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Abstract—Analyzing the worst-case execution time of embed-
ded systems software is useful for assessing parameters like
schedulability, performance (especially with regard to deadlines),
etc. A commonly accepted approach to obtain these values is
by way of static analysis that uses the software along with a
model of the target processors architecture. This paper describes
the required steps to construct a tool to assess the worst-case
execution time of a given application with the help of an open-
source framework. The ensuing evaluation provides a comparison
of the results with other approaches. In addition, this paper can
be used as guide to implement an instruction set architecture of
a target processor in order to enable various static analyses with
the aim to estimate the worst-case execution time.

Keywords—architecture description language; instruction set
simulator; worst-case execution time analysis.

I. INTRODUCTION

Embedded systems nowadays are ubiquitous in our daily
life. One kind of embedded systems are real-time systems
where the correct operation of the system depends on the logi-
cal correctness of the computations and upon the time at which
the result is produced. Hence, knowledge about execution
times – and here in particular the worst-case execution time
(WCET) – is of relevance, e.g., to assess whether deadlines
imposed by application requirements will be met, or to assess
the schedulability of an implementation.

The WCET defines the longest time it takes to execute
a program on a specific target processor. There are different
ways to determine this value.

(1) One method uses static code analysis [1], [2] by way
of a model of the processor’s architecture. In fact, various
analyses are in use therefore, e.g.:

• Control-flow analysis
• Value analysis
• Cache analysis
• Pipeline analysis
• Path analysis
• WCET estimation

Each of these analyses must be implemented and adapted
for every new target architecture.

(2) Another WCET analysis method is measurement-based
where the execution time of an application, function or task
is recorded during runtime. To that end, the source code
must be instrumented to provide suitable triggers for the

measurement and appropriate stimuli are required to stress
worst-case behavior. In practice, the latter requires elaborated
test-setups [3], [4].

(3) The third approach combines both the static analysis
method to evaluate input data and the measurement-based
method to estimate the WCET [3].

Independent of the chosen approach, it is essential that the
real WCET is never longer than the evaluated value and the
result is as close as possible to the reality. These two aspects
describe a safe and tight WCET evaluation.

Dependable systems have the ability to avoid service
failures, which are unacceptable in terms of frequency and
severity. Many aspects need to be considered in order to ensure
such a behavior; however, this paper focuses on a specific
detail: predictable execution times of dependable software
(e.g., a hard real-time system) via WCET analysis. Such an
analysis is an inherent part of the safety process during the
design and development of automotive and avionics systems
to avoid timing issues [5], [6]. For example, unmanned aerial
vehicle (UAV) software contains various tasks (e.g., engine
control or position sensing) where the knowledge about their
WCET is mandatory for safe operation.

The contribution of this paper presents a generic approach
of how to enable WCET analysis for a modern processor
architecture following approach (1) using static analysis of exe-
cutable binaries. Besides the architecture module, two analysis
tools were implemented using the OTAWA framework’s API.
The result is a useful guide to implement WCET analysis for
a certain processor architecture. It can be utilized for WCET-
aware development to prevent systematic failures in order to
increase the reliability of a dependable system.

The structure of the paper is as follows. First, we detail
typical design patterns and their effect on WCET using some
examples. Next, we present related work in Section III, fol-
lowed by a description of the implementation in Section IV.
Section V provides some benchmarks, and finally, a use case
is presented in Section VI before we conclude the paper in
Section VII.

II. WCET ESTIMATION OF EMBEDDED SYSTEMS
SOFTWARE

Software for embedded systems typically follow either
a bare-bone approach or employ some kind of (real-time)
operating system. Bare-bone applications in turn either follow
a super-loop architecture or a fore-/background approach [7].
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When using a preemptive operating system task and/or thread
models are in place. Below, we will use these patterns and
show how WCET can be estimated by way of examples.
This not only gives an insight on the analysis itself, but also
encourages the technical background for the further chapters.

In general, static WCET evaluation is based on one of the
three present calculation techniques: (1) path-based [8], (2)
tree-based [9], and (3) implicit path enumeration technique
(IPET) [10]. Since these approaches are usually applied on
instructions or basic blocks, they need to be abstracted in
order to use them for a higher program representation. The
aim of this chapter is to describe the WCET of a program
with a formalism using its most basic elements. This high-
level formalism is inspired by the path-based approach where
the WCET will be determined by first calculating times for
different paths within a program and then looking for the path
with the longest execution time. It consists of a header TH
and a content/path TP that is multiplied with its loop-bound
LB, as shown in (1). Depending on the programs structure,
this basic equation needs to be adapted. All subsequent T
variables are already defining the maximum execution time
of the corresponding program part as processor clock cycles.
This means, that the result is independent of the processors
frequency; however, one can convert it into a time via dividing
it by the processors clock rate.

