
CGFAIL: A New Approach for Simulating Computer Systems Faults

Martin Groessl
Heidelberg Institute for

Theoretical Studies (HITS)
Heidelberg, GERMANY

Email: Martin.Groessl@h-its.org

Abstract—An established method for emulation of faults
in computer systems is fault injection. The application of
such methods, typically, requires an extension of the operation
system by special drivers. Here, a new approach for simulating
a special kind of failure models, so called resource faults,
is presented. The approach is currently directly supported
from LINUX operation system and was tested with different
distributions and architectures (X86/X64). The objective is to
simulate fault models without affecting the normal operation of
the computer system. Additionally, the method enables system
developers to test their software under different resources
conditions.

Keywords-Software Dependability; Failure stimulation

I. I NTRODUCTION

New computer systems composed of multiple proces-
sors, an amount of memory and shared resources build
the backbone of modern information infrastructure. Testing
of applications which run on such systems under realistic
conditions is a quiet difficult job. Especially hardening, such
software for fault tolerance [1], requires simulation of faults
during testing. This is achieved by using fault injection
techniques.
Depending on fault level different approaches have to be
applied to stimulate the software under test. Some injection
techniques modify the software under test (SuT) others
necessitate an extension of the operation system by special
customized drivers. A modification of the SuT leads to a
deviating operation behavior, e.g., the timing behavior is
changed. Especially by certified software which has to be
tested under real conditions that should fulfill the operation
specification it’s impossible to use such approaches.
The goal in this paper is to present a technique for fault
tolerance evaluation without modifying the SuT or the oper-
ating system. Here, standard drivers and libraries provided
by the operating system are used to simulate faulty behavior.
The structure of this paper is as follows: Section 2 describes
related research in the field of fault injection. Section 3
discusses the CGFAIL approach. An analysis of CGFAIL
is presented in Section 4 which includes the supported fault
classes and implementation details from a prototype. Finally,
Section 7 concludes the paper.

II. RELATED WORK

Fault generation is currently realized depending on the
chosen fault model in simulation or fault injection in hard-
ware / software. An overview of several software-based
approaches is published in [2]. Fault injection on physical
level which covers hardware faults with different constraints
is presented in [3]. An approach for firmware level fault
injection is pointed out in [4]. The point of action is based on
a BIOS extension the Extensible Firmware Interface (EFI).
Embedded in the EFI driver fault injection routines are
located.
Software implemented fault injection (SWIFI) is an es-
tablished method to emulate several hardware faults by
programmatic changes in computer systems. A restriction
for this technique is that only fault locations accessible by
software are manipulatable. On the other hand SWIFI avoids
permanent damage of hardware or usage of special stimu-
lation hardware devices. A software-oriented fault injection
framework which uses software traps to control the injection
process is FERRARI [5]. Software traps are triggered by
program counter when it points to the desired program
locations or by a timer. When traps are triggered, the trap
handling routines inject faults at the specific fault locations,
like CPU, memory and bus.
FTAPE (Fault Tolerance And Performance Evaluator) [6]
is a software tool that generates synthetic workloads that
produce a high level of CPU, memory, and I/O activity
and injects corresponding faults according to an injection
strategy. Faults are injected based on this workload activity
in order to ensure a high level of fault propagation. Xception
[7] uses the advanced debugging and performance moni-
toring features existing in most of the modern processors
to inject faults by software. Additionally the activation of
the faults and their impact on the target system behavior
is monitored. Faults injected by Xception can affect any
process running on the target system (including the kernel),
and it is possible to inject faults in applications for which
the source code is not available.
Most SWIFT approaches require an extension of system
software by special drivers. Alternatively, the application
under test has to run in a special trace mode and depth

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

knowledge of the applications structure is necessary.
The new concept supports simulation of resource faults
based on standard OS drivers and libraries. Additionally, the
behavior of the operation system and simultaneously running
applications is not affected.

