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Abstract—In testing it is, in general, not possible (or at least
extremely time-consuming) to cover the complete input data
space, therefore usually a test set is selected for a given coverage
criterion (like decision coverage or similar). This restricted test
set covers only a part of the complete input data space with a
degraded fault-detection capability. The fault-detection capability
of a test set is given by the number ofdetectedfaults in relation
to the number of actual faults. In this work, we present a novel
approach for the assessment of test sets based on their fault-
detection sensitivity. The main goal of an efficient testing process
is to reduce the test effort while targeting a maximum number of
detected faults, i.e., an ideal test set requires a minimal execution
time for the test run (defined by the number of the test cases
and their individual run-times) with a maximum fault-detection
sensitivity. Therefore, our proposed test-set selection process is
not guided by a coverage criterion, but by the fault-detection
capability of the different test cases using the output of the
tool Certitude Functional Qualification System. We will apply our
strategy on a safety-relevant (regarding ISO 26262) case study
from the automotive domain focusing on the scalability of the
test-set selection strategy. Our work presents a novel method to
optimize the testing effort for software used in dependable systems
with respect to a decreased testing effort while sustaining a high
fault-detection capability.

Keywords–Dependable Systems, Testing, Fault-Detection Sensi-
tivity, Safety-Relevant Software.

I. I NTRODUCTION

The Verification and Validation (V&V) of safety-relevant
systems (a class of dependable systems) requires a tremen-
dously high amount of effort [1]. Besides techniques like
analysis or review, testing is one of the main methods to prove
the correctness of the system. The projectVerification and
Testing to Support Functional Safety Standards(VeTeSS) [2]
deals with the development of standardized tools and methods
for the verification of safety-relevant systems in the context
of ISO 26262 (Functional Safety for Road Vehicles) [3]. One
main aspect is to tackle the contradiction betweenreducing the
V&V-effort while enhancing the dependabilityof the safety-
relevant components. Usually, there is a correlation between
the testing effort and the confidence in the test process (the
test result, respectively) illustrated in the exemplary Figure 1.
An increasing testing effort results in a higher confidence in the
test process. After passing a critical mark in the testing effort
(indicated by the dashed line), the confidence in the testing
result increases only marginally approaching 100% confidence
in an asymptotic way for additional testing effort.

Figure 1. Correlation Between the Testing Effort and the Confidence in the
Test Process

The selection of the test set (the set of test cases) has a
significant impact on the testing effort and the resulting test
result. The example given in Figure 2 demonstrates this fact
(TD means Test Data: some input data to execute this branch;
TC stands for Test Case: an execution trace in the program).
The control flow of this example consists of 4 if-decisions.
Each decision has 2 branches, i.e., in the overall we have to
cover 8 branches for 100% Decision Coverage (DC). For that
we need test cases to cover all the branches (b1 + b2, b3 + b4,
b5 + b6, b7 + b8). Due to the redundancies in the traces this
results in 5 test cases (TC1, TC2, TC3, TC4, TC5). Starting
with Test SetTSINI consisting ofTC1 andTC5 shows that
4 out of 8 branches are covered, that means we achieve 50%
DC. Adding the test caseTC2 to TSINI results in covering 5
of the 8 branches, this equals 62,5% DC (i.e., an increase of
12,5%). Adding the test caseTC3 to TSINI results in covering
6 of the 8 branches, this equals 75,0% DC (i.e., an overall
increase of 25,0%). That means that both extended test sets
contain 3 test cases, but the latter one achieves better results
regarding the coverage criterion DC. AlthoughTC3 is longer
than TC2 (incorporating more test steps), usually the length
of the test cases has a negligible effect on the testing effort, as
the initialization of the test cases is the most time-consuming
part in the test-case execution.

The assessment of a test set based on a given coverage cri-
terion is a very common technique but studies (like [4] [5] [6])
indicate that structural coverage is a rather insufficient means
to determine the quality of the test set. Even sophisticated
coverage criteria like MC/DC (Modified Condition/Decision
Coverage) do not guarantee a high error-detection sensitivity
(see [7] [8]). What we arereally interested in is thefault-
detection sensitivityof a test set, that means the number of
detectedfaults in relation to the number ofactual faults for
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Figure 2. Example for Test-Set Selection for Decision Coverage

a given test set. Faults are erroneous parts in the program
(colloquially aka: bugs), for instance, a mutated name of a
variable (variable_1 instead ofvariable_2 ). This moti-
vated the idea of a fault-detection sensitivity based assessment
of test sets. The main principle is to select the test set on
the basis of the powerfulness of test cases to detect faults.
For this we are using the analysis of the Certitude Functional
Qualification System [9]. This tool introduces artificial faults
into a program and determines which faults are covered by
specific test cases. Some of the test cases are capable to reveal
a high number of faults, whereas other test cases detect only
a few faults. The target is to assess a test set regarding the
fault-detection sensitivity (given by the capability of the test
cases to detect faults). To evaluate the feasibility of this idea
for a real industrial case study we apply our strategy to a case
study from the automotive domain (software for the selection
of the driving mode for an electric car).