WCET = TH + TP ∗ LB (1)

Bare-bone program structures consist of an initialization
part TIN and an endless loop TL. The execution time of the
latter equals a cycle time, which is especially relevant for
super-loop architectures because they are not using interrupts
at all and only detect events via requests (polling). It can be
used as maximum response time for a certain event and can
be evaluated as shown in (2).

WCETP = TP = TL (2)

The other kind of bare-bone applications is using an
interrupt driven fore-/background architecture. Here, interrupts
and the execution of their associated service routines (ISR)
need to be considered for WCET evaluation. With its WCET
and the execution rate, one can calculate an expected rate
(periodicity) relative to the program under analysis. Depending
on the referenced program section TPS , the interrupt rate,
as estimated by (4), contains only the loop section or the
entire application (see (3)). For the latter, interrupts need to
be enabled before the program part under analysis. The sum
of all interrupt service routines TSI is estimated by adding
up the expected timing of every interrupt as shown in (5).
The equation assumes that all involved interrupts are activated
permanently.

TPS = TL Y (TIN + TL) (3)

RI =
TPS

expected ISR Rate
(4)

TSI =
∑
i∈SI

[TIi ∗RIi] (5)

The WCET of one loop cycle of interrupt driven applica-
tions takes the interrupts into account and can be estimated
by (6). The overall WCET is the result for termination after

a certain number of cycles specified by the loop-bound (see
(7)).

WCETP = TP = TL + TSI (6)
WCET = TIN + TP ∗ LB (7)

An example is given for a fore-/background structure with 3
interrupt service routines. The WCET of one loop cycle should
be estimated. Worst-case time behaviors of each individual part
were already evaluated as listed below.

TIN = 600 clock cycles

TP = 9000 clock cycles

TI1 = 250 clock cycles

TI2 = 890 clock cycles

TI3 = 60 clock cycles

We assume three ISRs with the following shortest possible
periodicity:

ISR1 : executed every 5000 clock cycles

ISR2 : executed every 20000 clock cycles

ISR3 : executed every 1400 clock cycles

Thus we get:

RI1 =
9000

5000
= 1.8 ≈ 2

RI2 =
9000

20000
= 0.45 ≈ 1

RI3 =
9000

1400
= 6.43 ≈ 7

TSI = 250 ∗ 2 + 890 ∗ 1 + 60 ∗ 7 = 1810 clock cycles

WCETP = 9000 + 1810 = 10810 clock cycles

The result shows that an increasing number of interrupts
significantly affects the WCET.

RTOS: There are major differences between bare-bone
and real-time operating system (RTOS) structures, such as the
administrative overhead and the interruption of execution by a
higher priority task in real-time operating systems.

When assuming a priority based scheduler, it is a challenge
to evaluate a task’s WCET because each task, except the
highest priority one, can be interrupted by a higher priority
task. As a result, evaluation needs to be done by a top-down
approach starting with the highest priority one. Equation (8)
describes the maximum interruption time of a task by summing
up both, all Tasks with a higher priority THPT and their
administrative overhead TAO (e.g., context switch, scheduling).
The subsequent calculation is identical to bare-bone programs,
as shown in (9) and (10).

TINT =

n∑
i=1

TAOi +

n∑
i=1

THPTi (8)

WCETP = TP = TL + TINT (9)
WCET = TIN + TP ∗ LB (10)

For tasks using an endless-loop pattern, the worst-case
cycle time WCETP is typically the most relevant. The overall
WCET is the result for termination after a specified number
of cycles (loop-bound). For tasks using a run-to-completion
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pattern there are typically no cycles and, therefore, the loop-
bound equals 1 for the overall WCET.

An example calculation follows for a run-to-completion
task, which is implemented into a real-time operating system
where 2 tasks with a higher priority are existing. The task’s
entire WCET should be determined with the assumption that
the administrative overhead is task independent. Worst-case
time behaviors of each individual part were already evaluated
as listed below.

