DEPEND 2014 : The Seventh International Conference on Dependability

A Policy-based Middleware for Self-Adaptive Distributed Systems

Jingtao Sun and Ichiro Satoh

Department of Informatics. School of Multidisciplinary Science
The Graduate University for Advanced Studies
National Institute of Informatics
Tokyo, Japan
Email: {sun, ichiro} @nii.ac.jp

Abstract—This paper presents a novel approach to dynamically
adapting distributed applications to changes in environmental
conditions. e.g., available network resources and users require-
ments. The key idea behind the approach is to introduce the
relocation of software components to define functions between
computers, as a basic mechanism for dynamic adaptation on
distributed systems. It also introduces application-specific built-
in policies for relocating software components to define high-
level adaptation by human-readable declarative policy scripts. It
is constructed as a middleware system for Java-based general-
purposed software components. This paper describes the design
and implementation of the approach with several applications,
e.g., remote information retrieval and distributed media service.

Keywords—software component; policy-based;
middleware; Distributed System; architecture-level.

self-adaptive;

I. INTRODUCTION

Distributed systems are essentially dynamic in the sense
that computers and applications may be dynamically added
to or removed from them or networks between computers
may be disconnected or reconnected, dynamically. Therefore,
the running of software components of which an application
consists, should be depended by nature, so that the systems
can adapt to various changes at component runtime systems.
On the other hand, the running of software components on
a distributed system should be adapted to and reuse them on
different distributed systems.

Distributed applications are executed for multiple-purposes
and multiple users whose requirements may change in various
cases. However, on a variety of distributed systems, their struc-
ture may also changes. Adaptation must support the variety
and change in the underlying systems and the requirements of
applications should be separated from business logic. There-
fore, we distinguish adaptation concerns and business logic
concerns by using the principle of separation of concerns so
that developers for applications can concentrate their business
logic rather than adaptation as mush as possible. A solution to
this is to introduce concern-specific languages for separating
adaptive concerns from business logic concerns. There have
been several attempts [3][7] to support the separation of con-
cerns on non-distributed systems, but adaptation mechanisms
in distributed systems tend to be complicated, so that it is
difficult to define primitive adaptation.

This paper addresses the separation of adaptation concerns
from application-specific logic concerns in distributed systems.
We assumed that a distributed application would consist of one
or more software components, which might run on different
computers through networks. Our proposed approach has two

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

key points. The first is to introduce policies for relocating soft-
ware components as a basic adaptation mechanism. The second
is to provide nature-inspired relocation policies for application-
specific adaptations. When the changes have occurred, e.g., in
the requirements of applications and the structures of system,
its software components would automatically be relocated to
different computers according to their policies to adapt to
changes. We are constructing a middleware system for building
and operating self-adaptive distributed systems.

The proposed approach is based on adaptive deployment
of software components, but is different from other existing
works [2][6][7], the functions of which are inside software
component. If this components are adapted, other component
may have serious problems. For example, they can not com-
munication with the adapted ones. On the other hand, the relo-
cation of software components do not lose potential functions
of components. This problem may seem to be simple, but it
makes their applications resilient without losing availability,
dependability, and reliability. In fact, our approach can provide
adaptation between general-proposed approaches in distributed
systems.

This paper focuses on the middleware we have developed to
simplify the design and deployment of policy-based runtime
system in real applications. Section 2 describes the require-
ments of distributed systems and gives readers the key idea
behind the proposed approach. Section 3 gives an overview of
how to design the policy-based middleware and what kind of
adaptations are driven by declarative policy scripts. Following
this, Section 4 describes how we implemented such runtime
system support software components. Section 5 describes
several applications of this middleware to demonstrate its
strengths. Section 6 describes related work, with conclusions
and planned future work described in Section 7.

II. APPROACH

In distributed systems, the requirements of applications
or users and the environments of distributed systems often
change, so they have to adapt to these changes inside of
themselves. But in real environments, applications should not
be necessary to recompile one more again in order to adapt to
use a different network architecture or layout. This is because
most of existing adaptation technology needs a large amount
of resources to adapt the requirements of the applications or
adaptation is limited or adaptive contents cannot be predicted.
Therefore, we decided to propose a novel approach to re-
locate the running software components form one computer
to another one, to adapt to changes for distributed systems,

25

DEPEND 2014 : The Seventh International Conference on Dependability

e.g., adapting to distributed systems, networks architectures or
available resources.

