

Failure Modes and Effect Analysis of Use Cases: A Structured Approach to
Engineering Fault Tolerance Requirements

Elena Troubitsyna
Åbo Akademi University, Department of Computer Science

Joukhaisenkatu 3-5A, 20520, Turku, Finland
Elena.Troubitsyna@abo.fi

Abstract— Fault tolerance – an ability of a system to cope
with errors – is an important characteristic of dependable
systems. However, software development approaches
traditionally give precedence to modelling nominal system
behaviour over modelling system behaviour in presence of
faults. This leads to ad-hoc and error prone implementation
of fault tolerance mechanisms. In this paper, we propose a
systematic approach to elicitation and modelling of fault
tolerance-related requirements. Our approach is based on
using Failure Modes and Effect Analysis (FMEA) that is
used to identify faults, their detection and error recovery.
We rely on use-case modelling to structure system behaviour
and propose to conduct FMEA of each individual use case.
Our approach facilitates elicitation and structuring of fault
tolerance behaviour. It enables an integrated modelling of
nominal and abnormal system behaviour from early
development phases.
Keywords - use cases; failure modes and effect analysis
(FMEA); fault tolerance; requirements

I. INTRODUCTION

The model-driven approaches to software development
[1] usually represent system functionality in term of use
cases. Use cases [2] describe system behaviour at
different levels of abstraction. At the highest level of
abstraction they depict the services that the system
provides to its users. At the lower layers of abstraction,
they describe functions of system components. Use-case
modelling facilitates structuring complex requirements
and serves as a basis for validating system design at the
later stages of the development.

Traditionally modelling focuses on describing nominal
system functionality. Yet, there are also many abnormal
(exceptional) situations that arise during system
execution. System dependability [3] can be jeopardized if
such abnormal situations are not handled in a proper way,
i.e., if fault tolerance mechanisms are implemented
incorrectly. Although fault tolerance mechanisms
constitute a significant part of software, they are often
introduced at the implementation stage and in a rather ad-
hoc fashion.

In this paper we propose an approach to conducing
failure modes and effect analysis (FMEA) [4] over the use
cases. FMEA is a widely used inductive safety analysis
technique. We demonstrate how to apply FMEA to
represent abnormal situations in use case execution. Our
approach allows the designers systematically explore
exceptional situations, identify their causes and error
recovery strategy. We propose the patterns for conducting
FMEA at different levels of abstraction and demonstrate
how to incorporate the results of such an analysis into use
case representation. The requirements obtained while
conducting FMEA are systematically captured in the use
case system model.

It is widely accepted that building in dependability and
in particular, fault tolerance, early in the development
process is more cost-effective and results in more robust
design [3,4]. Our approach facilitates early consideration
of fault tolerance in the design process. It allows the
designers to uncover the additional requirements, which
are needed to ensure fault tolerance. Moreover, it makes
the process of requirements engineering more structured
and hence improves requirements traceability.

The proposed approach is illustrated by a case study –
modelling and analysis of an autonomous robot.

II. MODELING FAULT-TOLERANT SYSTEMS

The main goal of introducing fault tolerance is to design a
system in such a way that faults of components do not
result in a system failure [3,5,6]. A fault manifests itself as
error – an incorrect system state [3,10]. Nowadays the
main part of fault tolerance mechanisms are software
implemented, i.e., software should detect errors and initiate
error recovery. Error recovery is an attempt to restore a
fault-free system state or at least preclude system failure.
There are two types of error recovery: dynamic and fail-
safe recovery. In the former case, upon detection of error
software executes certain actions to restore a fault-free
system states and then resumes normal system functioning
without stopping the system. In contrast, fail-safe error

82

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

recovery brings the system into a safe but non-operational
state, i.e., executes system shut-down.

Initially the system is assumed to be fault free. Upon
successful initialization, the system enters an automatic
operating mode. While no error is detected, the system
executes the normal control functions. Upon detection of an
error software tries to execute error recovery and resumes
normal function. If error is deemed to be fatal then
software ceases its function and notifies the operator about
it (e.g., by raising an alarm).