TIN = 200 clock cycles

TL = 3900 clock cycles

THPT1 = 2320 clock cycles

THPT2 = 1100 clock cycles

TAO = 590 clock cycles

This results in:

TINT = 590 + 590 + 2320 + 1100 = 4600 clock cycles

TP = 3900 + 4600 = 8500 clock cycles

WCET = 200 + 8500 = 8700 clock cycles

The outcome of 8700 cycles shows that the RTOS as well
as tasks with a higher priority have a major impact on the tasks
WCET.

III. RELATED WORK

In the following, we provide a short comparison of (1)
existing WCET analysis tools (cf. Table I) and further on (2)
describe related architecture description languages (ADLs).

TABLE I. WCET ANALYSIS TOOL COMPARISON.
(*ECLIPSE PLUGIN, **PARTLY, ***NOT REQUIRED)

Name ai
T

Bo
un

d-
T

Ra
pi

Ti
m

e

SW
EE

T

OT
AW

A

open source X X X X X

static analysis approach X X X X X

measurement-based approach X X X X X
annotations X X X X X

GUI X X X X X*
specify architectures X X X X X

specify µC characteristics X** X** X*** X X

binary file input X X X X X

ISO 26262 X X X X X
DO-178B X X X X X

The aiT WCET Analyzer [1] from AbsInt features an
easy to use GUI with a straightforward configuration. It is
able to compute tight bounds of a programs WCET using
static analysis. One can choose between different integer linear
programming (ILP) solvers (e.g., CPLEX), analysis options
and output reports (e.g., HTML and XML). User defined
annotations can be provided using the AIS/AIS2 language in
order to define loop bounds and other program information.
It fulfills the ISO 26262 as well as the DO-178B level A
qualifications.

Bound-T [11] (originally developed by Tidorum Ltd. and
now released as open-source) is a command-line tool that
uses static analysis for the WCET estimation. Annotations
can be provided by the user, although, loop bounds can be

derived automatically. Unfortunately, cached memory or the
parallelism of functional units cannot be specified making it
hardly unsuitable for many modern processors.

RapiTime [12] uses a measurement-based approach for the
WCET evaluation. It derives a structural model of the program
and instruments the source code during the build process of a
program. Afterwards, it performs all given tests and extracts
the timing data via execution traces. To finish up, a prediction
of the worst-case path and WCET is carried out by combining
the obtained timing information and the structural model of
the code. It fulfills both the DO-178B/C and ISO 26262
qualification. Since RapiTime does not rely on a processor
model, it is usable for a lot of targets as long as they support
a mechanism to extract execution traces.

The SWEdish Execution Time analysis tool (SWEET) [13]
is a research prototype that offers best-case execution time
(BCET), WCET and flow analysis. It uses a program represen-
tation called ALF (Artist Flow Analysis Language) in which
either a binary or source code has to be converted for further
processing. It implements a flow analysis of a given program
to detect infeasible paths and loop bounds. The latter can be
exported to aiT or RapiTime flow facts format enabling further
analyses. A low-level analysis tool called low-sweet allows
evaluating the WCET by its own.

The Open Tool for Adaptive WCET Analysis
(OTAWA) [14] is a static analysis framework that allows
modifying, extending, or implementing analysis tools by using
the OTAWA API. One of the existing tools, called OWCET,
evaluates the WCET of a given program by providing the
executable binary file, program flow information (flow facts)
as well as a processor description (OTAWA script). With
this information, it automatically links the corresponding
architecture loader module and performs the analyses.

Besides RapiTime with its measurement-based approach,
all of the mentioned tools use binary based static program anal-
ysis, which requires knowledge of the processor architecture
in order to perform a timing analysis for WCET estimation.
In fact, implementing support for a new target system requires
the implementation/adaption of elaborate analyses to this new
architecture.

At the core therefore, are usually architecture description
languages (ADLs) that describe the processor model. They
have a wide range of application; a majority is the generation
of target specific tools (e.g., compiler or simulator). They
are also used for the development and rapid prototyping of
application-specific instruction-set processors (ASIPs).

There are different ADLs available to create an instruc-
tion set simulator (e.g., EXPRESSION [18], LISA [19] and
nML [20]), however each of them describe the instruction set
architecture of a specific processor family without detailed
information of the microcontroller. This makes it possible
to use the simulator for every microcontroller with the cho-
sen processor architecture. For timing analyses, there are
some details like cache or pipeline behavior missing at this
point; therefore, this information is provided via additional
description by the developer or end user. Hardware ADLs are
likewise known as processor or machine description language
and are not only used for simulators but also for processor
development [21, p. 2].

