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Abstract— Fault tolerance – an ability of a system to cope 
with errors – is an important characteristic of dependable 
systems. However, software development approaches 
traditionally give precedence to modelling nominal system 
behaviour over modelling system behaviour in presence of 
faults. This leads to ad-hoc and error prone implementation 
of fault tolerance mechanisms. In this paper, we propose a 
systematic approach to elicitation and modelling of fault 
tolerance-related requirements. Our approach is based on 
using Failure Modes and Effect Analysis (FMEA) that is 
used to identify faults, their detection and error recovery. 
We rely on use-case modelling to structure system behaviour 
and propose to conduct FMEA of each individual use case. 
Our approach facilitates elicitation and structuring of fault 
tolerance behaviour. It enables an integrated modelling of 
nominal and abnormal system behaviour from early 
development phases.  
Keywords - use cases; failure modes and effect analysis 
(FMEA); fault tolerance; requirements  

I. INTRODUCTION 
 

The model-driven approaches to software development 
[1] usually represent system functionality in term of use 
cases. Use cases [2] describe system behaviour at 
different levels of abstraction. At the highest level of 
abstraction they depict the services that the system 
provides to its users. At the lower layers of abstraction, 
they describe functions of system components. Use-case 
modelling facilitates structuring complex requirements 
and serves as a basis for validating system design at the 
later stages of the development.  

Traditionally modelling focuses on describing nominal 
system functionality. Yet, there are also many abnormal 
(exceptional) situations that arise during system 
execution.  System dependability [3] can be jeopardized if 
such abnormal situations are not handled in a proper way, 
i.e., if fault tolerance mechanisms are implemented 
incorrectly. Although fault tolerance mechanisms 
constitute a significant part of software, they are often 
introduced at the implementation stage and in a rather ad-
hoc fashion.  

In this paper we propose an approach to conducing 
failure modes and effect analysis (FMEA) [4] over the use 
cases. FMEA is a widely used inductive safety analysis 
technique. We demonstrate how to apply FMEA to 
represent abnormal situations in use case execution. Our 
approach allows the designers systematically explore 
exceptional situations, identify their causes and error 
recovery strategy. We propose the patterns for conducting 
FMEA at different levels of abstraction and demonstrate 
how to incorporate the results of such an analysis into use 
case representation. The requirements obtained while 
conducting FMEA are systematically captured in the use 
case system model. 

It is widely accepted that building in dependability and 
in particular, fault tolerance, early in the development 
process is more cost-effective and results in more robust 
design [3,4].  Our approach facilitates early consideration 
of fault tolerance in the design process. It allows the 
designers to uncover the additional requirements, which 
are needed to ensure fault tolerance. Moreover, it makes 
the process of requirements engineering more structured 
and hence improves requirements traceability.  

The proposed approach is illustrated by a case study – 
modelling and analysis of an autonomous robot. 
 

II. MODELING FAULT-TOLERANT SYSTEMS 
 
The main goal of introducing fault tolerance is to design a 
system in such a way that faults of components do not 
result in a system failure [3,5,6].  A fault manifests itself as 
error – an incorrect system state [3,10]. Nowadays the 
main part of fault tolerance mechanisms are software 
implemented, i.e., software should detect errors and initiate 
error recovery. Error recovery is an attempt to restore a 
fault-free system state or at least preclude system failure. 
There are two types of error recovery: dynamic and fail-
safe recovery. In the former case, upon detection of error 
software executes certain actions to restore a fault-free 
system states and then resumes normal system functioning 
without stopping the system. In contrast, fail-safe error 
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recovery brings the system into a safe but non-operational 
state, i.e., executes system shut-down.  

Initially the system is assumed to be fault free. Upon 
successful initialization, the system enters an automatic 
operating mode. While no error is detected, the system 
executes the normal control functions. Upon detection of an 
error software tries to execute error recovery and resumes 
normal function.  If error is deemed to be fatal then 
software ceases its function and notifies the operator about 
it (e.g., by raising an alarm).   

Use case modelling is a widely used technique for 
discovering and representing behavioural requirements of 
software-intensive systems [2]. A use case describes, 
without revealing the system implementation details, the 
system responsibilities and interactions with its 
environment while providing the requested services. A use 
case represents a distinct unit of interaction between an 
environment (human or machine) called an actor and the 
system. In general, the actors can be thought of as different 
stake holders that request the services to pursue their goals. 
Each use case describes a certain functionality to be 
designed. It can also include another use cases.  Usually a 
use case contains several scenarios – the main scenario 
describing successful execution – and an alternative one 
describing various deviations. 