Use case modelling is a widely used technique for
discovering and representing behavioural requirements of
software-intensive systems [2]. A use case describes,
without revealing the system implementation details, the
system responsibilities and interactions with its
environment while providing the requested services. A use
case represents a distinct unit of interaction between an
environment (human or machine) called an actor and the
system. In general, the actors can be thought of as different
stake holders that request the services to pursue their goals.
Each use case describes a certain functionality to be
designed. It can also include another use cases. Usually a
use case contains several scenarios – the main scenario
describing successful execution – and an alternative one
describing various deviations.

There are ongoing debates on the principles of use case
modelling. For instance, Fowler advices against breaking
use cases into sub- use cases [7]. We argue that this
approach is unsuitable for development of large-scale
industrial systems. In this paper we adopt refinement-
based approach to use case modelling. Namely, we
propose to build the use case model gradually in a top-
down manner.

Our initial model describes system functionality in
terms of services delivered by the system in response to
the service requests. The service requests are generated by
the system environment represented by a certain actor.
While designing a service, we should provide means for
tolerating faults of various natures. In general, an
execution of each service can fail. Hence each use case
should contain means for fault tolerance. We propose to
supplement each use case with an auxiliary use case
defining a fault tolerance mechanism, which should be
activated if an execution of the main use case fails. The
initial use case diagram describes the basic use cases and
supplements each of them with the auxiliary use cases to
model error recovery. Observe that the auxiliary use cases
confine all possible alternative actions to be undertaken
for error recovery. In Fig. 1 we propose a general pattern
for use-case modelling of a fault-tolerant system at the
abstract level.

Figure1. Use case diagram of fault-tolerant system

Often at the abstract level of modelling the requirements
describing the fault tolerance mechanism are yet to be
discovered. However, even an abstract representation of
them in the use case diagram shown in Fig. 1 enforces
early consideration of fault tolerance aspect and facilitates
elicitation of the requirements related to fault tolerance.

Usually a service provided by a system is a
composition of certain subservices. In the use case
modelling this can be depicted by decomposing the
abstract use cases and refining the overall use case model.
On the one hand, the refined use case diagram introduces
the lower-layer use cases and defines relationships
between the use cases on the higher and the lower layers.
Such relationships are depicted via the stereotype
<<include>>, since an execution of the upper-layer
use case involves the execution of several lower-layer use
cases. On the other hand, the refined use-case diagram
specifies more precisely the fault tolerance mechanisms,
which should be introduced to provide error recovery at
each level of abstraction. Eventually we arrive at the use
case diagram of the form presented in Fig. 2.

Figure 2. General pattern for final use case diagram

Observe that the use case diagram has the layered

structure. The first layer encompasses the use cases
describing functionality of the system from the
environment perspective. They define the services, which
the environment expects from the system. Each
refinement step introduces the lower layers, which contain
the use cases whose execution is required to provide the
use cases at the upper layers. The decomposition is
rendered via the <<include>> stereotype. The fault
tolerance mechanisms are related with the corresponding

Environment

Service1

Recover Service1

Service2

Recover Service2

<<extend>>

<<extend>>

Operation1

Recover Operation1

Operation2

Recover Operation2

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

Abstract specification
(uppermost layer) First refinement step

(Lower decomposition layer)

...

.

.

Environment

Service1 RecoverService1

ServiceN
RecoverServiceN

...

<<extend>>

<<extends>>

83

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

use cases via the <<extend>> stereotype, as we
discussed previously.

The occurrence of errors might prevent accomplishing
the actor’s goals. While designing a system it is important
to ensure that each service request is acknowledged either
by the successful result or by a meaningful error message.
An error message might also contain the information that
gives the actor a recommendation on how to achieve the
desired goal by the other means.

In Fig. 3 we show the general template of use case
description of a service as well as error handling use case.
The general template can be applied to describe use cases
at all levels of abstractions. It is easy to observe that fault
tolerance mechanism has a hierarchical structure – failure
of lower layer use cases are handled from higher-level
recovery use cases.

