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Abstract—System event logs contain information that capture
the sequence of events occurring in the system. They are often
the primary source of information from large-scale distributed
systems, such as cluster systems, which enable system adminis-
trators to determine the causes and detect system failures. Due
to the complex interactions between the system hardware and
software components, the system event logs are typically huge in
size, comprising streams of interleaved log messages. However,
only a small fraction of those log messages are relevant for
analysis. We thus develop a novel, generic log compression or
filtering (i.e., redundancy removal) technique to address this
problem. We apply the technique over three different log files
obtained from two different production systems and validate the
technique through the application of an unsupervised failure
detection approach. Our results are positive: (i) our technique
achieves good compression, (ii) log analysis yields better results
for our filtering method than normal approach.

Keywords-Cluster Log Data; Unsupervised learning; Compres-
sion; Levenshtein distance; filtering.

I. INTRODUCTION

The size and complexity of computer systems required for
computationally-heavy jobs such as scientific computations
is increasing and failures are expected to be the norm
rather than exceptions. The unscheduled downtime of such
large production computer systems carries huge costs: (i)
applications running on them have to be executed again,
potentially requiring hours of re-execution, (ii) checkpointing
has to be performed regularly and (iii) lots of effort is
required to find and fix the causes of the downtime. These
systems generate a large amount of data, typically in the
form of system logs, and these data files represent the main
avenue by which system administrators can gain insight into
the behaviour of the systems.

Due to the size of such data files and the complexity of
such systems, system administrators usually adopt a divide
and conquer approach to analyse the data. Such log files are
typically incomplete and redundant; that is, the files may
not contain all the relevant events to characterize a failure

while containing several interleaved events related to the
same failure.

There are several possible ways to increase the dependabil-
ity of these computer systems [1], with failure prediction [2]
or failure diagnosis [3][4] being the most prominent ones.
One of the basic tasks of automatic analysis of log files
for the purposes mentioned above is preprocessing, which
typically involves filtering the logs. However, such analysis
techniques are invariably expensive due to the size and type
of the logs being processed. Specifically, these log files are
highly redundant and unstructured. To handle the lack of
structure in log files, further information is added, often
manually, to capture specific aspects of the data, i.e., the data
is labelled using system information. To address the redun-
dancy problem, the logs are filtered, or preprocessed, to aid
the log analysis process. Specifically, to handle redundancy,
Filtering/compression techniques, or redundancy handling
techniques are used to remove events that are not useful for
any analysis. A common problem with such compression
techniques is that they may remove important information
that are pertinent to the analysis phase, as captured by the
targeted high compression or filtering rate [5]. The terms
compression and filtering are used interchangeably.

This paper seeks to bridge this gap; we filter event logs
based on their similarities. We propose a novel and generic
clustering approach to log filtering where events that are
not similar but causality related are also kept. This is to
preserve events patterns that serve as precursor to failures.
We focus on trying to achieve good failure analysis, hence
we evaluate the impact of the filtering on failure pattern
detection approach.

The rest of the paper is organised as follows: In Section II,
we present the system logs and models we assumed in
the paper. We present the methodology for achieving our
objective in Section III, while failure pattern detection for
performance evaluation is presented in Section IV. In Sec-
tion V, we discuss the results when applying the approach
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to log data from different supercomputer systems. Related
works are presented in Section VI. We conclude the paper
and provide direction for future work in Section VII.

II. MODELS AND SYSTEM LOGS

A. Basic Definitions

We will refer to Figure 1 (sample logs from Ranger
supercomputer) in this section for definition of terms.

• Event: A single line of text containing various fields
(time-stamp, nodeID, protocol, application, error mes-
sage) that reports the activity of a particular cluster
system. Such an event is also often called a log message.

• Event logs: A sequence of events containing the activ-
ities that occur within a cluster system.

• Similar Events: These are events containing similar log
messages based on the similarity measure used. From
Figure 1, events 5 and 6 can be considered similar.

• Identical Events: These are events believed to be
exactly the same and/or are produced by the same
’print’ statement, e.g., events 7 and 8 in Figure 1.

• Failure Event: This is an event that is often associated
with and/or is indicative of a system failure.

• Sequence A sequence consists of one or more consec-
utive events logged within a given time period. In this
paper, sequence and patterns means the same and are
used interchangeably.