There are ongoing debates on the principles of use case 
modelling.  For instance, Fowler advices against breaking 
use cases into sub- use cases [7]. We argue that this 
approach is unsuitable for development of large-scale 
industrial systems. In this paper we adopt refinement-
based approach to use case modelling. Namely, we 
propose to build the use case model gradually in a top-
down manner.  

Our initial model describes system functionality in 
terms of services delivered by the system in response to 
the service requests. The service requests are generated by 
the system environment represented by a certain actor. 
While designing a service, we should provide means for 
tolerating faults of various natures. In general, an 
execution of each service can fail. Hence each use case 
should contain means for fault tolerance. We propose to 
supplement each use case with an auxiliary use case 
defining a fault tolerance mechanism, which should be 
activated if an execution of the main use case fails. The 
initial use case diagram describes the basic use cases and 
supplements each of them with the auxiliary use cases to 
model error recovery. Observe that the auxiliary use cases 
confine all possible alternative actions to be undertaken 
for error recovery. In Fig. 1 we propose a general pattern 
for use-case modelling of a fault-tolerant system at the 
abstract level. 
 
 
 
 

 

 
Figure1. Use case diagram of fault-tolerant system 

 
Often at the abstract level of modelling the requirements 
describing the fault tolerance mechanism are yet to be 
discovered. However, even an abstract representation of 
them in the use case diagram shown in Fig. 1 enforces 
early consideration of fault tolerance aspect and facilitates 
elicitation of the requirements related to fault tolerance. 

Usually a service provided by a system is a 
composition of certain subservices. In the use case 
modelling this can be depicted by decomposing the 
abstract use cases and refining the overall use case model.   
On the one hand, the refined use case diagram introduces 
the lower-layer use cases and defines relationships 
between the use cases on the higher and the lower layers. 
Such relationships are depicted via the stereotype 
<<include>>, since an execution of the upper-layer 
use case involves the execution of several lower-layer use 
cases. On the other hand, the refined use-case diagram 
specifies more precisely the fault tolerance mechanisms, 
which should be introduced to provide error recovery at 
each level of abstraction. Eventually we arrive at the use 
case diagram of the form presented in Fig. 2. 

 

 
Figure 2.  General pattern for final use case diagram  

 
Observe that the use case diagram has the layered 

structure. The first layer encompasses the use cases 
describing functionality of the system from the 
environment perspective. They define the services, which 
the environment expects from the system. Each 
refinement step introduces the lower layers, which contain 
the use cases whose execution is required to provide the 
use cases at the upper layers. The decomposition is 
rendered via the <<include>> stereotype. The fault 
tolerance mechanisms are related with the corresponding 
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use cases via the <<extend>> stereotype, as we 
discussed previously.  

The occurrence of errors might prevent accomplishing 
the actor’s goals. While designing a system it is important 
to ensure that each service request is acknowledged either 
by the successful result or by a meaningful error message. 
An error message might also contain the information that 
gives the actor a recommendation on how to achieve the 
desired goal by the other means. 

In Fig. 3 we show the general template of use case 
description of a service as well as error handling use case. 
The general template can be applied to describe use cases 
at all levels of abstractions. It is easy to observe that fault 
tolerance mechanism has a hierarchical structure – failure 
of lower layer use cases are handled from higher-level 
recovery use cases.  

It is easy to observe that completeness of fault 
tolerance requirements directly depends on whether our 
analysis of possible failures modes of use cases is 
exhaustive. To facilitate the analysis of possible failure 
modes of use cases, we propose to use Failure Mode and 
Effect Analysis (FMEA) [4]. It is a well-known inductive 
technique for eliciting failure modes of system 
components. Next we demonstrate how to apply this 
technique to facilitate discovery of failure modes of use 
cases.  

 
Description of use case Operation_Name 
Precondition When use case can be executed 
Postcondition Normal result 

   Exceptional result 
Includes       Lower layer use cases 
Normal sequence of events: 

1. Check input parameters. If check fail execute use case 
Recover_Operation 

2. Steps of use case. If a step includes invocation of lower layer use 
case then check the response. If check succeeds then proceed. 
Otherwise invoke use case Recover_Operation 

Description of use case Recover_Operation 
Precondition Failed input parameters or included use case execution 
Postcondition Handling error      
Extends:       Operation_Name 
Sequence of events: 

1.Check invocation parameters. In case of input parameters failure, 
generate corresponding error and abort execution 
2.In case of included use case failure apply appropriate recovery 
actions, e.g., retry, rollback, abort, reconfiguration. If recovery fails, 
generate corresponding error. Ensure that recovery actions are 
specified for each possible error. 
 