In the remaining part of the paper, we give some basic
definitions (Section II) and describe the functionality of the
tool Certitude to explain how we are using this tool for our
approach (Section III). In the following, we elaborate our
strategy for fault-detection sensitivity based assessment of test
sets and present the questions addressed by our study (Section
IV). Finally, we give a short overview on our work in progress
to evaluate our approach on a case study (Section V) and
conclude with a summary of the paper and planned future
work (Section VI).

II. BASIC DEFINITIONS

A Test Set TS consists oftest cases. A Test CaseTC
is a trace in the execution of the program defined by the
variable valuesincluding the correct output for given input
data. Example: A test case for a functionsum(a, b) may
be (2; 3; 5). The size of a test setS(TS) is defined by the
number of test cases.

A fault is a mutation of the program (i.e., a deviation of the
correct implementation). We will consider faults for operators,
variables, and values.

A strong test case is a test case that is capable to detect
many faults. Aweak test case is a test case that is capable
to detect only a few faults. The fault-detection sensitivity of
a test caseF (TCx) is defined by the number of faults that
are detected by this test case. The fault-detection sensitivity
of a test setF (TS) is defined by the sum of the detected
faults of the test cases inTS, i.e.,F (TS) =

∑S(TS)
x=1 F (TCx).

The classification of test cases intostrongandweaktest cases
depends on the achieved values forF (TCx) for the test cases
in TS: A test case withF (TCx) = 10 may be astrong
test case in a test set with test cases with a maximum fault-
detection sensitivity of12, but it is rather aweak test case
when other test cases in this test set are able to detect, e.g.,
100 faults.

In the following, we will also distinguish between anEasy-
To-Detect (ETD) fault and aNot-Easy-To-Detect (NETD)
fault . Whereas the first one is detected by many test cases
(for instance, 27 out of 100 test cases), the second one is only
detected by a few test cases (for instance, 2 out of 100 test
cases). We define the number of test cases of a test set that are
capable to detect a specific fault (Ftly) D(Ftly) = #TCx (for
x = 1...S(TS)) with TCx detects the faultFtly, as the metric
to guide the classification of faults. The precise distinction
betweenEDT andNEDT faults depends on the concrete values
for a case study (the program under test and the applied test
set).

III. C ERTITUDE FUNCTIONAL QUALIFICATION SYSTEM

Basically, the tool Certitude Functional Qualification Sys-
tem by Synopsys Inc. [9] intends to measure the effectiveness
of a verification environment. It is able to identify verifica-
tion weaknesses that allow bugs to stay undetected in the
testing process and may lead to functional problems. The
basic principle of Certitude is to introduce mutations (i.e.,
artificial software faults) into the design and prove whether
the verification environment (the test set) is capable to detect
these faults or not, see Figure 3 (RTL refers to Register-
Transfer Level). Please, consider that this technique is different
to typical software fault injections with the intention to validate
fault-handling mechanism at runtime and to evaluate the way
a system behaves in the presence of faults (like [10]). The aim
of Certitude is to determine the capability of a verification
environment to detect design mutations (similar to [11] and
[12]).

Figure 3. Certitude Functional Qualification Process

If all (or at least most) of the artificially introduced bugs
are identified by the verification environment, this V&V-
environment is proven to begood. If many of the artificially
introduced bugs arenot identified by the verification environ-
ment, this indicates that the V&V-environment is insufficient.
Either some test cases (or specific test scenarios) are missing
or wrongly implemented, or the checks are not robust enough
(missing or broken). Certitude provides two different modes:
1. Theverification improvement modeanalyzes the verification
of the design and identifies specific holes and weaknesses.
2. The metric modeallows to measure the overall quality
of the verification environment in a quantitative way using a
statistical approach.
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Certitude combines static analysis with mutation-based
techniques for introducing mutations (i.e., artificial bugs) into
the system under test, see Listing 1 for an example. In line 1,
the original version is given. Then the Boolean operatorOR
(|) is mutated to the Boolean operatorAND (&) resulting in
the faulty version in line 2.