It is easy to observe that completeness of fault
tolerance requirements directly depends on whether our
analysis of possible failures modes of use cases is
exhaustive. To facilitate the analysis of possible failure
modes of use cases, we propose to use Failure Mode and
Effect Analysis (FMEA) [4]. It is a well-known inductive
technique for eliciting failure modes of system
components. Next we demonstrate how to apply this
technique to facilitate discovery of failure modes of use
cases.

Description of use case Operation_Name
Precondition When use case can be executed
Postcondition Normal result

 Exceptional result
Includes Lower layer use cases
Normal sequence of events:

1. Check input parameters. If check fail execute use case
Recover_Operation

2. Steps of use case. If a step includes invocation of lower layer use
case then check the response. If check succeeds then proceed.
Otherwise invoke use case Recover_Operation

Description of use case Recover_Operation
Precondition Failed input parameters or included use case execution
Postcondition Handling error
Extends: Operation_Name
Sequence of events:

1.Check invocation parameters. In case of input parameters failure,
generate corresponding error and abort execution
2.In case of included use case failure apply appropriate recovery
actions, e.g., retry, rollback, abort, reconfiguration. If recovery fails,
generate corresponding error. Ensure that recovery actions are
specified for each possible error.

Figure 3. Template of detailed use case description

III. INTEGRATING FMEA AND USE CASES

FMEA [4] is an inductive analysis method, which allows
us to systematically study the causes of components
faults, their effects and means to cope with these faults.
FMEA is used to assess the effects of each failure mode
of a component on the various functions of the system as

well as to identify the failure modes significantly affecting
dependability of the system. FMEA step-by-step selects
the individual components of the system, identifies
possible causes of each failure mode, assesses
consequences and suggests remedial actions. The results
of FMEA are usually represented in the tabular form that
contains the following fields: component name, failure
mode, possible cause, local effect, system effect,
detection, and remedial action.

In this paper we propose to use FMEA to derive
possible failure outcomes of each use case execution. To
facilitate FMEA of use cases we introduce taxonomy of
possible failure modes of use cases and outline
corresponding detection procedures and remedial actions.
Below we present the corresponding FMEA tables for the
typical failure modes.

Use case Use case name (uppermost layer)
Failure mode Incorrect input parameters

Possible cause Human or computational error

Local effects Use case cannot be executed
System effect Failure to execute requested service

Detection Check value of input parameters before
starting to execute use case

Remedial action Abort service execution, return error
message to environment

This failure mode represents an attempt to invoke a
service with the incorrect input parameters. It is an
unrecoverable error. While describing a use case, we
should ensure that the returned erroneous service response
identifies the causes of the failure.

Use case Use case name (lower layer)

Failure mode Incorrect input parameters
Possible cause Computational error

Local effects Use case cannot be executed
System effect Failure to execute requested subservice

Detection Check value of input parameters before
starting to execute use case

Remedial action
Abort use case execution, suspend
service provision, return error message
to the service requester

This failure mode represents a failure to execute lower

layer use case due to incorrect input parameters. Usually
occurrence of such a failure would correspond to
receiving an exception [8]. As an error recovery, the
service requester should diagnose the cause of failure
either by re-computing the input parameters or by
propagating the exception further in the use case
hierarchy.

84

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Use case Use case name (uppermost layer)

Failure mode Incorrect service provision (wrong
postcondition)

Possible cause
Computational error or unrecoverable
error of subservices, or physical
component failure

Local effects Incorrect provision of service
System effect Service is executed incorrectly

Detection Check postcondition, generate error
message, implement logging

Remedial action Abort service execution, return error
message to environment, halt system

The failure mode described above analyses an occurrence
of a failure while executing a service. The failure might
be caused by a failure of a lower layer use case or by a
computational error at a higher level of abstraction. The
diagnostic of such a failure aims at identifying its causes
and deciding on the appropriate error recovery strategy.