TABLE I. SUMMARY OF LOGS USED FROM PRODUCTION SYSTEMS

System Log Size Messages Start Date End Date
Syslogs 1.2 GB > 107 2010-03–30 2010-08-30
Ratlogs 4.3 GB > 2× 107 2011-08-01 2012-01-20
Blue Gene/L 730 MB 4, 747, 963 2005-06-03 2006-01-04

B. System Model and Cluster Logs

Here we explain the model of our system and explain the
logs we work with as well as the event types contained in
the logs.

1) Cluster System: A cluster system contains a set of
nodes, jobs or tasks, production time, job scheduler and sets
of software components (e.g., parallel file system). The job
scheduler allocates jobs to nodes with certain production
time, and all the components involved write logs to a writing
container. This is a common model for most of the cluster
vendors like Ranger, Cray, IBM etc. In this research, we
use the log of two popular cluster systems, namely (i)
Rationalised logs (ratlogs) from Ranger Supercomputer, (ii)
syslog from Ranger supercomputer and (iii) IBM Blue-
Gene/L. Table I shows a summary of the logs from the cluster
systems we focused on in this research.

2) Cluster Event Logs: Different attributes are used by su-
percomputer vendors to represent its components. The IBM
standard for Reliability, Availability, Serviceability (RAS)
logs incorporates more attributes for specifying event types,
severity of the events, job-id and the location of the event[6].

An example of Ranger’s (syslog) event can be seen below:
Apr 4 15:58:38 mds5 kernel: LustreError: 138-a: work-
MDT0000: A client on nid .*.*.5@o2ib was evicted due to
a lock blocking callback to .*.*.5@o2ib timed out: rc -107

It has five attribute fields namely: Time-stamp (Apr 4
15:58:38) containing the month, date, hour, minute and
second at which the error event was logged. Node Identifier
or Node Id (mds5) identifies the nodes from which the
event is logged. Protocol Identifier (kernel) and Application
(LustreError) provides information about the sources of logs.
Message (A client on nid *.*.*.5@o2ib was evicted due to
a lock blocking callback to *.*.*.5@o2ib timed out: rc -
107) contains alphanumeric words and English-only words.
The English-only words (A client on nid was evicted due to
a lock blocking callback to timed out) is believed to give
an insight into the error that has occurred. They are referred
to as Constant. The alpha-numeric tokens (*.*.*.5@o2ib ,rc-
107) also called Variable, signify the interacting components
within the cluster system. The ratlogs have and additional
field (job-id) which differentiates it from syslogs. Detailed
example of the Ranger logs is seen in Figure 1 and IBM’s
Blue Gene/L (BGL) is seen in Table II.

C. Failure Model

The failures we focused on in this paper are those that
cause the system to malfunction, i.e., execution of some jobs
has stopped. For example, such a failure in IBM BlueGene/L
is characterized by FAILURE severity level while, in the
Ranger Supercomputer, these failures are characterized by
a compute node soft lockups.

These failures usually occur as a result of faults occurring
in the system, i.e., caused by the fault(s) of one or more sub-
systems/components in the system [7]. These faults result in
a log entry or fault message in the log data file. For example,
a network timeout will result in a “Network timeout” log
message being recorded. Hence, in a typical sequence, there
will be an interleaving of fault events and normal events.

III. METHODOLOGY

We first briefly explain the existing filtering approach,
which we call normal filtering. We next explain our filtering
approach which is based on simple iterative clustering. The
clustering is based on the notion of Levenshtein’s Distance
(LD), defined on the events messages to capture their
similarities.

Filtering based on defined heuristics is applied to purge
out redundant events. The resulting event sequences are then
transformed into term frequency matrices which serve as
input to detection algorithm.

