referring to
all event types of an activity. Second, the related semantics
of the grouped events allow a more accurate recognition and
classification. Events that are not contained in the expected
event type are likely out of scope. The flow engine registers
the event types ε(a) of a running activity at the CMS and
receives an event instance, that indicates which event actually
has been detected and also provides the degree of uncertainty.

Definition 2.3 (Event Instance): Let E be an event type.
An event instance IE : E → [0, 1] defines a probability
distribution function, where

∑
e∈E IE(e) = 1.

We use probability theory, but the definition could be adjusted
to incorporate other measures of uncertainty as well. This
concludes the context model when considering single activities
in the flow or single situations in the real-world. However, for
successful flow execution we have to consider a number of
event instances and their order, uncertainty and type. Therefore
we define an event sequence.

Definition 2.4 (Event Sequence): Let E B {E1, . . . , E j} be
the image set of ε for a given flow F , i.e. E contains all event
types used in F . An Event Sequence S B (I1

E , . . . , I
k
E) is an

ordered list of k event instances, where E ∈ E can be of any
type.

Given F , we call S a valid sequence if it leads to a success-
ful execution of F . While event types are easily checked, we
already showed in previous work how the uncertainty could
be decreased using the flow structure [8]. However, as we
motivated in the introduction, it remains a challenge to assign
the event instances to the right activities. Therefore, ordering
and actual occurrence of the events in the sequence are crucial.
In the following, our we present our failure model covering
three failure types.

The first failure type are false positives. The context system
sometimes notifies the application of an event that did not
occur in the real world. We define α as the percentage of
added false positive events in a sequence S . For example, let
S be a valid sequence and α = 0.05, then the size of modified
sequence S α would be |S α| ≈ |S | ∗1.05. We assume that added
event instances are uniformly distributed over the sequence,
their type is randomly picked from E and the probability
distribution of the instance is similar to the others in the
sequence i.e. they can not be distinguished from the correct
events in the sequence when inspecting the distribution.

Second, there are out-of-order events. Due to network
transmission delay in a distributed CMS, temporary sensor
failures or delay when running the situation detection operators
on low-level context, the events in a valid sequence may be
shifted. We define γ as the percentage of events that have
not been affected by a sequence shift. For example, given
γ = 85, 85% of the events have not been affected, but the
remaining 15% are shifted in time (either way) according a
normal distribution N(0, ω). The ω is chosen such that 15% of
the samples are larger than ±1. The integer part of the sample
indicates the shift and direction in the event sequence relative
to its original position in the sequence.

Finally, there are events that happened in the real world, but
the CMS simply missed them. This might be due to sensor
unavailability, a bad reading, or the removal of a reading due
to high uncertainty during the situation detection. Let δ denote
the percentage of events from a valid event sequence that have
been missed. So a value of δ = 10 results in |S δ| ≈ |S | ∗ 0.9 =

|S | ∗ (1 − δ\100). The three failure models we presented can
be combined and applied to a single event sequence, written
as S α,γ,δ.

III. Fuzzy Event Assignment

The goal of FEvA is to interpret a given a recognized
event sequence S α,γ,δ for a flow F , so that it is a valid
sequence and leads to the same execution path as the original
sequence S . FEvA tries to ”find” the original events and map
them to the right activities and, given enough evidence from
existing events, also tolerate that some events are missing.
We first introduce more details on activity states, the activity
life cycle, flow execution semantics and our extensions to
the activity state space. Then, we describe how FEvA fuzzi-
fies incoming event instances and provides them as possible
candidates for the competing activities using the candidate
selection algorithm. As the execution of an activity progresses

38

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



Research Group “Distributed Systems”

Universität Stuttgart, IPVS

can-complete

readyinactive

complete active

prepare

Fig. 1. Activity State Machine

it will eventually complete and the event assignment algorithm
finalizes the event assignment and resolves possible conflicts.

A. Flow Model Semantics and Activity State Extension

As mentioned in the introduction, a flow basically consists
of a directed acyclic graph G = (A,T ) with activities a ∈ A as
nodes and directed transitions between activities t ∈ T ⊂ A×A
as edges. Each transition can be annotated with a logic
condition, which depends on the received context information
of the originating activity. Furthermore, some of the activities
are mandatory, and must be completed successfully for a
successful flow execution.