The use case describing a similar type of failure of
lower layer use case can be defined in the same way. In
case the failure is transient, the error recovery by retry
would possibly bring the system back to the normal state.
In case the failure cannot be recovered, the error message
is propagate to the upper layers of hierarchy.

The use case below describes service omission error. It
is detected by the missed deadline. The failure mode of
the use case on the lower layer is defined in the similar
way.

Use case Use case name (uppermost layer)
Failure mode No response

Possible cause
Computational error or failure of lower
layer use cases or communication
failure

Local effects Use case is not executed

System effect No response on service requests within
the deadline

Detection Timeout

Remedial action
Execute system diagnostics. If no error
is detected then resume normal
operation otherwise halt system

Let us demonstrate the application of the proposed

method to structure and model requirements of an
autonomic robot.

IV. CASE STUDY

We illustrate use-case modelling of a fault-tolerant system
by an example – an autonomic robot. The robot should
move on a surface, i.e., in XY- directions and grab the
objects located at certain positions. Via a radio-link a
human operator sends the robot commands to move from
one position to another, grab and release objects. The
robot works autonomously. Such kind of robots are used

in the environments that are hazardous for humans, e.g.,
to perform rescue operations. Since faults might prevent
the robot from executing the requested service (that might
lead to a failure of the rescue operation), the system has
strict fault tolerance requirements.
 The service-level use case model of the robot shown in
Fig. 4 is very simple. It has two main use cases – move to
the target coordinates and grab/release – and two auxiliary
use cases to implement error recovery.

Figure 4. Service-level use-case model of the robot

Let us demonstrate how FMEA of the services-level use
cases facilitates elicitation of fault tolerance requirements.

Use case Move
Failure mode No response

Possible
cause

- Communication failure
- Lack of mechanism to detect timeout of
lower layer use cases
- Computational error (non-termination)

Local effects Use case is not executed

System effect No response on service requests within the
deadline

Detection Timeout

Remedial
action

- Retry execution of the use case. If
execution succeeds then resume normal
operation.
- To diagnose communication failure send
ping request. If no response then halt the
system.
- To ensure that execution terminates, set
deadlines for execution of each lower layer
use case.
- To ensure termination guarantee
termination of error recovery and proper
handling of exceptions.

The example of FMEA allows us to identify important
requirements, such as introduce timers, ensure
termination of error recovery and additional functionality
required to implement diagnostics of communication
failure. Moreover, the system design should also ensure
that upon completing each service, the success or failure
of the execution is checked.

The service-level use case diagram is further refined to
model the details of use-case implementation as shown in
Fig. 5. Each service is decomposed into the lower layer
use cases, which should be executed to implement it.

Operator

Move

Recover Move

Recover Grab//Release

Grab/Release

<<extend>>

<<extend>>

85

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Figure 5. Refinement of use-case diagram of the robot

The diagram is created according to the pattern proposed
in Fig. 2. The main use cases are decomposed into the
lower layer use cases, which should be executed to
implement them. At this refinement step, a more detailed
description of error recovery can be given as well. We add
the details of the possible causes of faults, detection and
error recovery into our FMEA analysis. This allows us to
arrive at the detailed description of use cases. Below we
present a detailed description of the Move use case,
which contains description of the possible errors and
corresponding error recovery procedures derived from
FMEA results.
 The precondition might fail, if the operator inputs
wrong parameters. In the use case Recover Move we
model the notification of the operator and shut down. The
execution of Move essentially consists of executing the
included lower-layer use cases Move to X position,
Rotate Wheels and Move to Y position. The recovery
from failures is done by executing Recover Move with
the parameters corresponding to the names of the failed
use case.

At the final refinement step the details of executing the
lowest-layer use cases and failure modes of the
components, involved in the execution become available.
This allows us to establish the exact causes of failures of
the lowest-layer use cases and precisely define the
required remedial action precisely. We omit presenting
the detailed description of the lower layer use cases. The
use case diagram obtained at the final step adheres to the
pattern presented in Fig. 4. The detailed description of
functional requirements and the requirements related to
fault tolerance are obtained at this stage.