A. Requirements

Most existing distributed systems have been statically
constructed based on several types of system architectures,
e.g., client-server, peer-to-peer and master-slave according to
their original requirements. However, with the development
of in-depth in distributed systems, some of the requirements
may be changed, wherefore the distributed systems need to
dynamically adapting themselves. For example, computers and
networks may have failures or some new computers may be
added to or removed from the networks, or the requirements
of applications, which may be running on different computers.
Therefore, distributed systems need some abilities to adapt
to such changes. Furthermore, to support drastic changes in
system structures, distributed system architectures themselves
require to change.

In this section, we describe the requirements of our policy-
based middleware as follows:

e Self-adaptation: Distributed systems essentially lack
no global view due to communication latency between
computers. Software components, which may be run-
ning on different computers, need to coordinate them
to support their applications with partial knowledge.

e Separation of concerns: software components of which
an application consist should be defined independently
in our adaptation mechanism. On the other hand, these
software components will deploy themselves to desti-
nation computers, according to the predefined policies
or user-defined policies, which can be developed by
system operators or be automatically executed by
themselves.

e General-purpose: Various of applications are run-
ning on distributed systems. Therefore, our adaptation
mechanism should be implemented as a practical
middleware to support general-purpose applications.

e Reduce Input/Output cost: The costs of Input/Output
handling are huge in distributed systems, e.g., when
users send reading requests to front-ends servers, they
have to find out the requested files in the first, and then
reading the content of the files line by line, until the
ends of files. For this reason, the cost of Input/Output
requires to be reduced.

e Dependability: In order to improve the dependability
of distributed systems, middleware systems do not
require to support a centralized management for soft-
ware components and make sure that data keep their
consistency.

Computers on distributed systems may have limited re-
sources, e.g., processing, storage resources, and network ar-
chitectures. Therefore, our approach should be available with
such limited resources, whereas many existing adaptation
approaches explicitly or implicitly assume that their targets
of distributed systems have enriched resources.

B. Adaptation

Our approach separates software components from their
policies for adaptation. This is because the user-defined poli-
cies can be reused to reduce the cost of compiling themselves
once more.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

1) Deployable software components: Generally, an appli-
cation consists of one or more software components, which
may be running on different computers. Therefore, in our
approach, these components can be deployed at other com-
puters, according to its deployment policies. It is defined as a
collection of Java objects in the current implementation. It also
has an interface, which called references. By executing them,
soft components can migrate to destination computers, and
then communicate with the destination components through
dynamic methods invocation.

2) Deployment policy for adaptation: Each component can
have one or more policies, where each policy is basically
defined as a pair of information on where and when the
component is deployed. Before explaining deployment policies
in the proposed approach, we have to discuss policy scripts for
adaptation on distributed systems. We describe these concepts
as follows:

e This approach does not support any adaptation in-
side software components. Because software com-
ponents should be general-purposed and adaptation-
independendent.

e FEach component has one or more policies, where
policy specifies the relocation of their components and
instructs them to migrate to destination computers,
according to specified conditions.

e FEach policy specifies as a pair of a condition part and
at most one destination part. The former is written
in a first-order predicate logic-like notation, where
predicates reflect information about the system and
application. The latter refers to another component
instead of itself. This is because such policies should
be abstracted away from the underlying systems.

C. Destination of policies

Under the user-defined destination of policies, as Figure
1 shows, software components can be dynamically deployed
at destination computers and the destinations of policies can
be easily changed for reuse by other distributed systems. The
policies are described as follows:

Stept Attraction Policy Step1

Figure 1. Destination of policies.

e Attraction: Frequent communication between two
components yields stronger force. The both or one of
the components are dynamically deployed at comput-
ers that other computers are located at.

26

DEPEND 2014 : The Seventh International Conference on Dependability

e Spreading: Copies of software components are dy-
namically deployed at neighboring and propagated
from one computer to another over a distributed sys-
tem. This policy progressively spreads components for
defining functions over the system and dynamically
adds to the lack of the functions.

e Repulsion: Computers are deployed at computers in
a decentralized manner to avoid collisions among
them. This policy migrates software components from
regions with high concentrations of components to low
concentrations.

e Evaporation: Excess of components results in over-
loads. The same or compatible functions must be dis-
tributively processed to reduce the amount of load and
information. The policy consists in locally applying
to synthesize multiple components or periodically to
reduce the relevance of functions.