While being executed, an activity a assumes four distinct
states that indicate its completion progress. These states are
in order of execution Z = {inactive, ready, active, complete}.
When an instance of F is created, all activities are in the
inactive state. Meeting all prerequisites for execution, an
activity a switches to the ready state. The flow engine then
registers its event types at the CMS. Having received the
first event, a assumes the active state. When a has received
the last event, the conditions of the outgoing transitions are
evaluated and a reaches the complete state. Following activities
may be set to the ready state, depending on the condition
evaluation results. The execution of the whole flow instance
is considered successful if no activity is currently running i.e.
in the active state and all activities that are mandatory for the
successful execution are completed. The state machine for an
activity is also depicted in Figure 1, considering only states
and transitions with continuous lines. For more details on the
formal flow model and the execution semantics refer to our
previous work [8].

We extend the activity state space for FEvA with two
additional states: Z

′

B Z ∪ {prepare,can-complete}. Further,
let ω : A → Z

′

be the function that retrieves the current
state of an activity a. If the state of the preceding activities
ax with (ax, a) ∈ T is ω(ax) ≥ ready, then a switches from
inactive to prepare. The event types of a prepared activity
are also registered at the CMS. Therefore the number of
registered event types increases and the chances of missing
an out-of-order event are reduced. If an event is recognized
out-of-order in current systems, the flow engine has not yet
registered the event types at the CMS and the event is dropped.

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

Event ContainerEvent Instance IE

a1

a2

E ∈ εሺܽ1ሻ

E ∈ εሺܽ2ሻ

Fig. 2. Event Container Principle

Instead, the early events can now be cached by the flow
engine until the prepared activity actually becomes ready.
Before switching from active to complete, an activity first
assumes the can-complete state. The state indicates that a has
selected candidates for all its event types but the preceding
activities have not yet reached the complete state. Waiting for
their completion, we avoid that a consumes events that are
possibly more suitable candidates for the predecessors while
a better fitting event for a might still arrive. However, the
conflict resolution mechanisms, which we will introduce later,
will occasionally bypass this rule. The extensions of the state
machine are also depicted in Figure 1 as states with dashed
borders and dashed state transitions.

B. Fuzzy Event Assignment

As mentioned earlier FEvA, consists of two algorithms, one
for event candidate selection and one for event assignment.
Both algorithms are plugged into the event container, the
component of the flow engine responsible for event caching
and dispatching. Activities that have registered their event
types at the CMS are known to the event container and stored
separately for each event type as set of competing activities
CE = {a ∈ A|(ω(a) , inactive ∧ ω(a) , complete ∧ E ∈ ε(a)}.
The event container also stores a list of event instance can-
didates for each activity denoted as candidates[a]. Whenever
the flow engine is notified about a new event instance IE , it is
stored in the event container.

The candidate selection algorithm, depicted in Algorithm 1,
computes, which event instances are added to the list of
candidates of an activity. First the algorithm computes a
fuzzified representation of IE . We utilize fuzzy sets (cf.
[9]), each representing a linguistic value, defining the fitting
quality of IE for a single event from E. The individual fuzzy
membership functions are defined as µx : [0, 1] → [0, 1]
where x ∈ {VL, L,M,H,VH} is one of the linguistic variables
”very low”, ”low”, ”medium”, ”high”, ”very high”. The
functions map the probability - or more generally the
degree of uncertainty - of a single event given by IE to a
fuzzy membership value for the respective linguistic value.
We used the same membership functions based on the
standard triangular fuzzy functions for all combinations
of activities and event types. For example, e1 ∈ IE is the
event where the nurse measures the pulse of the patient and
IE(e1) = 0.3 then µM(IE(e1)) = 0.75 and µH(IE(e1)) = 0.25.
As each event is weighted by every membership function,
we further introduce the fuzzy event weighting function
λ : [0, 1] → [0, 1]5 as concise version including all the