Figure 3. Template of detailed use case description 
 

III. INTEGRATING FMEA AND USE CASES 
  

FMEA [4] is an inductive analysis method, which allows 
us to systematically study the causes of components 
faults, their effects and means to cope with these faults.  
FMEA is used to assess the effects of each failure mode 
of a component on the various functions of the system as 

well as to identify the failure modes significantly affecting 
dependability of the system. FMEA step-by-step selects 
the individual components of the system, identifies 
possible causes of each failure mode, assesses 
consequences and suggests remedial actions.  The results 
of FMEA are usually represented in the tabular form that 
contains the following fields: component name, failure 
mode, possible cause, local effect, system effect, 
detection, and remedial action.  

In this paper we propose to use FMEA to derive 
possible failure outcomes of each use case execution. To 
facilitate FMEA of use cases we introduce taxonomy of 
possible failure modes of use cases and outline 
corresponding detection procedures and remedial actions. 
Below we present the corresponding FMEA tables for the 
typical failure modes. 
 

Use case Use case name (uppermost layer) 
Failure mode Incorrect input parameters 

Possible cause Human or computational error 

Local effects Use case cannot be executed 
System effect Failure to execute requested service   

Detection Check value of input parameters before 
starting to execute use case 

Remedial action Abort service execution, return error 
message to environment  

This failure mode represents an attempt to invoke a 
service with the incorrect input parameters. It is an 
unrecoverable error. While describing a use case, we 
should ensure that the returned erroneous service response 
identifies the causes of the failure.  

 
Use case Use case name (lower layer) 

Failure mode Incorrect input parameters 
Possible cause Computational error 

Local effects Use case cannot be executed 
System effect Failure to execute requested subservice   

Detection Check value of input parameters before 
starting to execute use case 

Remedial action 
Abort use case execution, suspend 
service provision,  return error message 
to the service requester 

 
This failure mode represents a failure to execute lower 

layer use case due to incorrect input parameters. Usually 
occurrence of such a failure would correspond to 
receiving an exception [8]. As an error recovery, the 
service requester should diagnose the cause of failure 
either by re-computing the input parameters or by 
propagating the exception further in the use case 
hierarchy. 
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Use case Use case name (uppermost layer) 

Failure mode Incorrect service provision (wrong 
postcondition) 

Possible cause 
Computational error or unrecoverable 
error of subservices, or physical 
component failure 

Local effects Incorrect provision of service 
System effect Service is executed incorrectly   

Detection Check postcondition, generate error 
message, implement logging 

Remedial action Abort service execution, return error 
message to environment, halt system  

 
The failure mode described above analyses an occurrence 
of a failure while executing a service. The failure might 
be caused by a failure of a lower layer use case or by a 
computational error at a higher level of abstraction.  The 
diagnostic of such a failure aims at identifying its causes 
and deciding on the appropriate error recovery strategy. 

The use case describing a similar type of failure of 
lower layer use case can be defined in the same way. In 
case the failure is transient, the error recovery by retry 
would possibly bring the system back to the normal state. 
In case the failure cannot be recovered, the error message 
is propagate to the upper layers of hierarchy. 

The use case below describes service omission error. It 
is detected by the missed deadline. The failure mode of 
the use case on the lower layer is defined in the similar 
way. 
 

Use case Use case name (uppermost layer) 
Failure mode No response 

Possible cause 
Computational error or failure of lower 
layer use cases or communication 
failure 

Local effects Use case is not executed 

System effect No response on service requests within 
the deadline 

Detection Timeout 

Remedial action 
Execute system diagnostics. If no error  
is detected then resume normal 
operation otherwise halt system  

 
Let us demonstrate the application of the proposed 

method to structure and model requirements of an 
autonomic robot.  

