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Abstract – Despite extensive design processes, emergent
and anomalous behavior can still appear at runtime in
dependable automotive systems. This occurs due to the
existence of unexpected interactions and unidentified
dependencies between independently-developed com-
ponents. Therefore, system-level mechanisms must be
provided to quickly diagnose such behavior and deter-
mine an appropriate corrective action. DIAGNOSTIC
FUSION describes a holistic process for synthesizing
data across design stages and component boundaries in
order to provide an actionable diagnosis.
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1 Introduction

A growing trend in the automotive industry is toward fea-
tures that assist the driver in maintaining safe control of the
vehicle under a variety of conditions. Previously, such as-
sistance has been provided passively in the form of infor-
mation or warnings. These features are now being given
increasing amounts of authority to control the vehicle’s mo-
tion by actively supplementing the driver’s inputs. The long
term trend is towards fully autonomous operation [17, 19].

This trend has largely been enabled by advances in
software-intensive distributed systems. Because these are
safety-critical systems, they must be designed to tolerate
faults and provide high levels of dependability. Typically,
a systematic safety analysis is conducted during the de-
sign phase to evaluate both the severity and likelihood of
the consequences of possible faults. Formal verification
methods are used to analyze system dependability. The up-
coming ISO 26262 standard for functional safety in auto-
motive electronics recommends that fault-injection also be
included as part of the dependability analysis of critical sys-
tems [10].

Despite these extensive design processes, emergent and
anomalous behavior can still appear at runtime in de-
pendable automotive systems. This occurs due to unex-

pected interactions and unidentified dependencies between
independently-designed components. These interactions
are not readily apparent to the system designers and might
not be captured by system models. Therefore, system-level
mechanisms must be provided to quickly diagnose such be-
havior and determine an appropriate corrective action at
runtime. Diagnostic approaches that operate strictly at the
component or subsystem level and rely mainly on functional
models may not provide a satisfactory diagnosis. A holistic
approach that analyzes empirical metrics as well as func-
tional models, and then synthesize the information across
component and subsystem boundaries is needed.

2 Diagnostic Fusion

Sensor fusion is a well-known technique for combining
multiple sources of sensor information, and then correlating
that information to get a composite view of the state of the
environment being sensed, as well as the state of health of
the sensors being fused. Sensor fusion does not itself come
up with new sensing technologies, but combines the exist-
ing sensing technologies at the system level. By analogy,
diagnostic fusion does not define new diagnosis algorithms
or methodologies, but finds ways to combine existing diag-
nosis algorithms and methodologies at the system level to
satisfy the goals, requirements, and constraints of the sys-
tem.

Diagnostic fusion is parameterized by the instrumenta-
tion that it uses to collect data (see Section 2.1) and the
algorithms that it uses to extract and combine information
from the collected data (see Section 2.2). Defining these pa-
rameters involves navigating the tradeoff space discussed in
Section 3.

2.1 Instrumentation

Instrumentation refers to a source of data from which in-
formation can ultimately be obtained through analysis. The
holistic approach that we propose for diagnostic fusion is
unique in that it instruments the design process as well as
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the developed system. The data obtained through design-
time instrumentation ultimately drives the instantiation of
run-time instrumentation (see Section 3.1).

Design-time instrumentation points are derived from the
artifacts produced at each stage of the design process. Such
artifacts include design documents, models and empirical
data. For example, Failure Mode and Effects Analysis
(FMEA) documents provide information that can be used to
develop fault signatures. Fault Tree Analysis (FTA) docu-
ments can contain information that characterizes dependen-
cies and interactions between system components. Compo-
nent and system models (e.g., MATLAB/Simulink models)
can be used to identify potential run-time instrumentation
points. Fault models, functional requirements, and safety
specifications can be used to derive the level of detail that
an actionable diagnosis is required to provide. Empirical
data from fault-injection processes and vehicle prototypes
can provide information on normal versus abnormal system
behavior.

At run-time, there are numerous discrete instrumenta-
tion points that can provide diagnostic data. These in-
strumentation points can provide black-box, white-box or
gray-box views and exist at the system-level as well as
the component-level. Examples of potential run-time in-
strumentation points are the error indicators provided by
the communication controller, hooks inserted into software
components [13], and Operating System (OS) metrics such
as context-switch rates. Another approach demonstrates the
extent to which diagnosis is possible using only passive
monitoring in FlexRay-based networks [2]. Several aspects
of the FlexRay protocol that can be used to aid diagnosis un-
der such restrictions, such as syntactic failures in the value
domain (e.g., Cyclic Redundancy Check (CRC), header val-
ues), semantic failures in the value domain (e.g., application
specific plausibility checks) and failures in the time domain
(e.g., early, late or missing messages).