A. Normal Event Filtering

Filtering or compression as it may be called here, is meant
to reduce the complexities that comes with analysing logs.
It is generally agreed that filtering or pre-processing logs is
an important process. The process helps eliminate redundant
events from logs, thereby reducing the initial huge size. This
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TABLE II. AN EXAMPLE OF EVENT FROM BLUE GENE/L RAS LOG

Rec ID Event
Type Facility Severity Event Time Location Entry Data

17838 RAS KERNEL INFO 2005-06-03-15
.42.50.363779 R02-M1-N0-C:J12-U11 instruction cache parity error corrected

 

1:   Mar 29 10:00:44   i128-401  kernel:  [8965057.845375] LustreError: 11-0: an error occurred while communicating with *.*.*.36@o2ib. The 

ost_write operation failed with -122  

2:   Mar 29 10:00:53  i128-401  kernel:   [8965077.319555] LustreError: 11-0: an error occurred while communicating with *.*.*.28@o2ib. The 

ost_write operation failed with -122  

3:   Mar 29 11:27:16  i182-211  kernel:   [8981960.031578] a.out[867]: segfault at 0000000000000000 rip 0000003351c5b2a6 rsp 00007fffdcd318c0 

error 4  

4:   Mar 29 11:27:16  i115-209  kernel:   [2073150.255467] a.out[22921]: segfault at 0000000000000000 rip 0000003ad725b2a6 rsp 00007fffbf1a6d40 

error 4  

5:   Mar 30 10:02:24  i107-308  kernel:   [8966098.630066] BUG: Spurious soft lockup detected on CPU#8, pid:4242, uid:0, comm:ldlm_bl_22  

6:   Mar 30 10:02:24  i107-308  kernel:   [8966098.642055] BUG: soft lockup detected on CPU#10, pid:21851, uid:0, comm:ldlm_bl_13  

7:   Mar 30 10:09:25  i107-111  kernel:   [8966563.203631] Machine check events logged  

8:   Mar 30 10:09:51  i124-402  kernel:   [8965663.148499] Machine check events logged  

9:   Mar 30 10:10:22  master    kernel:   LustreError: 28400:0:(quota_ctl.c:288:client_quota_ctl()) ptlrpc_queue_wait failed, rc: -3 

10:  Apr  1 05:23:54  i181-409  kernel:  [9203054.301173] Machine check events logged  

11:  Apr  1 05:23:58  visbig      kernel:  EDAC k8 MC0: general bus error: participating processor(local node response), time-out(no timeout) 

memory transaction type(generic read), mem or  i/o(mem access), cache level generic)  

 

Figure 1. Sample Log events for RANGER Supercomputer

however, must avoid removing useful events or event patterns
that are important for failure pattern detection. In normal log
filtering, events that repeats within certain time window are
removed, only the first is kept. This simple log filtering is
what we refer to as normal filtering in this work. Details can
be seen in [6].

B. Preprocessing

Tokenization and Parsing
This phase involves parsing the logs to obtain the event
types and event attributes, using simple rules. Tokens that
carry no useful information for analysis are removed. For
example, numeric-only tokens are removed but attributes
(alpha-numeric tokens) and the message types (English-like
only terms) are kept. Also, fields like protocol identifier and
application are removed or omitted during the parsing and
tokenizing phase.

Message part contains English words, numeric and al-
phanumeric tokens. The English tokens show a pattern pro-
viding information pertaining to the state of the system. The
alpha-numeric tokens capture the interacting components or
software functions involved. These interacting components,
which do not occur frequently and show less or no pattern,
are also important since we are interested in interacting nodes
of the cluster system. The numeric only tokens are removed
as they only add noise.

C. Filtering: Redundancy Handling

1) Logs Message types Extraction and Labelling through
Clustering: Generally, data clustering techniques group sim-
ilar data points together, based on some closeness measure.
The output of such clustering algorithms is a set of clusters,
where each of the clusters contain members (data points)
that are similar (or close) to each other and very dissimilar
to members of other clusters. In order to identify all the
unique events in the logs, we first extract the message types
and we introduce a clustering technique (see Algorithm 1)

that partitions the logs based on events similarities given by
an edit distance. Each cluster represents a unique event.

Edit Distance - (Levenshtein’s Distance): The closeness of
events is measured using Levenshtein’s Distance (LD) [8]. It
is a metric that measures differences between two strings.
It is defined based on edit operations (insertion, deletion
or substitutions) of the characters of the strings. Hence the
Levenshtein’s distance between two strings s1 and s2 is the
number of operations required to transform s2 into s1 or vice
versa. LD is an effective and widely used string comparison
approach. We found it more useful as we easily can define
it on tokens rather than characters. We equally found it to
be more suitable here than cosine similarity as the later is a
vector-based similarity measure.