IV. CASE STUDY  
 

We illustrate use-case modelling of a fault-tolerant system 
by an example – an autonomic robot. The robot should 
move on a surface, i.e., in XY- directions and grab the 
objects located at certain positions. Via a radio-link a 
human operator sends the robot commands to move from 
one position to another, grab and release objects. The 
robot works autonomously. Such kind of robots are used 

in the environments that are hazardous for humans, e.g., 
to perform rescue operations. Since faults might prevent 
the robot from executing the requested service (that might 
lead to a failure of the rescue operation), the system has 
strict fault tolerance requirements. 
 The service-level use case model of the robot shown in 
Fig. 4 is very simple. It has two main use cases – move to 
the target coordinates and grab/release – and two auxiliary 
use cases to implement error recovery.   

 
Figure 4. Service-level use-case model of the robot 

 
Let us demonstrate how FMEA of the services-level use 
cases facilitates elicitation of fault tolerance requirements.  
 

Use case Move 
Failure mode No response 

Possible 
cause 

- Communication failure  
- Lack of mechanism to detect timeout of 
lower layer use cases  
- Computational error (non-termination) 

Local effects Use case is not executed 

System effect No response on service requests within the 
deadline 

Detection Timeout 

Remedial 
action 

- Retry execution of the use case. If 
execution succeeds then resume normal 
operation.  
- To diagnose communication failure send 
ping request. If no response then halt the 
system. 
- To ensure that execution terminates, set 
deadlines for execution of each lower layer 
use case. 
- To ensure termination guarantee 
termination of error recovery and proper 
handling of exceptions. 

 
The example of FMEA allows us to identify important 
requirements, such as introduce timers, ensure 
termination of error recovery and additional functionality 
required to implement diagnostics of communication 
failure.  Moreover, the system design should also ensure 
that upon completing each service, the success or failure 
of the execution is checked.    

The service-level use case diagram is further refined to 
model the details of use-case implementation as shown in 
Fig. 5.  Each service is decomposed into the lower layer 
use cases, which should be executed to implement it.  

Operator 

Move 

Recover  Move 

Recover  Grab//Release 

Grab/Release 

<<extend>> 

<<extend>> 
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Figure 5. Refinement of use-case diagram of the robot 

 
The diagram is created according to the pattern proposed 
in Fig. 2. The main use cases are decomposed into the 
lower layer use cases, which should be executed to 
implement them. At this refinement step, a more detailed 
description of error recovery can be given as well. We add 
the details of the possible causes of faults, detection and 
error recovery into our FMEA analysis.  This allows us to 
arrive at the detailed description of use cases. Below we 
present a detailed description of the Move use case, 
which contains description of the possible errors and 
corresponding error recovery procedures derived from 
FMEA results.  
  The precondition might fail, if the operator inputs 
wrong parameters. In the use case Recover Move we 
model the notification of the operator and shut down.  The 
execution of Move essentially consists of executing the 
included lower-layer use cases Move to X position, 
Rotate Wheels and Move to Y position. The recovery 
from failures is done by executing Recover Move with 
the parameters corresponding to the names of the failed 
use case. 

At the final refinement step the details of executing the 
lowest-layer use cases and failure modes of the 
components, involved in the execution become available. 
This allows us to establish the exact causes of failures of 
the lowest-layer use cases and precisely define the 
required remedial action precisely.  We omit presenting 
the detailed description of the lower layer use cases. The 
use case diagram obtained at the final step adheres to the 
pattern presented in Fig. 4. The detailed description of 
functional requirements and the requirements related to 
fault tolerance are obtained at this stage.  

In this section we have illustrated the evolution of use-
case model of a fault-tolerant system. We emphasized 
reasoning about fault tolerance at each refinement step.  

In general the proposed approach can be seen as a 
generalization of Randell’s recovery  block  approach [6]  

 

 
 
and its translation into use-case modelling. Indeed, a 
recovery block describes how the operator can achieve a 
desired goal in the normal as well as erroneous situations. 
The recovery block has a flat structure, i.e., the operations 
required to achieve the desired goal reside on the same 
level of abstraction. Complexity of modern systems 
requires an encapsulation of the low-level operations and 
hence, imposes the hierarchical style of system 
structuring. In our approach we generalized the recovery 
block mechanism by introducing the hierarchy of use 
cases defining how the desired goal can be achieved.  
 

Operator 

Move 

Recover  Move 

 X Move 

Y Move 

Recover  X Move 

Recover Y Move 

Open  arm 

Close arm  

Grab/release 

<<extend>> <<extend>> 

<<extend>> 

<<extend>> 

<<extend>> 

<<include>> 
<<include>> 

<<include>> 

... 

Recover Open 

Recover Close 

. 