2.2 Algorithms

By combining and analyzing the trends of data at the
component-level, subsystem-level and system-level, the di-
agnostic fusion module can detect escalating anomalous be-
havior in the system, localize the source of the problem
and provide an actionable diagnosis. This approach in-
volves employing data analysis through machine-learning
and data-mining techniques on the generated error logs and
the instrumented data that is extracted out of the system and
its components. The diagnostic fusion process will need to
correlate time-stamped data across multiple Electronic Con-
trol Units (ECUs) and subsystems, not only to localize the
source of a failure, but also to examine possible propagation
paths that can lead to additional, related failures.

Failure diagnosis approaches in enterprise systems typ-

ically localize anomalous system behavior through statisti-
cal analysis of time-series data [6, 8, 9, 11, 14] or through
control-flow and data-flow analysis [1, 3, 5, 7, 12]. How-
ever, the failure diagnosis approaches developed for enter-
prise systems might not be directly applicable to automotive
systems because automotive systems have limited process-
ing and storage capacity and might not support the level of
instrumentation and processing needed by the enterprise ap-
proach. Automotive systems also generally require a higher
degree of accuracy and lower diagnosis latencies than enter-
prise systems due to the safety-critical and interactive nature
of chassis and powertrain subsystems.

For example, peer comparison is a valuable tool for
anomaly-detection, especially in enterprise environments
with fluctuating workloads. However, peer comparison is
less effective with correlated failures, which occur when a
fault originates in one node and then propagates to other
nodes in the system. Emergent behavior is likely to arise
from correlated failures between components with uniden-
tified dependencies. Peer comparison also requires a cer-
tain level of homogeneity to exist between the compared
peers, whereas automotive distributed systems are largely
heterogenous.

The classic formulation of system diagnosis is the
Preperata-Metze-Chien (PMC) model [16]. Under the PMC
model, components test each other according to predeter-
mined assignments. The set of test results (called the syn-
drome) can then be collected and analyzed to determine the
health of each component. Subsequent work extended the
PMC model by addressing limitations that made it imprac-
tical for application in real fault-tolerant systems; an exten-
sive survey of such work is available [4]. System-diagnosis
algorithms developed for automotive systems leverage lo-
cal status-indicators provided to produce a global view of
the network’s health [15, 18]. This is accomplished by dis-
seminating and aggregating diagnostic information via di-
agnostic messages, and then performing analysis on the ag-
gregated data.

3 Diagnostic Requirements and Tradeoffs

Developing a run-time instantiation of the diagnostic fusion
process will require navigating a complex tradeoff space,
which is comprised of the relationships between coverage,
latency, accuracy, and cost requirements.

• The diagnostic latency is the time between the activa-
tion of a fault and the output of an actionable diagnosis.

• Safety process standards define coverage as the per-
centage of possible errors that can actually be detected
by a system. In functional safety standards such as
ISO26262 [10], the required coverage will vary with
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Automotive Safety Integrity Level (ASIL). For exam-
ple, an ASIL D system may require 99% coverage of
all memory errors, while an ASIL C system may re-
quire only 90% coverage.

• Diagnostic accuracy is the probability that any given
diagnosis is correct, and can be expressed in terms of
false-positive and false-negative rates.

• Diagnosis will impose some overhead, or cost, on the
system. The cost can also be expressed in economic
terms if additional resources are required to compen-
sate for or implement diagnostic functions.

Some very simple examples serve to illustrate the trade-
off space. Clearly, a highly accurate diagnosis might take
longer to produce, increasing latency. If you need low la-
tency, you might have to allow for a reduction in accu-
racy. On the other hand, in some instances, the latency
could be decreased by adding resources, thereby raising the
cost. High coverage might require more resources or instru-
mentation, which would also increase the cost of diagnosis.
The diagnostic fusion process could cover a large space of
faults with reduced accuracy, or a small space of faults with
greater accuracy, especially when trying to discriminate be-
tween fault types.