Events Similarity: In our algorithm, we define LD as the
number of operations required to transform one message
type into another. Therefore, instead of defining the opera-
tions on characters of event message types, we define the
operations on the tokens or terms ti of the event types,
ei = {t1, t2, ..., tn}. It should be noted that message types
of event logs mostly do not have many terms or tokens,
therefore the computational overhead is reduced.

Consider the log entries of Figure 1. Events 1 and 2 are
both failed communication events by the same node; the
communication is, however, with different nodes. Events 7
and 8 are both normal machine checked exceptions. The
challenge is that these events greatly increase the feature
space of distinct events, making it difficult to handle for
any meaningful analysis. In solving this, we consider the
following: (1) Similar events need to be grouped together
and considered the same and (2) identical events are also
considered same and the redundant ones are removed. We
propose an algorithm (Algorithm 1 - see Figure 3) to first
find the similarity between these events and then cluster those
events that are similar. Then, events in the same cluster are
indexed with the same identity (IDs).

From the sample logs of Figure 1, it is necessary that
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 Event ID Time-stamp Node 

Identifier 

Message 

1 LEO 1269856844 i128-401 LustreError:  error occurred while communicating with 129.114.97.36@o2ib. The 

ost_write operation failed with  

2 LEO 1269856853 i128-401 LustreError:  error occurred while communicating with 129.114.97.36@o2ib. The 

ost_write operation failed with  

3 SEGF 1269862036 i182-211 segfault at rip rsp  error 

4 SEGF 1269862036 i115-209 segfault at rip rsp  error 

5 SSL 1269943344 i107-308 BUG: Spurious soft lockup detected on CPU, pid:4242, uid:0, comm:ldlm_bl_22  

6 SSL 1269943344 i107-308 BUG: soft lockup detected on CPU, pid:21851, uid:0, comm:ldlm_bl_13  

7 MCE 1269943765 i107-111 Machine check events logged 

8 MCE 1269943791 i124-402 Machine check events logged 

9 CQF 1269943822 master client quota ctl  ptlrpc queue wait failed,  

10 MCE 1270099434 i181-409 Machine check events logged 

11 GBE 1270099438 visbig general bus error: participating processor local node response, time-out no timeout  

memory transaction type generic read, mem or  io mem access  cache level generic   

 

Figure 2. Sample pre-processed logs

any similarity metric used must consider the order of the
terms in the events for meaningful result. For example,
the event messages ...error occurred while communicating
with... and ...Communication error occurred on... may appear
similar but semantically different. A similarity metric that
does not take order of tokens/terms into consideration will
cluster these events together, i.e., these events will be seen
as similar, because they have similar terms. To address this
challenge, we define an edit distance metric on terms without
transposition, taking term order into consideration. Also,
defining this metric based on terms or tokens reduces the
computational cost incurred as opposed to when it is defined
on string characters.

Finally, to capture the similarity of events, we define a
similarity threshold, where the lesser the number of edits,
the higher the similarity. Hence, we define the threshold such
that, when the edit distance between a pair of messages is
less than or equal to the threshold λ (hence highly similar),
these events are regarded as similar and thus clustered
together.

Event Similarity Threshold
It has also been observed that events that can be regarded

similar do not have much difference in terms of the number
of terms contained in the event messages. Using an iterative
approach [9], we start with a small value of similarity
threshold λ, then increase the value in small increments
and monitor the output, until a satisfied similarity value
is obtained. We observed that with a very small similarity
threshold, only events that are exactly similar are clustered
together. But, as the value of threshold is increased to values
higher than 3, events that are often dissimilar were being
classed as similar. Therefore, to have a more acceptable
result, we chose a threshold of 2.

Clustering event logs and ID assignment The challenges
addressed by this algorithm and its approach can be ex-
plained in two steps:

STEP I: The events are grouped based on the value of
the edit distance or LD. In this step all events with equal
terms or token length are clustered together. This is because

Algorithm 1
Input: Log events e0. . . en, MinimumSimilarityThreshold λ
Output: Log events with cluster IDs

1: initialise s0 = e0;

2: for all log events ei, i = 0 . . . n do{ }
3: Obtain events similarities using Levenshtein Distance

similarity(s0, ei)=LD(s0, ei);
4: end for
5: for all log events do
6: if similarity <= λ then
7: Assign log events to cluster
8: Assign ID to log event representing its cluster
9: end if
10: end for
11: Repeat step 2 for clusters with problem explained in STEP II above
Until all log events are clustered
12: Return() {outputs log events with their cluster ID}

Figure 3. An algorithm that Clusters event logs base on similarity and
assign event IDs (represent the clusters).

they will have same value of LD.