In this section we have illustrated the evolution of use-
case model of a fault-tolerant system. We emphasized
reasoning about fault tolerance at each refinement step.

In general the proposed approach can be seen as a
generalization of Randell’s recovery block approach [6]

and its translation into use-case modelling. Indeed, a
recovery block describes how the operator can achieve a
desired goal in the normal as well as erroneous situations.
The recovery block has a flat structure, i.e., the operations
required to achieve the desired goal reside on the same
level of abstraction. Complexity of modern systems
requires an encapsulation of the low-level operations and
hence, imposes the hierarchical style of system
structuring. In our approach we generalized the recovery
block mechanism by introducing the hierarchy of use
cases defining how the desired goal can be achieved.

Operator

Move

Recover Move

 X Move

Y Move

Recover X Move

Recover Y Move

Open arm

Close arm

Grab/release

<<extend>> <<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>
<<include>>

<<include>>

...

Recover Open

Recover Close

.

.
Rotate wheels Recover Rotate

<<extend>>

Use case Move
Brief description This use case defines system
reaction on the operator’s command “move to XY
coordinate”. It includes activating motor, rotating
wheels, reading positioning sensors, reporting success
or failure of the execution
Includes use cases “X Move”, “Y Move”, “Rotate
Wheels”
Extends use case “Recover Move”
Preconditions Operator requests service Move to X,Y
position, the system is fault free
Postconditions The robot reaches the requested
position before the deadline and success is reported.
Otherwise failure is reported
Normal sequence of events
1. Verify that X,Y are valid coordinates. If the
verification fails then A_Failure1 in recovery
sequence, else calculate the distance along the X
direction and Y direction.
2. Execute the use cases “Move to X position”
3. If the execution of the use cases “Move to X
position”, failed then A_Failure 2 in recovery
sequence, else proceed to execution of the use cases
“Rotate Wheels”
4. Execute “Rotate Wheels”. If execution of “Rotate
Wheels” failed then A_Failure 3 otherwise proceed to
execution of “Move to Y position”
5. If the use case “Move to Y position” failed then
A_Failure 4 in recovery sequence, else if execution of
the use case succeeded then report the success of the
service execution
5. …
Recovery sequence of events
A_ Failure1: Execute the use case “Recover Move”
with the parameter “incorrect input parameters”. Shut-
down the system. Notify the operator
A_Failure2: If the use case “Move to X position” has
failed then execute the use case “Recover Aspirate”
with the parameter “Move to X position”. If the use
case “Move to Y position” has failed then execute the
use case “Recover Aspirate” with the parameter
“Move to Y position”.
…

86

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

V. CONCLUSIONS

In this paper we demonstrated how to structure
complex requirements by FMEA and refinement of use
cases. We propose a pattern for use-case model of fault-
tolerant systems and demonstrated how to structure the
description of use cases to capture the fault tolerance
aspect. The pattern aims at enforcing early consideration
of fault tolerance in the design process. It allows the
designers to uncover the additional requirements, which
are needed to ensure fault tolerance. Moreover, the
proposed pattern makes the process of requirements
engineering more structured and hence improves
requirements traceability.
 Among the pioneering works on addressing
dependability in UML modelling is research by Alexander
on misuse cases [1]. He proposed to consider use cases
with hostile intent to facilitate discovery of dependability-
related requirements. While the developers of safety- and
security-critical systems are familiar with misuse-case
modelling, the developers of non-critical systems
traditionally rely on use-case modelling. Often safety or
security implications are unknown in the beginning of the
system development and uncovered later in the
development process. As a result, the development of a
critical system is conducted in a traditional style. Our
approach aims at addressing this problem by enabling
dependability consideration in the traditional UML
modelling.

Alenby and Kelly [9] studied use-case modelling as a
tool for discovering safety-related requirements. Our
approach is similar to their work, since the new
requirements can be discovered as well. However, our
main focus was to study how to systematically capture
requirements by conducting FMEA.