. 
Rotate wheels Recover   Rotate 

<<extend>> 

Use case Move 
Brief description This use case defines system 
reaction on the operator’s command “move to XY 
coordinate”.  It includes activating motor, rotating 
wheels, reading positioning sensors, reporting success 
or failure of the execution 
Includes use cases “X Move”, “Y Move”, “Rotate 
Wheels” 
Extends use case “Recover Move” 
Preconditions Operator requests service Move to X,Y 
position, the system is fault free 
Postconditions The robot reaches the requested 
position before the deadline and success is reported. 
Otherwise failure is reported   
Normal sequence of events  
1. Verify that X,Y are valid coordinates. If the 
verification fails then A_Failure1 in recovery 
sequence, else calculate the distance along the X 
direction and Y direction.  
2. Execute the use cases “Move to X position” 
3. If the execution of the use cases “Move to X 
position”, failed then A_Failure 2 in recovery 
sequence, else proceed to execution of the use cases 
“Rotate Wheels” 
4. Execute “Rotate Wheels”. If execution of “Rotate 
Wheels” failed then A_Failure 3 otherwise proceed to 
execution of “Move to Y position” 
5. If the use case “Move to Y position” failed then 
A_Failure 4 in recovery sequence, else if execution of 
the use case succeeded then report the success of  the 
service execution  
5. … 
Recovery sequence of events  
A_ Failure1: Execute the use case “Recover Move” 
with the parameter “incorrect input parameters”. Shut- 
down the system. Notify the operator 
A_Failure2: If the use case “Move to X position” has 
failed then execute the use case “Recover Aspirate” 
with the parameter “Move to X position”.  If the use 
case “Move to Y position” has failed then execute the 
use case “Recover Aspirate” with the parameter 
“Move to Y position”.   
… 

86

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



 

 

V. CONCLUSIONS 
 

In this paper we demonstrated how to structure 
complex requirements by FMEA and refinement of use 
cases. We propose a pattern for use-case model of fault-
tolerant systems and demonstrated how to structure the 
description of use cases to capture the fault tolerance 
aspect. The pattern aims at enforcing early consideration 
of fault tolerance in the design process. It allows the 
designers to uncover the additional requirements, which 
are needed to ensure fault tolerance. Moreover, the 
proposed pattern makes the process of requirements 
engineering more structured and hence improves 
requirements traceability.  
 Among the pioneering works on addressing 
dependability in UML modelling is research by Alexander 
on misuse cases [1]. He proposed to consider use cases 
with hostile intent to facilitate discovery of dependability-
related requirements. While the developers of safety- and 
security-critical systems are familiar with misuse-case 
modelling, the developers of non-critical systems 
traditionally rely on use-case modelling. Often safety or 
security implications are unknown in the beginning of the 
system development and uncovered later in the 
development process. As a result, the development of a 
critical system is conducted in a traditional style. Our 
approach aims at addressing this problem by enabling 
dependability consideration in the traditional UML 
modelling. 

Alenby and Kelly [9] studied use-case modelling as a 
tool for discovering safety-related requirements. Our 
approach is similar to their work, since the new 
requirements can be discovered as well. However, our 
main focus was to study how to systematically capture 
requirements by conducting FMEA.  

Kelly and Weawer [10] proposed an extension of goal 
structuring notation (GSN) to support safety argument. 
They demonstrated how GSN can facilitate safety 
assurance via structuring safety case. Our approach 
employs the similar idea of decomposing the high-level 
goals into the low-level sub-goals. However, we focused 
on the development process rather than on description of 
safety cases.   

Jurjens focused on algebraic formalization of various 
UML artefacts to reason about safety [11]. However, his 
work leaves aside the problem of capturing dependability-
related requirements in the development process.  

Use cases have been formalized as contracts by Back 
et al. [12]. However, this work does not consider 
dependability aspects.  
 Hassan et al. [13] proposed a methodology that enables 
architectural-level analysis of safety using a combination 
of safety techniques. Our approach provides a support for 
early development stages and hence can be considered as 
complementary to [13]. The opposite approach – deriving 

FMEA from UML models has been explored by David et 
al [14]. The similar issues have been studied by Mazzara 
is the problem frames [15].  The use of FMEA at different 
stages of UML-based development has been explored by 
Hecht et al [16] and Wentao [17]. 

In our future work we are planning to explore further 
various fault tolerance mechanisms and their modelling in 
UML. 
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