39

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



membership function results. Given e1 ∈ IE , λ(IE(e1)) yields
(µVL(IE(e1)), µL(IE(e1)), µM(IE(e1)), µH(IE(e1)), µVH(IE(e1))),
i.e. the mapping of the individual probability of the event to
the fuzzified membership in all five fuzzy sets. The candidate
selection algorithm computes the weighted event λ(IE(e)) for
all e ∈ E and sends it to each activity, that is subscribed to E
i.e. the activities in the set CE . Each activity checks if any,
and which, conditions have an at least ”high” matching with
IE . They compute this matching using their own fuzzy activity
weighting function κ : [0, 1]5 → [true, f alse], deciding if
IE is a suitable candidate event. We consider the mentioned
example of pulse measuring e1 ∈ E again. An activity will
chose IE as possible candidate if and only if the lowest
nonzero linguistic membership in λ(IE(e1)) is ”high” or
”very high” thus, µH((IE(e1) ≥ 0.5 ∨ µVH(IE(e1)) ≥ 0.0).
Given this equation is fulfilled, the result of κ(λ(IE(e1)))
yields true and IE is stored as a possible candidate[a, E] for
the activity a and the event type E. If IE becomes a new
candidate for an activity it further checks if it has the best
overall fitting of the candidates available in candidates[a, E].
We denote the best fitting event instance as Imax

E where
∀IE ∈ candidates[a, E] : µx(Imax

E (e)) ≥ µx(IE(e)) for the the
highest non-zero linguistic membership value of Imax

E . Given
that the new event instance IE = Imax

E (e) is the new best fitting
one, the algorithm issues an assignment request for IE that is
later handled by the event assignment algorithm.

Algorithm 1 Candidate Selection Algorithm
Input: CE , IE

for e ∈ E do
f uzzyWeights[e]← λ(IE(e))

end for
5: for a ∈ CE do

for e ∈ E do
if κ( f uzzyWeights[e]) then

candidates[a, E]← candidates[a, E] ∪ {IE}

end if
10: end for

Imax
E ← maxIE (candidates[a, E])

issue assignment request(Imax
E )

end for

Having eventually received incoming events for all event
types, an activity a changes its state to can-complete. But
before it can commit its execution and reach the final complete
state it must consume a single candidate event for each
type from the event container. However, this might lead to
conflicts, because a requested event instance IE could also have
been requested by another activity ao. The event assignment
algorithm is responsible for the final consumption of IE and
tries to resolve the conflicts. We omit a listing of the algorithm
due to space reasons.

First the algorithm checks, if some ao ∈ CE has also issued
an assignment request. In case,this other activity has alterna-
tive candidates available , i.e (candidates[ao, E] \ IE) , ∅, we
just select another candidate for ao and assign IE to a for

consumption. When there is no other candidate available, we
check if only one of the activities a or ao is mandatory, prefer-
ring the mandatory one for the event assignment. Given that a
now still lacks a non-requested candidate, we try to reevaluate
the rejected candidates. If some of the other requested events
for a have a fuzzy value that is very high, we relax the
candidate criteria for E and check if more candidates become
available. If this still does not yield a suitable candidate, the
activity may be completed without having assigned an event
to E. In order to do this a number of strict criteria have to be
fulfilled. First, there is a fixed maximum number of allowed
missing events per activity; in our case only one missing
event is accepted. Second, the preceding activities of a must
be complete and the succeeding activities must be in can-
complete. Third the succeeding activities must have at least
one event instance assigned with a very high fitting value.
These rules ensure that there is enough evidence available,
so we can assume that the necessary event has been missed
and complete the activity nonetheless. However, most of the
conflicts we mentioned will be resolved without using the
conflict resolution mechanisms, when more of the correct
events arrive. In the next section we assess the performance
of FEvA wrt. the failure model we introduced in Section II.

IV. Evaluation

To evaluate FEvA, we extended the existing simulation
environment, developed in previous work [8]. In the following
we present the setup of the individual experiments and the
simulation parameters and then discuss the results.

A. Simulation Setup

In order to evaluate FEvA we need a suitable set of realistic
flow models to test the algorithms in a wide range of cases.
We created the flows from so-called workflow patterns. These
patterns are common building blocks that have been identified
in a number of real-world workflows, which include a high
number of human tasks [10]. Furthermore, it has been shown
that these patterns adhere to a co-occurrence distribution,
indicating that some patterns follow others more regularly
[11]. We used this co-occurrence distribution to generate the
structure of the workflows used in our evaluations. The flows
had sizes of 20, 30, 40 and 50 activities. For each size,
we simulated 25 different flows and fed 100 different event
sequences into each flow. Therefore every data point in the
evaluation results is created from 10,000 flows executions.