These architecture description languages are classified in
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three content-based (structural, behavioral and mixed) as well
as four objective-based categories (compilation, simulation,
synthesis and validation). This classification allows developers
to choose an ADL by either content (e.g., instruction-set
description) or purpose (e.g., generation of an instruction-set
simulator). Due to the fact that not all ADLs can describe the
instruction-set behavior with a detailed timing model, only a
few are usable for WCET analysis.

Modeling a processor based on the ARMv5 architecture
using the ArchC ADL is described in [15]. They divided
the implementation into three phases, starting with the choice
of a suitable ADL, followed by constructing of a toolchain
(e.g., compiler and simulator) for the architecture; and phase
three, analyzing the executed instructions by the simulator
using program patterns. Their aim was to evaluate often used
instruction patterns that can be merged to a new complex
instruction in order to increase the performance.

A retargetable software timing analyzer for WCET estima-
tion using the EXPRESSION ADL for processor models is
described in the work of [16]. For their case study, a MIPS
processor including its instruction set architecture was modeled
and evaluated.

An approach for generating instruction set simulators from
an enhanced nML architecture description is presented in [17].
The tool generates a simulator usable for static analysis. For
demonstration purposes, their tool was applied to an ARMv5
architecture implementation.

For the approach described here, we choose the Sim-
nML/nMP formalism in order to create an ARMv7E-M in-
struction set simulator. Sim-nML is an extension of the nML
formalism with the purpose to perform efficient simulations;
and the Macro Preprocessor (nMP) extends the Sim-nML
syntax (e.g., recursive macros or macro calls within macros)
in order to simplify the implementation. OTAWA is the chosen
platform for the WCET evaluation because it is expendable,
allowing to integrate new architectures and analysis tools. The
decision to use a static code analysis approach was based
on the requirements of the R&D project, which is intended
to extend the analysis environment with other static analyses
(e.g., stack usage, control-flow graph) at a later stage. A more
detailed description of this choice is given in Section IV.

IV. IMPLEMENTATION

The OTAWA framework features an architecture abstrac-
tion layer, enabling to use the analysis framework indepen-
dently of the actual target platform. This layer applies an archi-
tecture plug-in as an interface to the corresponding architecture
loader, which contains all relevant details for the instruction
set simulation.

Figure 1 shows the structure of the OTAWA framework
and highlights the mentioned concept of hardware abstraction
by binding modules for the TriCore, PowerPC or ARMv5
architecture towards this layer. The OTAWA core links all
modules including a set of analyses (e.g., data flow analy-
sis), graph generation (e.g., control-flow graph), providing an
abstract representation of the program as well as accessing
an external ILP solver (e.g., lp solve). From a programmer’s
perspective, the architecture loader together with a processor
description in the form of an OTAWA script are necessary to
support WCET analyses for a certain processor. These two

Figure 1. OTAWA Structure

components are highlighted on the right side in Figure 1. One
can use the OTAWA framework to perform WCET analyses
by providing the binary executable and the flow facts of a
program, as shown on the figure’s left side. An overview of
the necessary implementation steps is given below:

1) Description of the instruction set architecture as
loader module.

2) Implementation of an interface for the architecture
abstraction layer in order to link the loader module
to the OTAWA framework.

3) Creation of a script for the target processor.
4) Adaption and extension of the analysis tool if addi-

tional features are desired.
5) Verification of the implementation.

The next sub-sections describe our implementation of the
mentioned steps in a generic manner. Starting with step one
and two in Section IV-A, followed by the processor script in
Section IV-B as well as two tools (MKFFX and OSWA) in
Section IV-C and Section IV-D that are using the OTAWA
framework for evaluating a programs WCET, flow facts and
basic block statistics. Details of our concrete implementation
are given in Section IV-E, and finally, the verification is
explained in Section IV-F.

A. Architecture Loader
This module is the core part of the work presented in this

paper and includes a description of the processor architecture
in form of the instruction set. Most of the code was written
in the Sim-nML/nMP language including information of the
syntax, the binary representation and the semantics of each
instruction from the architecture. The syntax is important for
the disassembler output and control-flow graph because it is the
representation of the assembler syntax. The image is used for
linking the bits of a decoded instruction to the corresponding
parameter (e.g., register or immediate value). Within the action
part, the parameters from the image are used for describing the
instruction’s function. This means that calculations (e.g., shift
or add), writing and reading registers, as well as updating flags
is part of the action.