III. A PPROACH

A feature of modern LINUX operation systems is inte-
grated support for resource management. An example for
such a mechanism is CGOUPS (Control Groups) [8]. A
direct supported by the kernel is provided see Figure 1. An
advantage of CGROUPS is that support for resource limit-
ing, prioritization, isolation, accounting control of resources
is provided. Resource limitation on group level is motivated
by not exceeding a predefined amount of provided resources.
Such a restriction can be interpreted form a different point
of view as a kind of sandboxing resources for applications.
The isolation of CGROUPS provides a restrictive way to seal
off provided resources for each individual group among each
other and form global available. Additionally, the accounting
which measure consume of resources from certain systems
is a feature which offers an individual control of resources.
An advantage of resource accounting compared to system
measurement tools (top, htop) for the Linux kernel is the
more precise resolution. In general, Linux kernel measure-
ment tools update is one second.
CGROUPS was established in many LINUX distributions
in 2007 and is usable without any kernel modifications.
Neither the installation of special drivers is required. Some
enhancements for additional hardware and resource support
were done in 2010. Henceforward, this enables memory
management and individual I/O device control without in-
stalling special drivers or modifying the kernel.

Figure 1. Overview CGROUPS in Linux kernel

A goal which is achievable by limitation of resources in
combination with load generators is the emulation of real
operational scenarios beyond that due to a dynamic reduction
of provided resources a simulation of special fault models
is feasible. A dynamic modification of CGROUP parameters
during system runtime which is supported by an API-library
(Libcg) enables a resizing of the sandbox. This leads to
coverage of scenarios like a decreasing of parameter values
beyond used amount and enables application developers to
test their software under different environmental conditions
including some borderline cases without modification of the
operating system or the target application itself. The goalis

Figure 2. Sandbox regulator (CGROUPS) with load generator

reached by adjusting the amount of available resources as a
resource sandboxing combined with load generation which
run in the sandbox (see Figure 2). In such a way, simulations
of borderline situation are practicable without stressingthe
computer system or even driving it into an abnormal state.
A degrading of resources, like available memory, during
runtime leads not only to realistic operational scenarios
furthermore it’s possible to drive an application to limiting
cases. An example for such a behavior is a decreasing
memory consume as brought about by memory leaks. In
respect of mentioned failure scenarios the name CGFAIL
was derived from CGROUPS. Typically abnormal memory
consume drives the whole computer system into swap or
even into crash. The application of resource sandboxes
enables such simulation without affecting operation systems
behavior. Borderline cases like Out-Of-Memory (OOM) are
enforceable.

IV. A NALYSIS

In this section, an overview of up to date supported CG-
FAIL capabilities is presented. Depending on the controlled
resources a derivation to identify several failure scenarios
which are emulateable is done. Additionally the properties
of SWIFI are set in relation with CGFAIL. CGROUPS
support currently resource management for CPU, memory
and devices. Thus only erroneous states based on this
hardware parts are generateable. Driving these resources to
limiting cases results in emulation of following presented
fault classes:

• Low CPU resource availability
• Low memory availability
• Out of memory
• Unavailable devices
• Dynamic unavailability of distinct devices

An additional usage of load generators in CGROUPS
sandbox in combination with dynamic adjustment of pa-
rameters for each individual resource extends the scope.
A graphical illustration of such a composition is shown
in Figure 2. Further fault classes, as listed below, are
introduced:

• CPU over load

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

• Memory leaks

The review of related work identified most SWIFI ap-
proaches focus on processor faults some additional solutions
support memory or I/O driver fault injection. Most of these
techniques require an installation of special drivers others
affect run time behavior of the operation system. Some
methods depend on low-level changes in the operating
system or modify the SuT during run time. Additionally, a
few are based on low-level operating system functions which
necessitate running an application in a special operational
mode like trace-mode. The presented approach is portable to
any LINUX system in more detail most distributions directly
contain the required components. Thus, the architecture
of an underlying computer system does not derogate the
application of this approach.