The simulation is informed by two sets of parameters.
The first set consists of the two values, ground truth GT
and variance V , which are used to generate the probability
distribution for the individual event instances. The GT is the
probability that the CMS detects the correct situation that
happened in the real world. The remaining probability 1−GT
is geometrically distributed to the other events of the event
type. The V adds noise to the resulting distribution, i.e. the
probability of each event of the pdf is altered by V and the final
distribution again normalized. We simulated GT for values
from 0.4 to 1.0 in steps of 0.1 and V from 0.05 to 1.0. To show

40

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fl

ow
s 

/ 
 p

er
ce

nt
ag

e 
of

 c
or

re
ct

ly
 a

ss
ig

en
d 

ev
en

ts

Percentage of added events

avg. of correctly assigned events
v=0.2
v=0.4
v=0.5

(a) added events α

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fl

ow
s 

/ 
 p

er
ce

nt
ag

e 
of

 c
or

re
ct

ly
 a

ss
ig

en
d 

ev
en

ts

Percentage of correctly positioned events

avg. of correctly events
v=0.2
v=0.4
v=0.5

(b) moved events γ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fl

ow
s 

/ 
 p

er
ce

nt
ag

e 
of

 c
or

re
ct

ly
 a

ss
ig

en
d 

ev
en

ts

Percentage of deleted events

avg. of correctly events
v=0.2
v=0.4
v=0.5

(c) deleted events δ

Fig. 3. Simulation Results - FEvA performance

the results clearly, the figures depicted only contain the graphs
for GT = 0.5 which is FEvA’s threshold for accepting an event
(cf. Section III-B) and variances of 0.2, 0.4, 0.5 representing a
rather low, medium high and high amount of noise.

The second set defines the parameters α, γ and δ according
to our definition in Section II. For α we chose values between
5% and 100%, for γ between 100% and 65% and for δ between
0% and 30%.

B. Results

The main results of the simulation for each of the parameters
α, γ, and δ are depicted in Figure 3. The other values are set
to their default value, i.e. 100 for γ and 0 for α and δ.

The results for the added false positives are the most
surprising (c.f Figure 3(a)). While the number of correct events
assigned to the activities decreases slowly from about 94%
to 78%, the actual number of successfully completed flows
increases. This is due to the fact, that the added false positives
also take part in the assignment process and, especially in
conflict situations, may be mapped to an activity too early
and falsely, too. On the one hand this effect becomes stronger
the higher the variance is; On the other hand the decrease in
correctly assigned events also holds for the low variance but
the effect cannot be identified right away. If we recognize the
events with a high accuracy, the flow is able to deal with more
false positives, but also assigns some of these false positives
to the activities. However, for the worse context readings the
result is counter-intuitive, as more flows complete because it
is more likely that a fitting false positive exists.

When we confront FEvA with out-of-order events (c.f
Figure 3(b)), the algorithm performs very well and tolerates the
deviation. Most of the events are correctly assigned, i.e. well
over 97% and the impact of the few falsely assigned events
on the flow completion is low compared to the variance.

Considering the missed events (c.f Figure 3(c)), FEvA is
still able to assign the remaining events accurately, again
with well over 97%, but the missing events have a very
strong impact on the flow execution. While a low number of
missing events is somewhat tolerable, the amount of correctly
completed flows drops rapidly to a mere 7% when more than
a quarter of all events is missing. The difference between the
graphs also becomes smaller. This shows that the deletion
of events has a more severe impact on the correct execution

than the variance. The mechanism we introduced to tolerate
missed events somewhat helps, but there is a lot of room for
improvement.

V. RelatedWork
We have investigated two different areas on work that is

related to FEvA. We begin discussing the handling of fuzzy or
uncertain (context) information in other workflow management
systems, and continue with activity recognition systems, espe-
cially with a background in the health-care domain considering
our example application.