Beside the instructions themselves, there are registers,
conditions, modes and exceptions within the Sim-nML/nMP
part. Additionally, macros were defined to decrease the imple-
mentation effort and at the same time increase the readability.
The rest of the implementation, containing auxiliary functions
and algorithms, was written in the C-language. Afterwards, the
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Generator of Libraries for Instruction Set Simulators (GLISS)
was used to generate a C-library out of both implementation
parts. This library along with the ARM module from OTAWA
serve as input for the generation of the instruction set simu-
lator, a so-called “architecture loader”. In a final step, it was
necessary to define the instructions kind (e.g., ALU or branch),
target, semantic and used registers within the OTAWA ARM
module in order to interpret each instruction correctly. All
relevant architecture information for the work can be found
in the corresponding architecture reference manual.

B. Processor Script

This section describes the implementation of processor
characteristics as OTAWA script, so that applications targeting
a specific microcontroller can be analyzed with the OTAWA
framework. The script is written in XML format and consists
of several files, each for one component of the processor. The
separation is described by the following listing:

• Main: This file is usually named after the microcon-
troller and includes information about the used archi-
tecture. It links all parts of the platform description
(e.g., memory) and allows to configure items to fine-
tune the analysis. In addition, necessary analysis steps
can be included, which are accessible through the
OTAWA API (e.g., BB TIME FEATURE ensures that
the execution time computation of each basic block
has been performed).

• Memory: The processor’s different memory banks
with their properties are described in this file. A
typical description of a memory bank includes a name,
the start address and its size, followed by the type
(e.g., FLASH or SRAM). Read/write latencies can be
defined in order to set a number of cycles for accessing
or writing the memory. This is especially relevant for
external memories with high access times. Finally, one
can specify if a memory is writable or cachable.

• Pipeline: This file describes the processor’s pipeline as
big picture because its complexity is in many cases not
describable. Each stage is described by an ID, a name,
a width defining the number of parallel processed
instructions, a latency for multi-cycle operations and
a type. The type is typical fetch for the very first stage
(e.g., instruction fetch from memory) and commit for
the very last stage to declare the exit. In between,
there are either lazy stages (e.g., decode) waiting for a
defined time as well as execution stages. It is possible
to define functional units for the execution stages (e.g.,
arithmetic logic or floating-point unit), allowing to link
certain types of instructions to them.

• Cache: The processor’s caches are described in this
part. It is possible to state data, instruction or unified
caches, whereby the elements are all the same. Each
configuration consists of a replacement policy (e.g.,
LRU or FIFO), the size of a cache block, the number
of blocks in each set and the number of sets in the
cache. Additionally, different levels of cache can be
defined.

It is essential to create a script for any used microcontroller
as already small differences can result in a WCET deviation.

C. Flow Facts Evaluation Tool
Since the exact control flow of a program depends on

input data, it is impossible to make an estimation without
program execution. So-called flow facts, include program flow
information like maximum loop iteration counts (loop bounds)
or recursion depths and are provided by the user. These details
improve the precision of the analysis result; often they are
necessary to evaluate a program’s WCET at all. In cases where
no explicit limitations (e.g., loop bound depends on input
parameter) are given, either the user defines high but safe
bounds (e.g., maximum value of the parameter’s data type),
which makes the WCET result inaccurate, or the estimation
is infeasible. Defining the flow facts by hand is exhausting
and imply a risk of incompleteness. Therefore, some analysis
tools can automatically detect flow facts and save them into a
respective file. The task of filling in missing information (e.g.,
boundary for a found loop) remains to be done prior to the
evaluation of the WCET.

The introduced tool, called mkffx, generates flow facts
in XML format by combining various input methods. First,
it reads possibly existing flow facts from a given file and
saves them in an internal representation, followed by analyzing
the binary file to detect and record loops and other control
information. Next, it will invoke the oRange tool [22], which
analyzes loop bounds and extracts flow facts from the source
code. This is an optional feature, since the source code is
not available in every use case. Afterwards, the mkffx tool
merges all results and outputs the flow facts. In this way,
it reduces the necessary effort of describing them by hand
because the combination of several inputs increases the rate of
automatically detected loop bounds. Our mkffx tool extends
the features of the mkff tool, which already comes with the
OTAWA framework.