A. Implementation

For evaluation purpose the above presented method was
implemented in a LINUX environment. In respect of API
library LIBCG which works close to the kernel it was done
in C/C++ language. Additionally a dynamic load generation
and sandbox setup is supported by predefined profiles. These
profiles are parsed by using BISON parser generator. The
parsing results in an action list which triggers each individual
resource object. The profile also includes all necessary
information for automatically generating a CGROUP during
application runtime. This group builds the sandbox for all
execute actions.

B. Action trigger

The initiating of all actions in the implementation is time
triggered. This includes the dynamic adaption of CGROUP
parameters as well as the activation, setup and adjustment
of load generators. An exceptional case form consumed
resources by load generators. These resources are predefined
but the generated load depends on environmental conditions,
such that the consumed amount does not exceed the available
resources. The adjustment of sandbox parameters during
runtime is not restricted or controlled in any way. Thus a
generation of limiting cases is feasible

C. Initial experiments

A set of initial experiments was done on a laptop and two
servers with different hardware configurations. The spectrum
from a dual-core processor up to a server with four HEXA-
core processors was covered. Memory on these machines
spanned range from 3GB to 16GB RAMS. The experiments
were based on Ubuntu and Debian LINUX distributions.

V. CONCLUSION

The paper presents an ongoing research for a new way to
emulate resource faults in computer systems. A comparison
of the concept with existing techniques in the area of SWIFI
was done. To the best of our knowledge, such a kind of

failure scenario was not presented before. The method runs
without affecting operational behavior of the host operating
system and does not necessitate the installation of special
customized drivers. Furthermore, no low-level changes in
the operating system or running an application in a spe-
cial operational mode like trace-mode are required. The
sandboxing of resources leads to an isolation of consumed
and available resources. This enables testing under realistic
conditions without interrupting normal operational behavior
of the host system.

ACKNOWLEDGMENT

I want to thank The Klaus Tschira Foundation gGmbH
and Prof. Dr.-Ing. Dr. h.c. Andreas Reuter for funding and
supporting this work.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
University of Maryland / Institute for Systems Research, Tech.
Rep., 2004.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,”Computer, vol. 4, pp. 75–82, 1997.

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C.
Fabre, J.-C. Laprie, E. Martins, and D. Powell, “Fault
injection for dependability validation: A methodology
and some applications,” IEEE Trans. Softw. Eng.,
vol. 16, pp. 166–182, February 1990. [Online]. Available:
http://dx.doi.org/10.1109/32.44380

[4] P. Tröger, F. Salfner, and S. Tschirpke, “Software-implemented
fault injection at firmware level,” inProceedings of the
2010 Third International Conference on Dependability,
ser. DEPEND ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 13–16. [Online]. Available:
http://dx.doi.org/10.1109/DEPEND.2010.10

[5] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari:
A flexible software-based fault and error injection system,”
IEEE Transactions on Computers, vol. 44, no. 2, pp. 248 –
260, 1995.

[6] T. K. Tsai and R. K. Iyer, “Measuring fault tolerance
with the ftape fault injection tool,” inProceedings of the
8th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation: Quantitative
Evaluation of Computing and Communication Systems.
London, UK: Springer-Verlag, 1995, pp. 26–40. [Online].
Available: http://dl.acm.org/citation.cfm?id=648080.746851

[7] J. a. Carreira, H. Madeira, and J. a. G. Silva,
“Xception: A technique for the experimental evaluation
of dependability in modern computers,”IEEE Trans. Softw.
Eng., vol. 24, pp. 125–136, February 1998. [Online].
Available: http://dx.doi.org/10.1109/32.666826

[8] B. Singh and V. Srinivasan, “Containers: Challenges with
the memory resource controller and its performance,”Ottawa
Linux Symposium, vol. 2, pp. 209–222, 2007.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