STEP II: Since LD gives the number of operations
performed to transform one event to the other, different event
types with same token length are clustered together from the
step 1. For example, . . . “machine check event logged” and
. . . “Spurious soft lockup detected” will belong to the same
cluster. This step partitions clusters with such problems with
smaller LD value. This step is performed recursively until
the clusters contains only events of similar message type.
More on this is shown is Algorithm 1 seen in Figure 3.

As example of the output of this step is shown in Figure 2.
These logs still contain redundant events, for example, events
5 and 6 (please observe that events 5 and 6 are clustered
together, though being slightly different, and are indexed
using the same id).

2) Removing Redundant Events: There are several seem-
ingly identical error events reported frequently in cluster
logs. These events are then clustered together and have the
same ID from the clustering step. The events are sometimes
reported by the same cluster node and they occur within
a small time difference (temporal aspect). Also, sometimes
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some of these events are reported by different cluster nodes
(spatial aspect) but still within the small time difference.

According to Iyer and Rosetti [10], occurrence of similar
or identical events within a small time window might likely
be caused by the same fault. Thus, these messages are related
(and hence redundant) as they potentially point to the same
root-cause. Therefore, removing these redundant messages
may prove to be beneficial to the analysis stage. In another
sense, removing the “redundant” events could be useful in
understanding the behaviour of a particular fault in terms
of the frequency of the event generated within the period.
Therefore, in filtering of redundant log events we consider
events in a sequence having the following properties:

• Similar events that are reported in sequence by the same
node within a small time window are redundant. This
is because nodes can log several similar messages that
are triggered by the same fault.

• Similar events that are reported by different nodes in
a sequence and within a time window. This could
be triggered by the same fault resulting in similar
misbehaviour by those affected cluster nodes.

• Identical events occurring in sequence and within a
small time difference are redundant.

General approach to filtering will keep the first similar
event of sequence and subsequent ones removed [5]. It is
pertinent to note that it is possible that the same error
messages logged by different nodes are caused by different
faults and at close time interval. Some events are causally-
related. In our approach, we keep such events. The process
of identifying and grouping the error events exhibiting the
above properties is done using a combination of both tupling
and time grouping heuristics [9]. We define some heuristics
that captures the properties outlined above.

With careful observation of the logs and experts’ input,
we realised that achieving high compression rate and yet
preserving patterns are important and dependent on how
informative and well-labelled a given log is. For example,
Ranger’s Ratlogs contains more information regarding the
nodes and jobs involves which provides more information
regarding an event. Job-ids in logs indicates particular job
that detects the reported event. The job-ids when correlated
with failure events, tells which job is the source of the failure.
This implies that identical job-ids present on different events
within a given event sequences would have high correlation
as regards the faults and failure that is eventually experi-
enced [11]. In order to achieve high events compression
accuracy (ability to keep unique events) and completeness
(remove redundant events), yet maintaining events which are
possible precursor to failure (preserving failure pattern), we
propose a filtering approach that removes redundant events or
events that are related based on the causes, sources, similarity
and time of their occurrence.

Specifically, given two events e1 and e2, with the time of
occurrence Te1 and Te2 respectively, they are both causality
related or emanates as result of same faults if:

• nodeid(e1) == nodeid(e2) && |Te1−Te2| ≤ tw &&
sim(e1, e2) ≤ λ

• nodeid(e1) == nodeid(e2) && jobid(e1) ==
jobid(e2) && |Te1−Te2| ≤ tw && sim(e1, e2) ≤ λ,

where sim(.) is the similarity given by LD, λ is similarity
threshold.

IV. CASE STUDY: PATTERN DETECTION

A. Introduction

The aim of compression or filtering event logs of large-
scale computer systems is to reduce the massive size by
properly removing redundant events; and preserving the
necessary events patterns to enhance any log analysis. Such
analysis can be failure prediction, root cause analysis, failure
detection etc. In this section, we introduce an unsupervised
pattern detection approach in logs of distributed systems.
This is an approach used to evaluate the accuracy and
efficiency of our filtering approach. That is, if the approach
preserve useful event patterns in logs that improves failure
detection.