The integration of context information into classic work-
flows used in enterprises has first been suggested by Wieland
et al. [12] Their original approach does not consider uncer-
tainty in context information, but in the meantime the authors
provided a basic solution based on policies [13], which allows
a workflow to specify a well defined behavior when dealing
with uncertain context information and sensor failures. But
their work actually lacks an algorithm, such as FEvA is, for
matchmaking between uncertain context information and the
workflow activities. Also from the area of business process
management, Adam et al. [14], [15] proposed to use fuzzy
logic to enable soft decisions in workflows based on the input
provided to the workflow. However they did not consider
uncertainties or ambiguities in the input information.

There are plenty of workflow models based on petri-
nets (e.g. [16]), and also fuzzy petri net variants have been
proposed [17] and applied to workflows [18]. Basically all
elements of a petri net – places, markers and transitions – can
be fuzzified and integrated into a fuzzy reasoning process. On
the one hand, if we interpret an event instance as a fuzzified
marker, our approach would be somewhat similar to the fuzzy
petri nets. On the other hand the events represent external
input, which has not been considered yet.

There have been numerous studies on activity recognition
in the health-care domain. The major factors for decreasing
the uncertainty and ambiguity in the recognition results are
the selection of appropriate sensors, the available applica-
tion model as well as the ease of sensor deployment and
cost. For example, Barger et al. [19] studied a health status
monitoring application and learned behavioral patterns of
the user observing his daily activities using a number of
motion sensors. But their system lacks an application model,

41

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



leading to missed events and false positives and a rather low
recognition accuracy for uncommon situations. Najafi et al.
[20] have built a monitoring system for elderly people using
one acceleration sensor, and detecting position transitions and
mode of locomotion. While performing very well for single
transitions in a specific test scenario, the authors admit that for
extended periods of time the sensing quality decreases. Finally,
Biswas et al. [21] investigated different scenarios for elderly
monitoring in home and professional-care scenarios. They
used a complex and most likely expensive sensor setup for
activity recognition, tailored for a specific scenario, state of the
art recognition methods and very promising results. However
their application model informing the recognition is basic and
has been created manually. The authors specifically remark
that knowledge from domain experts should be encoded in the
recognition process. A flow is a very detailed representation
of expert application knowledge, that we used to resolve the
ambiguities when mapping the events to the activities.The
presented approaches all use sophisticated activity recogni-
tion techniques, but do not consider the kind of application
knowledge, that a flow could provide. In summary, the FEvA
approach is a unique algorithm bridging the gap between
activity recognition and context aware applications, dealing
with ambiguities when consuming the recognized events.

VI. Conclusions and FutureWork

FEvA, our new algorithm to resolve ambiguities when
consuming uncertain context information, has demonstrated its
effectiveness under the provided failure models. It achieves a
reasonable assignment when facing a large number of false
positive events and works very well when facing out-of-
order events. We were able to limit the impact of a small
number of missing events. We conclude that FEvA would be
a very useful supplement for systems and environments where
a lot of context information drives structured applications,
such as the health-care documentation scenario we mentioned.
In this scenario, FEvA significantly improves the perceived
dependability of context-aware applications, advancing their
user acceptance.

However, there is room for improving FEvA. Currently, we
aim for a better mechanism to deal with the missed events.
Furthermore, investigating the effects of different weighting
functions per activity could lead to interesting results. Finally,
it would be interesting to extend the approach not taking only
one but multiple flow into account.

VII. Acknowledgments

The work described in this paper is partially funded by the
7th Framework EU-FET Project 213339 ALLOW

References

[1] Weiser, M.: The computer for the 21st century. Scientific American
265(3) (September 1991) 94–104

[2] Kjaer, K.E.: A survey of context-aware middleware. In: SE’07:
Proceedings of the 25th conference on IASTED International Multi-
Conference, Anaheim, CA, USA, ACTA Press (aug 2007) 148–155

[3] Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing
2(4) (2007) 263–277

[4] Lange, R., Weinschrott, H., Geiger, L., Blessing, A., Dürr, F., Rothermel,
K., Schütze, H.: On a generic uncertainty model for position information.
In Rothermel, K., Fritsch, D., Blochinger, W., Dürr, F., eds.: First
Internationa Workshop on Quality of Context, QuaCon 2009. Number
5786 in LNCS, Stuttgart, Springer (June 2009) 76–87