This approach assumes that an application consists of one
or more software components, which provide their own func-
tions and may be running on different computers. It introduces
the adaptive deployment of software components but not of
adaptive functions inside software components. If functions
inside software components are adapted, other components,
which communicate with the adapted ones, may have serious
problems. However, the relocation of software components
does not lose the potential functions of components. This may
seem to be simple but it makes their applications resilient
without losing availability, dependability, or reliability. It can
also separate adaptation from components, which define appli-
cation logic, because components themselves are defined and
executed independently of any adaptation.

III. DESIGN

The proposed approach dynamically deploys components
to define application-specific functions at computers according
to the policies of the components to adapt distributed applica-
tions to changes on distributed systems.

A. Dynamically adaptive system architecture

Our middleware architecture consists of three parts (Figure
2). The first part is the adaptation manager, the second part is
runtime system and the third part is distributed applications.
From this architecture, we can notice that:

o The first part is a component runtime system, which
is responsible for executing software components, mi-
grating software components and enabling them to in-
voke methods at other software components. However,
by using these methods, the software components need
to be serialized in the first, then migrate themselves
from one computer to others. When these software
components arrived at destination computers, they
can communicate with the components of destination
computers, according to naming inspection.

e The second part is adaptation manager, which is
responsible for our runtime system. However, it can
control the behaviour of components, select policies
from destination database and fetch them and de-
termine themselves where the software components
should be moved. The policies are written by an
Event-Condition-Action format scripting language.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

part 3:

Distributed Application

Specification of Distributed software

requirements components
7 A
Policies Destination l:
Monitoring Reflecti
rt 1: a A rt2: Re lection
= Ber_mwour ongine; = Serialization
— Policy fetch Naming

Policy ID

5 Fg Resource directories
Policy validation tools

Runtime ID
Adaptation manager Runtime system

Middleware

Destination
database
J
Network and operating system resources

Figure 2. Middleware architecture.

e The third part consists in distributed applications,
which can be designed by any general-purposes.

B. Component runtime system

Every runtime system allows each component to have
at most one activity through the Java thread library. When
the life-cycle state of a component is changed, e.g., when it
create, terminates, duplicate, or migrates to another computer.
The runtime system issues spcific events to the software
component. To capture such events, each component can have
more than one listener object that implements a specific listener
interface to hook certain events issued before or after changes
have been made in its life-cycle state. Through this method, we
can easily hide the differences between the interfaces of objects
at the original and other computers. Each runtime system
can exchange components with other runtime system through
TCP channels by using Object Input/Output Stream. When a
component is transferred over networks, not only the code of
the components, but also their state can be transmitted into
a bit stream by using Java’s object serialization package, and
then the bit stream is transferred to the destination computers.
The runtime system which is run on the receiving side receives
and unmarshals the bit stream. When components have been
deployed at destination computers, their methods should still
be able to be invoked from other computers, which are running
at local or remote computers.

C. Adaptation mechanism

The policy-based deployment of components is managed
by adaptation managers, where they are running with software
component runtime systems and they have not any centralized
management servers. Each component runtime system period-
ically advertises its address to other runtime systems through
UDP multicasting, and then these computers can return their
addresses and capabilities to the destination computers through
TCP channels. Each policy is specified as a pair of conditions
and actions. The former is written in a first-order predicate
logic-like notation and its predicates reflect various system and
network properties, e.g., network connections and application-
specific conditions and the utility rates and processing capa-
bilities of processors. The latter is specified as a relocation of

27

DEPEND 2014 : The Seventh International Conference on Dependability

components. Our adaptation was intended to be specified in a
rule-style notation.

1) Adaptation policy specification format: The adaptation
manager offers an interpreter to execute the specification
format. Since we need to predict conflicts and divergences
that result from adaptations, we need to design a format
for specifying adaptations policies, which are given as the
relocation of components according to changes in their systems
and the requirements of their applications. The format consists
of conditions at destination parts. The two parts are defined
based on a theoretical foundation to verify the validation
of adaptations. The former is written in a first-order predi-
cate logic-like notation, where predicates reflect information
about the system and applications. e.g., the utility rates and
processing capabilities of processors, network connections,
and application-specific conditions. The latter represents the
deployment and duplication of components in our adapta-
tion instead of any application-specific behaviors, including
communications and state transition, of the components. It is
formulated as a process calculus.