Filtered logs sequences are now extracted transformed into
term-frequency matrix. This matrix comprises of row vec-
tors representing distribution or counts of each event types
within a given time and the column vectors representing the
sequences or patterns.

We further utilise clustering approach [12] to group similar
behaving patterns. Each of these patterns are then expected
to be normal event sequences or comprising faulty events.

B. Failure Pattern Detection

According to Gainaru et al. [13], event log sequences can
be categorised as noisy, periodic or silent in their behaviour.
Noisy sequences occur with high frequency (busty or chatty)
and the level of interaction of the nodes involved increases
within short period. The characteristics of these patterns are
captured through entropy [14] and mutual information. High
entropy signifies that the cluster is likely failure cluster.

Hence, given a cluster with set of sequences or patterns
C = {c1, ..., cm} and each pattern ci contains a set of similar
events sequences,s, i.e., ci = {s1, ..., sn}. Then detection is
achieved as follows:

f(c) =


1 if ϕ(c) < 0

else

{
1 if ϕ(c) > τ & H(c) > 0

0 otherwise
(1)

Where,
ϕ(c) =MI(c)−H(c) (2)

and MI(c) and H(c) are the mutual information and the
entropy of patterns c, τ is detection threshold, the value of
ϕ(c) for which we can decide if c contained failure sequences
or not.
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V. EXPERIMENTS, RESULTS AND DISCUSSION

A. Experimental Setting

We performed our experiments in order to evaluate the ef-
fectiveness of our filtering method is preserving useful events
patterns that may potentially improve failure detection. Fur-
ther, we aim to assess the efficiency of our unsupervised
detection method on the various logs. The experiment was
conducted on three different logs obtained from two cluster
systems. The ratlogs and syslogs are obtained from the
Ranger supercomputer sited at Texas Advanced Computing
Center at the University of Texas at Austin, and the BGL
logs from IBM Blue Gene/L supercomputer. These systems
were chosen because of the availability of the logs and they
are among the top 500 widely used supercomputers. Further,
their event logging system is representative of a many other
similar systems.

Following, a sequence, an input vector for the pattern
detection algorithm is labelled as either a failure or non-
failure. We implemented normal filtering approach as ex-
plained earlier in order to compare with our approach. Note
that we could not implement the approach by Zheng et
al. [5] to compare with ours because it is log-specific. It
cannot be generalised with logs that are not labelled with
severity levels, which is the case for most systems. Hence
we compare with normal filtering method which is the most
used.

To form the basis of our evaluation, we use information
retrieval metrics precision (the relative number of correctly
detected failure patterns to the total number of detections);
recall (the relative number of correctly detected failure
sequences to the total number of failure sequences) and F-
measure (harmonic mean of precision and recall) to measure
the performance of our approach. They are as expressed
in Equations (3) - (5). We capture the parameters in the
metrics as follows: True positives (TP): Number of failure
sequences/patterns correctly detected. False positives (FP):
Number of non-failure (good) sequences detected as failure.
False negatives (FN): Number of failure sequences identified
as non-failure sequences.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F −Measure = 2 ∗ Precision×Recall
Precision+Recall

(5)

B. Results

The results are captured in Figures 5, 6, 7 and 8. Each plot
of the graphs contains two curves, one is representing the
detection efficacy of our method, and the other representing
that of normal filtering.

As mentioned in the introduction, we obtained a good
log events compression from the original size. We obtained
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(b) Recall

Figure 5. Precision and recall showing effectiveness of failure detection on
syslogs filtered with our method and normal filtering

compression rate of 78%, 80% and 84% on syslogs, ratlogs
and Blue Gene/L logs respectively with LD = 3. Normal
filtering achieved an average compression of 88%. We show
from Figure 4, the compression rate on syslogs data as the
value of LD increases.

syslogs: Results, as seen in Figure 5, shows that the
precision and recall on logs filtered by our method is
consistently higher than on those filtered by normal filtering
through all the time windows captured. Furthermore, filtering
using our method achieve highest precision and recall of
69% and 88%, respectively, normal filtering on the other
hand is considerably lower with peak precision and recall of
53% and 52% respectively. Our filtering method achieved a
relative improvements of about 16% and 26% over normal
filtering, for precision and recall respectively.