1 a = b | c ;
2 a = b & c ;

Listing 1. Original Code and Faulty Program Code

After introducing the mutations, Certitude determines
whether the V&V-environment can activate (i.e., exercise) the
faulty code, propagate the effects to an observable point, and
detect the presence of the fault. This is done in three phases
(see Figure 4): a) In the fault model analysis phase, the
design is analyzed and appropriate faults are selected that will
be injected into the system. b) In the fault activation phase,
the specified tests (selected from the regression) are run once
and the behavior of the V&V-environment with respect to the
faults is analyzed. c) In the fault detection phase, selected test
cases from the V&V-environment are executed to measure
the ability of the V&V-environment to detect the faults.

Figure 4. Phases of the Certitude Functional Qualification

Furthermore, Certitude uses a proprietary algorithm to au-
tomatically classify and prioritize the faults (the injected faults
are qualified in a priority order). The subsequent qualifications
contain the results from the previous test runs and focus on
the remaining undetected faults. By this, it is possible to
find and fix weaknesses in the V&V-environment in an early
stage of the verification process, expand the set of qualified
faults (as both, the V&V-environment and the design, evolve),
achieve an incremental improvement over time, and minimize
the effort for analysis and debug.Latent faults are mutations
that have no impact on the program behavior. Some of them
can be recognized by Certitude in the diagnosis of the results
of the test run. At the moment, Certitude supports hardware
description languages, like VHDL [13] and Verilog [14], and
programming languages like C/C++.

Within the analyses of Certitude the tool provides a list that
shows for each executed test case the number ofactivated,
propagated, and detectedfaults. The code skeleton given in
Listing 2 demonstrates the meaning of the three different
terms: In line 2, the correct program version is given (with
i<11 ) and in line 3, the mutated (faulty) program version is
given (with i<=11 ). For the activation of this fault we need a
test case with the variablea equals the valueTRUE, otherwise
the fault is not activated at all. The propagation of a fault to an
observable failure is necessary to observe (and thus, detect) the
actual fault. A fault may cause an error (an invalid state in the

system behavior). An error may cause further errors (therefore
an error may act as a fault), or it may propagate and then be
observable. To propagate the injected fault, we need a test case
with the value 5 for the variablej . Only then we are able to
observe a deviation from the original program behavior caused
by the introduced fault.

1 while ( a == TRUE) {
2 for ( i =1; i <11; i++) { / / correct version
3 for ( i =1; i <=11; i++) { / / mutation
4 pr int ( i ) ;
5 i f ( j==5) {
6 product = i ∗ j ;
7 pr int ( product ) ;
8 }
9 }

10 i f ( product > 50)
11 pr int ( error_message) ;
12 else
13 pr int (OK) ;
14 }

Listing 2. Original Code and Faulty Program Code

The main output of Certitude for the quality assessment of
the V&V-environment (the underlying test set, respectively)
is the number of detected and undetected faults. If the ratio
of detected faults to the overall number of injected faults is
high, this indicates a matured and reliable test set, otherwise
the test set has to be improved. For further analysis, Certitude
also provides a list showing the number of activated (#ActF),
propagated (#PropF), and detected faults (#DetF) for each test
case, see the exemplary Table I.

TABLE I
EXAMPLE OUTPUT OFCERTITUDE

Test Case #ActF #PropF #DetF
TC1 80 70 50
TC2 60 50 20
TC3 20 10 5
etc. etc. etc. etc.

Assuming a total number of introduced faults of 100,TC1

appears to be astrongtest case, whereasTC3 is a ratherweak
test case regarding the lower number of detected faults.

The main purpose of the Certitude Functional Qualification
System is to provide the information that allows the test
engineer to improve the overall V&V-environment (i.e., the test
set) by identifying weaknesses of the V&V-environment (e.g.,
missing test cases) and improving the V&V-environment (by
adding these missing test cases). In the following, we present
an idea to use the tool Certitude for the selection of test sets
that require less testing effort while sustaining a high fault-
detection sensitivity.

IV. FAULT-DETECTION SENSITIVITY BASED
ASSESSMENT OFTEST SETS

The main idea of our strategy for the selection of a test
set is to include the test cases with a high fault-detection
sensitivity F (TCx) and to dismiss the test cases with a low
F (TCx). By this, we achieve a smaller test set (thus, reducing
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the overall test effort). The fault-detection sensitivity based
assessment of test sets is instrumented by a) a parameter
for the number of detected faults by the definition of a
threshold-valueTDetF for detected faults: ifF (TCx) is
greater thanTDetF , thenTCx is included in the final test set
otherwise not. or b) a parameter for the targeted reduction
of the test set by defining a concrete value for the reduction
(e.g., 20% of the original test cases are omitted).