Since policies are written in a XML format (as Figure
3 shows), it can be defined outside components. In addition,
these user-defined policies can be reused for other components,
and the components can be reused with other policies. For now,
our adaptation manager provides four built-in policies. Each
policy contains [Event-Condition-Action] three main tags. We
can define the name of this policy in Event tag. The Condition
tag shows when the software components should be migrated
or not. It can be freely defined by the users or developers
of distributed systems. Our interpreter is different from the
existing researches [13][15], because our approach is focused
on components migration, so in Action tag, we can judge the
software components where to relocate or whether to migrate
or not.

<?xml version="1.0" encoding="UTF-8"?>
<Policy id =>
<!-- Event of Policy -->
<Event>
<Name> arirl </Name>
</Event>
<!-- Condition of Policy.e.g., predicate1,...predicaten -->
<Condition>
adaptive_file_size >= max_file_size Il
adaptive_bandwidth >= fixed_value
</Condition>
<!-- The destination of relocation -->
<Action>
<destination>
If (condition == true){
migrate (component 1,...,component N,
destination_IP, destination_port)
recall (component 1,...,component N,
method_name)
} else {
unMigrate ()

</destination>
</Action>
</<Policy>

Figure 3. Policy format.

For example, to adapt remote information retrieval. In this
sense, we can define an attraction policy and execute this
format in adaptation manager as follows:

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

e When a component has an attraction policy for another
component, if the condition specified in the policy is
satisfied, the policy instructs the the former to migrate
to the current computer of the latter.

e When a component has a spreading policy, the policy
will make a copy of the component and instructs the
copy to migrate to the current computer.

e When a component has a repulsion policy for an-
other component, if this computer have the same
or compatible components, this policy will migrate
this component which communication with another
component to the current computer.

e When a component has an evaporation policy, if
the condition specified in the policy is satisfied, it
terminates.

When the external system detects changes in environmental
conditions, the runtime system can self-adaptive to migrate
the search component to remote computer. If this remote
computer is failure or waiting processing in threads, the search
components can relocate to other computers, according to the
user-defined policies. Then, the search component can fetch
files inside of itself. Once the retrieval completed, the search
component will return back, according to the attraction policy.
Howeyver, the details will be described in Section 5.

IVv.

This section describes the current implementation of a
middleware system based on the proposed approach.

IMPLEMENTATION

A. Component runtime system

Each component is a general-purpose and programmable
entity, which defined as a collection of Java objects and
packaged in the standard JAR file format. It can migrate
and duplicate themselves between computers. Our runtime
system is similar to a mobile agent platform, but it has been
constructed independently of any existing middleware systems.
This is because existing middleware systems, including mobile
agents and distributed objects, have not supported the policy-
based relocation of software components. Our middleware
system is built on the Java Virtual Machine (JVM), so it can
abstract away between different operating systems.

The current implementation basically uses the Java object
serialization package to marshal or duplicate components. The
package dose not support the capture of stack frames of
threads. Instead, when a component is duplicated, the runtime
system issues events to it to invoke their specified methods,
which should be executed before the component is duplicated
or migrated. Furthermore, this system suspends their active
threads. We also implement this system by using our original
remote method invocation between computers instead of Java
Remote Method Invocation (RMI); this is because Java RMI
dose not support object migration.

B. Adaptation manager

The adaptation manager is running on each computer and
consists of two parts: a database of policies and an event
manager. The former will compile and execute user-defined
policies and the latter will receive events from the external
systems and notify changes in the underlying systems and
applications.

28

DEPEND 2014 : The Seventh International Conference on Dependability

We describe a process of the relocation of a software
component, according to user-defined policies.

e When a component creates and arrives at a computer,
it automatically registers its deployment policies with
the database of the current adaptation manager.

e The manager periodically evaluates the conditions of
the policies maintained in its database.

e When it detects the policies whose conditions are
satisfied, it deploys software components at desti-
nation computer, according to the selected policies
migrate component to the destination computer and
dynamically invoke the methods of destination soft-
ware components.

Two or more policies may specify on different destina-
tion computers, under the same condition that drive them.
The current implementation provides no mechanism to solve
conflict between policies. So, we assume that policies would
be defined without any conflicts right now. The destination
components may enter divergence or vibration models due
to conflicts between component policies. In addition, they
may have multiple deployment policies. However, the current
implementation dose not exclude such divergence or vibration.

V. APPLICATIONS

This section describes two applications of the proposed
approach.