ratlogs: On ratlogs (see Figure 6), both precision and
recall for our filtering method are consistently high across
time windows, ranging between 67%− 80% for the former
and between 79% − 98% for the latter. However, both
precision and recall for normal filtering is inconsistently low,
with maximum precision of 60% and recall of 82%.
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Figure 6. Results showing effectiveness of failure detection on ratlogs
filtered with our method and normal filtering
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Figure 7. Showing effectiveness of failure detection on BlueGene/L (BGL)
logs filtered with our method and normal filtering
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Figure 8. Detection performance on ratlogs using our filtering method
without using additional structure (legend: OFM) and logs compressed

with additional useful structure (legend: Filter + Job ID).

Similarly, on IBM BlueGene/L (BGL), the precision as
seen in Figure 7 shows there is improvement in detection
using our method over normal filtering. It achieved an
average improvement of about 30% over normal filtering.
Recall for both methods are high, however, our method
performed better at smaller time windows.

What is the implication of these results? Our method
achieved an improvement over normal filtering of about
10% − 30% across all logs used. One of the reasons for
this is that, after careful manual investigation, we discovered
that failures experienced as captured in these logs are often
preceded by event patterns within a short time window.
Further, our filtering method was able to preserve these pre-
cursor events to failures. This implies that our approach can
aid system administrators take necessary failure preventive
measures earlier.

We show the result of compression taking job-ids into con-
sideration in Figure 8. This result is for ratlogs only, being
the only logs with job-id field among the three logs used.
The result shows that there is a remarkable improvement over
not using job-ids for compression with an average detection
improvement of about 15%. The increased detection in logs
compressed with job-ids can be explained by the fact that
events which are reported by same jobs and are semantically
related, yet not similar are properly filtered.

VI. RELATED WORK

Data mining and machine learning techniques are the
mostly used in recent works that focused on analysing logs
for failure analysis in cluster systems. These works can be
found in [15][16][17][18] and [19], and they all developed

algorithms that mine patterns of events in the logs. The works
in [20] and [18] combines console logs with source code
and employed PCA to obtain faulty patterns in the logs.
The authors of [2] proposed a method for analysing system
generated messages by extracting sequences of events that
frequently occur together. In [21], the authors proposed a
technique and developed a tool based on clustering called
HELO, to extract event templates and describes the templates
for system administrator’s use. None of the above work
considers removing any redundancy in the events logs. They
considered every event useful for analysis.

Zheng et al. [5] proposed a method that pre-processes logs
and removes redundant events without losing important ones,
for failure prediction. In their approach, redundancy from
both a temporal and spatial viewpoint is considered. They
also filter events based on their causal relationship. Unlike
this method, we assume that temporal events must occur
in sequence to be removable and we believe that causally-
related but semantically unrelated events are patterns or sig-
natures to failure, therefore we keep them. Since the method
of [5] cannot be implemented on logs without severity levels,
we conjecture that the approach will yield either a high false
positive or negative, should it be used on these types of logs.
Hence we couldn’t compare this method with ours.

Pecchia et al. [22] developed an approach based on
heuristics combined with statistical techniques that provides
likelihood of events produced by different nodes to removed
unwanted events. Their approach is different from ours as
they focused on analysing the effects of tupling on compres-
sion while we proposed a new filtering approach.

Other approaches that use clustering can be found in [23]
and [16]. The latter mainly focus on extracting the message
types that can be used for indexing, visualization or model
building. One of the caveats of this approach is that it
clusters events/message types that are believed to have been
produced by the same print statement and their occurrences
is non-overlapping. In contrast, our approach can cluster
overlapping and non-overlapping events together.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel, generic compression algorithm
that can be instantiated according to the structure of the log
files. Our method did not only compressed logs, it first ex-
tract message types in logs. The clusters formed and indexed
with ids represents message types. These message types are
useful in log analysis e.g., visualization, indexing. Our com-
pression method make use of event similarity (Levenshtein
distance), and event structure to determine a redundant event.
The efficiency of the compression technique is validated
through a proposed pattern detection algorithm. The results
from three different logs demonstrate that compression does
not only reduce log size which leads to low computational
cost of failure analysis, but also enhance better detection of
failure patterns. As future work, we intend to use the result
and perform failure prediction.
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