3.1 Diagnosis Advisor

Manually balancing these tradeoffs can be a significant
challenge for system designers. Therefore, we further pro-
pose a Diagnosis Advisor (DA) that characterizes the sys-
tem at design-time and develops set of parameters that are
used to instantiate the diagnostic fusion process at run-time.
Artifacts from each stage of the design process are provided
as inputs to the DA. Such inputs could include fault mod-
els, FMEA documents, dependability requirements, feature
specifications, or functional models. The DA analyzes these
inputs, and provides the system designer with a set of pa-
rameters that can be used by the diagnostic fusion process
to fulfill the diagnostic requirements of the system.

The analysis performed by the DA is aimed at determin-
ing an appropriate set of parameters for instantiating the di-
agnostic fusion process at run-time. The DA does not de-
velop new algorithms by itself. Rather, it aids the system
designer in choosing from a set of existing algorithms that
can later be combined by the diagnostic fusion process at
run-time. The DA performs its analysis at design-time, and
so can be a centralized tool. However, the DA could output
either a centralized or distributed configuration for the diag-
nostic fusion module, depending on the system’s diagnostic
and dependability requirements.

4 Research Questions and Challenges

This work seeks to address three key research questions.

Research Question 1 Given specific input requirements
relating to cost, dependability and performance, how can
a configuration of instrumentation-sources and analysis-
algorithms be synthesized, which can diagnose emergent
behavior effectively and within the latency required for an
actionable response?

Research Question 2 What is the coverage of the diagnos-
tic configuration output by the DA, and how do we handle
cases when such a configuration is impossible due to the
constraints imposed on the system?

Research Question 3 What is the trade-off space of the
cost (i.e., the overhead of increased instrumentation) vs. the
accuracy of fault-localization?

There are challenges related to each of the following as-
pects: holistic, data-driven and diagnosis. For instance, di-
agnostic fusion aims to extract data from every phase of the
development cycle. However, it is even more important to
extract the right data. Moreover, this data comes at the ex-
pense of human overhead (e.g., development hours) as well
as system and communication overhead. This overhead will
need to be minimized, as well as balanced with the benefits
provided by diagnostic fusion. Appropriate analytic tech-
niques will then need to be developed, applied and evalu-
ated in order to provide actionable diagnostic output. Fi-
nally, the the dependability of the DA and its outputs must
be analyzed.

Potential sources of data have to be identified, even
though it is not clear what instrumentation points will be
available in future automotive architectures. Each poten-
tial instrumentation point will then need to be characterized
with respect to the utility it provides and the overhead it
imposes. Moreover, the relationships between instrumenta-
tion points have to be studied. For example, if some sources
of instrumentation are redundant or synergistic, can they be
correlated as a sanity check? On the other hand, can sources
of instrumentation that are disjoint or independent be lever-
aged to provide a more complete picture of the vehicle’s
health?

Identifying algorithms that can detect specific kinds of
failures based on the instrumentation available to them is a
key issue. Once these algorithms have been identified, they
will need to be implemented in a resource-constrained en-
vironment. For algorithms developed in enterprise environ-
ments, this could be a significant challenge. Just as with
instrumentation points, the utility provided and overhead
imposted by the algorithms will also need to be character-
ized. Further, the diagnostic accuracy and granularity (e.g.,
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component-level, subsystem-level, etc.) provided by vari-
ous combinations of algorithms and instrumentation should
be shown experimentally as well as analytically.

5 Summary

Despite extensive design processes, emergent behavior
can still appear at runtime in dependable automotive sys-
tems. The holistic approach used in diagnostic fusion can
address this problem in two ways. First, by synthesizing
data across design phases, dependencies and interactions
that could have otherwise been undetected can be identified.
Second, by coherently characterizing the expected behavior
of the system, diagnostic fusion will provide a more robust
means of detecting and diagnosing emergent behavior as it
occurs.
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F. Tagliabò, and J. Koch. A tunable add-on diagnostic
protocol for time-triggered systems. In Proceedings, 2007
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN ’07, pages 164–174, Los Alami-
tos, CA, USA, June 2007. IEEE Computer Society.

[19] C. Urmson et al. Autonomous driving in urban environ-
ments: Boss and the urban challenge. Journal of Field
Robotics, 25(8):425–466, July 2008.

99

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6


	Introduction
	Diagnostic Fusion
	Instrumentation
	Algorithms

	Diagnostic Requirements and Tradeoffs
	Diagnosis Advisor

	Research Questions and Challenges
	Summary