A. Adaptive remote information retrieval

Suppose users who are using search engines to find certain
text patterns from data located at remote computers like Unix’s
grep command. A typical approach is to fetch files from remote
computers and locally find the patterns from all the lines of
the files. However, if the sum of the volume of its result or the
size of a component for searching patterns from data is bigger
than the volume of target data, the approach is efficient. In this
case, the components should be executed at remote computers
that maintain the target data rather than at local computers.
However, it is difficult to select where the components is to
be executed because the volume of the result may be not
known before. The proposed approach can solve this problem
by relocating such components from local computers to remote
computers while they are running. Figure 4 shows our system
for adaptive remote information retrieval, which consists of
client, search, and data access manager components. The
client component and the data access manager component are
stationary components. The search component supports finding
text lines that match certain patterns provided from the client
component in text files that it accesses via the data access
manager component. It has an attraction policy that relocates
itself from local to remote computers when the volume of its
middle result is larger than the size of component; otherwise,
it relocates from remote to local computers.

Although the volume of the result depends on the content of
the target files and the patterns, it is typically about one over
hundred less than the volume of the target files. Therefore,
the cost of our system is more efficient in comparison with
Unix’s grep command. This means that our approach enables
distributed application to be available with limited resources
and networks. Our approach is self-adaptive in the sense that
it enables the search component to have its own adaptation

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

Condition:
e.g., lagerSize of Search
component + volume of result

Step1

- Lss]
@ pata |——
Client Search [[™"~ TTTTTTTT T TR RT access Data
manager base
‘ Remotely Component
Policy fetching data
C 1 N Computer 2
Step2 Component migration
locally
) D feting Data
Client o data access Data
component component manager base
Component

Computer 1 Computer 2

Figure 4. Adaptive remote information retrieval.

policy and manages itself according to the policy indepen-
dently of these components themselves. It is independent of its
underlying systems because the destination of our component
relocation is specified as components, instead of computers
themselves and they can be reused also. Furthermore, when the
remote or local computer is failure, our system can migrate the
retrieval programs to another computer, according to the user-
defined policies for go on progressing without termination pro-
cesses. This is the difference between traditional approaches
and ours.

B. Adaptive distributed media service

Suppose a media distribution service, including video
streaming [17]. Because of the sizes of media contents tend to
be large recently, so that the cost of transmitting such contents
from back-end servers to front-end servers and from front-end
servers to clients becomes huge. Therefore, it is necessary in
the vicinity of the data processing to save the high costs of
data transmission.

We assume that users send requests to front-end servers,
and convert video data via front-end servers before fetching
them. Figure 5 shows our system for adapting distributed
media service, which consists of client, search, Drawing UI
component, and data access manager components. The client
component and the data access manager component are station-
ary components. The search component supports to response
the requests from users. When the tasks becomes excessive in
a short time, the front-end server will become a bottleneck.
The Drawing Ul component supports to adapt to the size of
the screens.

In this case, clients may fail to connect to or have to wait
while data have processed by front-end servers. Therefore, the
front-end servers components should be dynamically deployed
at the back-end servers and processed at the back-end ones
on behalf of the front-end ones. If the back-end servers have
enough resources for processing. The contents at back-end
servers do not need to be relocated and copied. This approach
can reduce the cost of transmitting the content from the back-
end servers to the front-end servers so that it is useful to avoid
heavy traffic between the servers.

On the other hand, we assume that users try to select media
contents from front-end servers, because they are responsible
for managing the selections of contents and drawing Uls for

29

DEPEND 2014 : The Seventh International Conference on Dependability

Condition:
e.g., size of Search component

+ Volume of result
pata |[——]
access Data
manager || pase
Component

Back-end

Step1

La=}
Client Search [==
component component |
Pushing

rule
(relocatoion)

Remotely
fetching data

(@)

77777777777 Data — >
Drawing Ul access Data
component manager base

Component
Pushing

rule
(relocatoion)

User Front-end

Step2

Client
component

User Locally
fetching data

Front-end Back-end

Figure 5. Adaptive distributed media service.

users to do. By using our approach, we can relocate the
running components for selecting media from front-end servers
to clients when clients have much capability to manage and
draw Uls.

These deployments of software components can be spec-
ified in our policy-based middleware for adaptations and au-
tomatically invoked methods of destination components when
conditions of policies are satisfied.