D. WCET Analysis Tool
Evaluating a programs WCET takes several analysis steps

which can vary depending on the processors architecture.
Figure 2 shows a typical scenario of a WCET estimation using
OTAWA.

Figure 2. OTAWA Scenario

The very first step is to load the program under analysis
in the form of the binary executable as well as its flow facts
information and the corresponding processor script (platform
description). Next, the program from the binary file is trans-
formed into an internal representation using the architecture
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loader and the CFG builder constructs its control-flow graph.
Afterwards, analyses are applied starting with the loop analyzer
which uses the loop boundaries from the provided flow facts.
The platform description is taken into account to analyze
the instruction caches behavior. With this information, the
execution time of each basic block can be calculated. Sets
of graph flow constraints (e.g., program flow and basic-block
execution time bounds) are built for the implicit path enu-
meration technique (IPET) based calculation approach. These
constraints are transformed into an integer linear programming
problem with a goal function (WCET) and then solved using an
external solver (e.g., lp solve). In the end, the analysis tool can
output the resulting WCET. The OTAWA framework includes
all of the mentioned modules as shown in Figure 1.

The OTAWA Stack and Worst-case execution time Analysis
(OSWA) tool combines several features into one application.
Beside the two main functions derived from its name: stack
usage evaluation and WCET analysis, it can generate a control-
flow graph with various output kinds and creates a basic
block timing statistic. The latter allows identifying the most
time consuming basic blocks within a given function or
code snippet. An additional feature is the calculation of a
ratio between the time spent inside and outside the function,
which can be used to find out how much time is spent in
sub-functions. For this paper, the WCET analysis feature is
the most important one. OSWA performs the analysis of a
specified function from a given binary file by involving flow
facts and a processor description (OTAWA script). Our OSWA
tool extends the features of the owcet tool, which already
comes with the OTAWA framework.

E. Specific Implementation for the Use Case

The goal of our work is to enable WCET analysis for soft-
ware targeting ARM Cortex-M4 processors. For this reason,
the implementation in Section IV-A was accomplished for the
ARMv7E-M architecture. It features the Thumb-2 technology
with both, 16 and 32 bit operations. This architecture loader is
based on an existing ARMv5 loader because its 16 bit Thumb
instructions are mostly equivalent with the ARMv7 technology.

The Infineon XMC4500-F100K1024 microcontroller fea-
tures an ARM Cortex-M4 processor core and was chosen for
further evaluation (see Section VI). Its characteristics were
described in the form of an OTAWA script as presented in
Section IV-B.

F. Verification

As described in Section IV-A, the architecture implementa-
tion is split in a Sim-nML/nMP description and code written in
the C language. As a result of the build process, a C-library that
contains both parts is generated. This entire implementation as
well as Sim-nML/nMP parts were verified using simulation,
code reviews, and disassembler output comparison. The verifi-
cation of the C parts is completed with the following methods:
model checking, static code analysis, and test drivers based
on boundary value analysis and equivalence class partitioning.
In addition, a plausibility check of the implementation was
performed by comparing WCET results of selected test cases
with measurements and results from another tool, as shown in
the subsequent section.

V. BENCHMARKS

A comparison of WCET results was made between
(1) OTAWA with the implemented ARMv7E-M architecture
loader as well as the OSWA tool, (2) the Advanced Analyzer
for ARM (A3) version 14.04 from AbsInt GmbH, and (3)
a measurement-based approach. Although A3 only supports
the ARM Cortex-M3 and not the ARM Cortex-M4 processor
family, a comparison is possible because both are using the
ARMv7 architecture with the Thumb2 instruction set. This
behavior is valid as long as no ARM Cortex-M4 specific
instructions (e.g., DSP extension) are used, otherwise, the
executable would be different from the ARM Cortex-M3
version and not compatible with A3. The measurement-based
WCET analysis uses a manually written test driver with input
parameters that cause a worst-case scenario. One can identify
the worst-case behavior by hand for the chosen benchmarks
because of their rather simple program flow; however, it would
be a challenge to cause the worst-case behavior for more
complex applications. By toggling an I/O pin before and after
a certain program code, one can record its execution time using
an oscilloscope or logic analyzer. The Infineon XMC4500 is
the microcontroller of choice for the measurements, which
operates at a frequency of 120 MHz. For the purpose of
comparing the measured WCET with the analysis tools, all
results are converted into a time unit (based on the processors
clock rate) and are recorded in µs rather than in cycles.
Table II shows the WCET evaluation results of 4 test cases.
The first test case (For-If-Add) is a very basic example, only
containing a loop with an if-else construct and some additions.
The functions Factorial and Fibonacci are clearly assigned to
a known algorithm by their names; however, their results are
only valid for the given input scenario (e.g., Fibonacci number
and factorial of 50). The fourth and last test case contains a
preliminary implementation of the resolution advisory (RA)
component from the Traffic Alert and Collision Avoidance
System (TCAS). Its purpose is to issue climb or decent
directives in case of conflicting aircrafts [23].