In this study, we are mainly interested in:

• What is the exact effect on the degradation of the fault-
detection sensitivity of the new test setF (TS) for a)
and b)? It may happen that a test case with a low
F (TCx) is discarded without any (negative) impact on
F (TS) because the related faults are anyway covered
by other (remaining) strong test cases. On the other
hand omitting a weak test case may have a significant
impact onF (TS) because this test case is required for
the activation of a couple of faults (without activation
of these faults they cannot be detected by the strong
test cases).

• What is the relation between the achieved reduction
regarding the test effort (correlating with the size of
the test set) and the resulting degradation of the fault-
detection sensitivity of the test setF (TS)? If we risk
to fail to detect important faults just by omitting 5
out of 1000 test cases (i.e., the effort reduction is
almost negligible), then the efficiency of the strategy
is questionable. Preliminary empirical results indicate
that omitting some of the weak test cases results
in a significant reduction of the test effort while
degrading the actual fault-detection sensitivityF (TS)
only marginally.

• Experiences so far suggest that for our analysis we
have to differ betweenEasy-To-Detect (ETD)faults
and aNot-Easy-To-Detect (NETD)faults. What does
a low/high number of ETD-/NETD-faults means for
our strategy? For a system with many ETD-faults, in
general, the omission of a weak test case has only a
tiny effect on the overallF (TS). This is not valid for
NETD-faults. Certitude also provides implicitly some
information to distinguish between ETD- and NETD-
faults. This information can support the evaluation of
our strategy.

• Is our strategy (due to computation time) feasible for
a real industrial case study? In general, determining
a minimal test set is decidable but, the problem is
NP-complete (that means the algorithm requires an
exponentially high effort), thus usually heuristics are
applied to find an optimal test set [15]. We try to avoid
this problem by only a few test cycles to determine
F (TS) and the values forF (TCx) for the initial test
set. Selecting the test cases for the improved test set
is linear and then we are executing the test runs for
the reduced test set.

V. EVALUATION ON AN INDUSTRIAL USE CASE

In our empirical evaluation, we focus on automotive soft-
ware written in the programming language C. One of our

industry partners provides a use case for an automatic gear
selection for an electric car. The Electric Vehicle Controller
(EVC) manages the functions for the gear selection of the
available states (for instance: Park; Reverse; Neutral; and
Drive, the function similar to automated transmission). The
main function of the use case allows the selection of the driving
mode from the four different available states. The initial test
set is generated automatically from a SysML-model of the use
case. With the final results of the empirical evaluation of our
strategy for fault-detection sensitivity based assessment of test
sets, we will be able to give clear recommendations for the
applicability, the benefits, and also the limitations of our novel
idea.

VI. CONCLUSION AND FUTURE WORK

Finding the optimal test set (minimal size and maximum
fault-detection capability) is a permanent ongoing challenging
task. Experienced test engineers may be able to write down
a few good test cases (good in finding faults), some of
them especially tuned to detect the faults/errors of a certain
program developer or adapted to intricate (thus error-prone)
parts of the system under development. Coverage metrics are
often used to determine the maturity of the test set based
on the assumption that an increase in the coverage induces
a better fault-detection sensitivity. In this work we present
a novel idea for the assessment of the quality of a test set
by the main attribute we are interested in, namely thefault-
detection sensitivity. For our strategy, we made use of the
tool Certitude Functional Qualification System that provides
us with the necessary information about the fault-detection
capability of the different test cases of a test set. Static
analysis combined with mutation-based fault injection yields
in precise information about the powerfulness/weakness of a
test case to detect faults. This information can be used for a
qualified selection of test cases to reduce the size of the test
set while preserving a desired test set quality (regarding the
fault-detection sensitivity). Our idea intends also to motivate a
test process stronger guided by fault injection instead of using
fault injection only as a recommended method prescribed by
standards for safety-relevant systems, like ISO 26262.

Besides finishing the analysis for the mentioned use case,
we plan to extend the evaluation of our strategy to (at least)
another case study. Not only the number, but also the type
of faults and the program structure influence significantly the
fault-detection sensitivity of a test set, so precise answers to the
listed questions can only be given after results from different
use cases. We also consider to address faults leading to a
multiple point failure (individual faults may lead only in com-
bination with another independent fault/with other independent
faults to a failure, the so-called multiple point failure). This
kind of faults are usually difficult to detect (as they are only
observable in the presence of other faults).
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