VI. EXPERIMENT

In this paper, we present the implementation of the pro-
posed system on OS X, which has Intel Core i7 2GHz as
CPU and 8GB memory and the download/upload speed of
internet is 8.586KB/s and 15.83KB/s. The implementation uses
raw socket to obtain all packages and is described in Java
programming language. For experiment, this paper prepares
a network environment where to adapt remote information
retrieval. The experiment in this paper compares the cases use
and non-use the proposed adaptation middleware system. In
the experiment, we assume that one user retrieves a keyword
named JAVA and we searched the keyword in three types of
files.

A. Result of Experiment

The first one type of file has the data size of 17KB. The
second one that the size of data is 1.1MB. The data size of
the third one is 104MB. In addition, we compare the speed of
search the same keyword in our system. Figure 6 shows the
result of experiment for adapting remote information retrieval.

Keyword File size With adaptation Without adaptation

JAVA 17KB 2.11sec 1.39sec

JAVA 1.1MB 4.97sec

4.62sec

JAVA 104MB 6.17sec 13.12sec

Figure 6. Results of experiment.

By the three sets of data, we know that if the file becomes
larger, our self-adaptive middleware system can significantly
reduce the time of remote information retrieval. From the first
set of data, we know that when the size of retrieved file is

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

almost as large as the retrieval programs, the processing time
of our self-adaptive middleware system is longer than non-
adaptation system. This is because, the deploy objects of soft-
ware components in our middleware require serialization/de-
serialization between local and remote sides. However, the
non-adaptation system does not require its. From the second
set of data, we know that when the size of retrieved file is
almost 10 times larger than the retrieval programs, our system
is slightly stronger than without adapted remote information
retrieval. However, by the last set of data, we clearly know that
when the size of the file becomes 100 times, the search time of
our middleware system will spend half time of non-adaptation
information retrieval. Furthermore, we can not only reduce
remote information retrieval time through our approach, we
can also enhance distributed systems reliability, dependability
,and availability. For example, when the remote computer fails,
our system will temporarily freeze the retrieval programs, and
migrate its to another computer. Then these programs will be
thawed and resumed in remote side.

VII. RELATED WORK

This section describes a selection of related research in the
fields of distributed systems. It compares our approach with
several existing adaptation approaches for distributed systems.

Many researchers have explored adaptation mechanisms
for distributed systems [4][5][18]. They can be classified into
three types. The first is to dynamically change coordination be-
tween programs, which are running on different computers for
their adaptation, e.g., CORBA-based middleware [6][7][8][10].
This is one of the most typical adaptive coordination that
enables client-side objects to automatically select and invoke
server-side objects according to changes in their requirements
of applications or system architectures. However, this type
is limited. Because it only modifies the relationships be-
tween distributed programs instead of the computers, which
are executing them. The second is to change programs for
defining functions of which an applications consists, e.g.,
genetic programming [11]. It needs more resources to select
generations of programs. On the other hand, it is difficult
to predict their adaptation. Distributed systems should be
predictable because they are often used for mission-critical
applications. The third type is policy-based middleware on
distributed systems [2][3][12][16]. By using policies to define
the conditions of software components, these approaches can
migrate the components to specified computers by a specified
adaptation language, seems like [1][13][15]. However, the
specified computers may be not a good choose. Because
the specified computers may be have not enough available
resources or the processing of threads are waiting several task
or the connection has been broken. Conversely, our proposed
approach can autonomously select the destination of deployed
software components. Therefore, they do not care the computer
is a specified one or not. It is a more general-purpose.

On the other hand, our approach can change the computers
that execute programs for self-adaptation. Therefore, it enables
the programs to escape from computers, which may have
system failures or be shutdown.

The relocation of software components have been studied
in the literature on mobile agents [9][14]. By using the
technology, we may be able to dynamically relocate the execut-
ing programs of components. Furthermore, like ours, several

30

DEPEND 2014 : The Seventh International Conference on Dependability

mobile agent platforms support mechanisms for mobility-
transparence, where the mechanisms enables programs, which
may be migrated to remote computers to continue to work
on other computers. However, the technology itself does
not intend to support adaptation so that it cannot abstract
away adaptation from application-developers. Furthermore, our
approach is inherently designed for dynamic adaptation on
distributed systems.