Kelly and Weawer [10] proposed an extension of goal
structuring notation (GSN) to support safety argument.
They demonstrated how GSN can facilitate safety
assurance via structuring safety case. Our approach
employs the similar idea of decomposing the high-level
goals into the low-level sub-goals. However, we focused
on the development process rather than on description of
safety cases.

Jurjens focused on algebraic formalization of various
UML artefacts to reason about safety [11]. However, his
work leaves aside the problem of capturing dependability-
related requirements in the development process.

Use cases have been formalized as contracts by Back
et al. [12]. However, this work does not consider
dependability aspects.
 Hassan et al. [13] proposed a methodology that enables
architectural-level analysis of safety using a combination
of safety techniques. Our approach provides a support for
early development stages and hence can be considered as
complementary to [13]. The opposite approach – deriving

FMEA from UML models has been explored by David et
al [14]. The similar issues have been studied by Mazzara
is the problem frames [15]. The use of FMEA at different
stages of UML-based development has been explored by
Hecht et al [16] and Wentao [17].

In our future work we are planning to explore further
various fault tolerance mechanisms and their modelling in
UML.

REFERENCES

[1] I. Alexander. Misuse cases: Use Cases with Hostile Intent.

IEEE Software, vol.20 (1), pp. 58-66, 2003.
[2] G. Booch, J. Rumbaugh, and I. Jacobson. “The Unifying

Modeling Language User Guide”. Addison-Wesley, 1999.
[3] J.-C. Laprie. Dependability: Basic Concepts and

Terminology. Springer-Verlag, Vienna, 1991.
[4] N. Storey. Safety-critical computer systems. Addison-

Wesley, 1996.
[5] T. Anderson and P.A. Lee. Fault Tolerance: Principles and

Practice. Dependable Computing and Fault-Tolerant
Systems, Vol 3. Springer Verlag; 1990.

[6] B. Randell and J. Xu, The Evolution of the Recovery Block
Concept. In M. Lyu (ed.) Software Fault Tolerance. Wiley
1994.

[7] M.Fowler. UML Distilled: A brief Guide to the Standard
Object Modelling Language. Addison-Wesley, 2004.

[8] F. Cristian. Exception Handling. In T. Anderson (ed.):
Dependability of Resilient Computers. BSP Professional
Books, 1989.

[9] K. Allenby, T. P. Kelly. Deriving Safety Requirements
using Scenarios. In Proc. of the 5th IEEE International
Symposium on Requirements Engineering (RE'01),
Toronto, Canada, pp.228-235, 2001.

[10] T. Kelly and R. Weaver. The goal Structuring Notation – A
Safety Argument Notation. In Proc. of The Dependable
Systems and Networks 2004 Workshop on Assurance
Cases, July 2004.

[11] J. Jürjens. Developing safety-critical systems with UML. In
Proc. of UML’2003. Lecture Notes in Computer Science,
San Francisco, USA, October 2003, pp.360 – 372.

[12] R.-J. Back, L. Petre and I. Porres. Analysing UML Use
Cases as Contracts. In Proceedings of UML'99. Fort
Collins, Colorado, USA, October 1999. Lecture Notes in
Computer Science 1723, pp. 518-533, Springer-Verlag.

[13] A.Hassan, K. Goseva-Popstojanova, K and H. Ammar.
UML based severity analysis methodology. In Proc. of
Reliability and Maintainability Symposium. Computer
Press, 2005

[14] P. David, V. Idasiak & F. Kratz. Towards a better
interaction between design and dependability analysis:
FMEA derived from UML/SysML models. In Proc of
ESREL 2008 and 17th SRA-EUROPE, Spain, 2008.

[15] M. Mazzara, Deriving Specifications of Dependable
Systems: toward a method. CS-TR 1152 –Technical report
Newcastle University, May 2009.

[16] H.Hecht, X.An and M.Hecht. Computer-Aided Software
FMEA. In Proc. of RAMS 2004, Computer Press, 2004.

[17] W.Wentao and Z.Hong. FMEA for UML-Based Software.
In Proc. of World Congress on Software Engineering,
Computer Press, 2009.

87

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