[5] Koch, G.G., Koldehofe, B., Rothermel, K.: Cordies: expressive event
correlation in distributed systems. In: Proceedings of the Fourth ACM
International Conference on Distributed Event-Based Systems. DEBS
’10, New York, NY, USA, ACM (2010) 26–37

[6] Choudhury, T., Philipose, M., Wyatt, D., Lester, J.: Towards activity
databases: Using sensors and statistical models to summarize people’s
lives. IEEE Data Eng. Bull. 29(1) (2006) 49–58

[7] Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable
Pervasive Flows–An Emerging Technology for Pervasive Adaptation.
In: Proceedings of the 2008 Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, IEEE Computer
Society (2008) 108–113

[8] Wolf, H., Herrmann, K., Rothermel, K.: Robustness in Context-Aware
mobile computing. In: IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob’2010),
Niagara Falls, Canada (10 2010)

[9] Zadeh, L.: Fuzzy sets. Information and Control 8(3) (1965) 338–353
[10] Chiao, C., Iochpe, C., Thom, L.H., Reichert, M.: Verifying existence,

completeness and sequences of semantic process patterns in real work-
flow processes. In: Proc. of the Simpsio Brasileiro de Sistemas de
Informao. Rio de Janeiro: UNIRIO, Brazil (2008) p. 164–175.

[11] Lau, J.M., Iochpe, C., Thom, L.H., Reichert, M.: Discovery and analysis
of activity pattern co-occurrences in business process models. In: ICEIS
(3). (2009) 83–88

[12] Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-
aware workflows. In Pernici, B., Gulla, J.A., eds.: CAiSE07 Proceedings
of the Workshops and Doctoral Consortium. Volume 2., Trondheim
Norway, Tapir Acasemic Press (Juni 2007)

[13] Wieland, M., Käppeler, U.P., Levi, P., Leymann, F., Nicklas, D.: Towards
Integration of Uncertain Sensor Data into Context-aware Workflows. In
in Informatics (LNI), G.E.L.N., ed.: Tagungsband INFORMATIK 2009
Im Focus das Leben, 39. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), Lübeck, Lecture Notes in Informatics (LNI) (September 2009)

[14] Adam, O., Thomas, O., Martin, G.: Fuzzy WorkflowsEnhancing Work-
flow Management with Vagueness. In: EURO/INFORMS Istanbul 2003
Joint International Meeting. (2003) 6–10

[15] Adam, O., Thomas, O., Vanderhaeghen, D.: Fuzzy-set-based modeling
of business process cases. In: ICCBR Workshops. (August 2005) 251–
260

[16] van der Aalst, W.M., van Hee, K., Houben, G.: Modelling and
analysing workflow using a petri-net based approach. In: Proc. 2nd
Workshop on Computer-Supported Cooperative Work Petri nets and
related formalisms. (1994) pp 31–50

[17] Pedrycz, W., Gomide, F.: A generalized fuzzy petri net model. Fuzzy
Systems, IEEE Transactions on 2(4) (November 1994) 295 –301

[18] Raposo, A., Coelho, A., Magalhaes, L., Ricarte, I.: Using fuzzy petri
nets to coordinate collaborative activities. In: IFSA World Congress
and 20th NAFIPS International Conference, 2001. Joint 9th. Volume 3.
(2001) 1494 –1499 vol.3

[19] Barger, T., Brown, D., Alwan, M.: Health-status monitoring through
analysis of behavioral patterns. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 35(1) (2005) 22 – 27

[20] Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.,
Robert, P.: Ambulatory system for human motion analysis using a
kinematic sensor: monitoring of daily physical activity in the elderly.
Biomedical Engineering, IEEE Transactions on 50(6) (2003) 711 –723

[21] Biswas, J., Tolstikov, A., Jayachandran, M., Fook, V.F.S., Wai, A.A.P.,
Phua, C., Huang, W., Shue, L., Gopalakrishnan, K., Lee, J.E.: Health and
wellness monitoring through wearable and ambient sensors: exemplars
from home-based care of elderly with mild dementia. Annales des
Télécommunications 65(9-10) (2010) 505–521

42

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6