VIII. CONCLUSION

This paper proposed an approach to adapt distributed ap-
plications by predefined or user-defined policies. It introduced
the relocation of software components between computers
as a basic mechanism for adaptation. It separated software
components from their adaptations in addition to underly-
ing systems by specifying policies outside the components.
It is simple, but it provided various adaptations to support
resilient distributed systems without any centralized manage-
ment. It was available with limited resources because it had no
speculative approaches, which tended to spend computational
resources. The relocation of components may have security
problems, e.g., executions malicious programs, but it is can
be solved by receiving only the programs that are transmitted
from secure and reliable computers with authentication tech-
niques. It was constructed as a general-purpose middleware
system on distributed systems instead of any simulation- based
systems. Components could be composed from Java objects
like JavaBean modules. We described several approaches with
practical applications.

REFERENCES

[1] J.-X.Li, B. Li, L. Li and T.-S. Che, ”A policy language for adaptive web
services security framework.” In: Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Computing, 2007. Eighth
ACIS International Conference on. IEEE, 2007. pp. 261-266.

[2] J. Keeney and V. Cahill, "Chisel: A policy-driven, context-aware, dy-
namic adaptation framework.” Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. IEEE, 2003. pp. 3-14.

[3] K. Yang, G. Alex and T. Chris, "Policy-based active grid management
architecture.” Networks, 2002. ICON 2002. 10th IEEE International
Conference on. IEEE, 2002. pp. 243-248.

[4] A. Tripathi, "Challenges designing next-generation middleware systems.”
Communications of the ACM 45.6 ,2002, pp. 39-42.

[5] V. Issarny, C. Mauro and G. Nikolaos, A perspective on the future
of middleware-based software engineering.” 2007 Future of Software
Engineering. IEEE Computer Society, 2007. pp. 244-258.

[6] B. Gordon S, B. Lynne, 1. Valerie, T. Petr and Z. Apostolos, "The role
of software architecture in constraining adaptation in component-based
middleware platforms.” Middleware 2000. Springer Berlin Heidelberg,
2000. pp. 164-184.

[71 D. Kulkarni and T. Anand, A framework for programming robust
context-aware applications.” Software Engineering, IEEE Transactions
on 36.2. 2010. pp. 184-197.

[8] R. Olejnik, B. Amer and T. Bernard, "An object observation for a
Java adaptative distributed application platform.” Parallel Computing in
Electrical Engineering, 2002. PARELEC’02. Proceedings. International
Conference on. IEEE, 2002. pp. 171-176.

[9] 1. Satoh, "Mobile agents.” Handbook of Ambient Intelligence and Smart
Environments. Springer US, 2010. pp.771-791.

[10] J. Zhang and B. H. Cheng, "Model-based development of dynamically
adaptive software.” Proceedings of the 28th international conference on
Software engineering. ACM, 2006. pp. 371-380.

[11] Koza and R. John, ”Genetic programming: on the programming of
computers by means of natural selection.” Vol. 1. MIT press, 1992.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

[12] M. Luckey and E. Gregor, “"High-quality specification of self-adaptive
software systems.” Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press, 2013. pp. 143-152.

[13] Anthony and J. Richard, A policy-definition language and prototype
implementation library for policy-based autonomic systems.” Autonomic
Computing, 2006. ICAC’06. IEEE International Conference on. IEEE,
2006. pp. 265-276.

[14] R. Montanari, T. Gianluca and S. Cesare, A policy-based mobile agent
infrastructure.” Applications and the Internet, 2003. Proceedings. 2003
Symposium on. IEEE, 2003. pp. 370-379.

[15] N. Damianou, D. Naranker, L. Emil and S. Morris, "The ponder policy
specification language.” Policies for Distributed Systems and Networks.
Springer Berlin Heidelberg, 2001. pp. 18-38.

[16] D. Ferraiolo and G. Serban, ”The Policy Machine: A novel architecture
and framework for access control policy specification and enforcement.”
Journal of Systems Architecture 57.4. 2011. pp. 412-424.

[17] Z.-J. Lei and D. G. Nicolas, ”Context-based media adaptation in perva-
sive computing.” Electrical and Computer Engineering, 2001. Canadian
Conference on. Vol. 2. IEEE, 2001. pp. 913-918.

[18] A. Uribarren, J. Parral, R. Iglesias1, J. P. Uribel and D. Lopez-de-Ipina,
”A middleware platform for application configuration, adaptation and
interoperability.” Self-Adaptive and Self-Organizing Systems Workshops,
2008. SASOW 2008. Second IEEE International Conference on. IEEE,
2008. pp. 162-167.

31