TABLE II. WCET RESULTS COMPARISON FOR THE TEST CASES.

Test Case OTAWA AbsInt A3 Measurement
For-If-Add 18.16 µs 18.07 µs 17.98 µs
Factorial 23.33 µs 23.72 µs 22.82 µs
Fibonacci 14.35 µs 8.09 µs 8.07 µs
TCAS 8.71 µs 7.82 µs 6.49 µs

Overall, the results show that the measurement-based ap-
proach leads in every case to a lower WCET. This circumstance
is very important because otherwise the WCET analysis tools
would evaluate a wrong or underestimated result which cannot
be used for safety-critical real-time applications or generally
for verifying timing constraints as it can lead to software
misbehavior that might have a catastrophic impact. In all
four test cases, the WCET evaluations by OTAWA and A3

deliver a safe upper bound, meaning it is above the real value
and therefore trustworthy. Additionally, the gap between the
real WCET and the estimated ones are especially in the first
two test cases minor. Since the goal is to get as close as
possible to the reality, this tight output is desirable. The For-
If-Add test case shows, that A3 delivers a value 0.09 µs above
the measured one but also 0.09 µs tighter than OTAWA. At
the second function, factorial, OTAWA estimates a 0.39 µs
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tighter result than A3 and 0.51 µs above the measured WCET.
Next, the Fibonacci algorithm shows that OTAWA calculates
a weaker WCET bound, whereas A3 estimates a extremely
tight value. Finally, the TCAS test case challenges the analysis
tools, as there are many sub-routine calls and thereby, initiating
several pipeline refills with a variable duration depending on
things like the width of the target instruction. In general, the
different results between both tools can be caused by deviating
analysis techniques or the usage of other integer linear problem
solver.

In summary, it can be stated that the OTAWA Framework
with both, the ARMv7E-M loader and OSWA can compete
with a commercial tool by delivering safe and mostly tight
results.

VI. USE CASE

The use case shows a software part of an unmanned aerial
vehicle (UAV), more specific, a quad-copter. Since UAV soft-
ware contains plenty of software components, it is important
to ensure that all of them have enough resources to do their
tasks in order to satisfy any deadline, hence, to guarantee safe
operation. This section discusses one functionality exemplary,
though the entire UAV software needs to be analyzed. The goal
is that the quad-copter can remain static in the air at given
height between 20 and 150 centimeters. This task consists of
a measurement unit to detect the current height and pass on
the distance information to the engine task which uses control
algorithms for adapting the current height to a given value.
Stabilization is performed by the engine control using a triple-
axis gyroscope.

This use case describes timing analysis of the distance
measuring and evaluation software. An infrared proximity
sensor is used to measure the distance between the quad-
copter and ground. It delivers an analog output with a nonlinear
distance measuring characteristics. The sensors characteristic
is approximated and expressed as mathematical equation. As
a result, it is necessary to use an analog-digital converter to
read in the latest sensor value and calculate the current distance
according to its characteristic.

Listing 3 shows the source code of the sensor read function
and is described in this paragraph. One can pass the number of
measurements as argument to the function. If the parameter is
zero or one, only a single value will be measured (see GetAD-
CValues function). Otherwise, the given size equals the number
of measurements from which the mean value will be generated
(see mean function). In both cases, the distance is calculated
using the evaluateDistance function that implements the sensor
characteristics as formula. The functions GetADCValues and
mean each contain a loop, which bound depends on the given
size. In Addition, the analog-digital conversion executed within
the GetADCValues function takes several cycles, depending on
the ADC configuration (e.g., conversion width of 12 bits or the
divider factor for the analog internal clock). For the WCET
analysis, this delay is considered and implemented as busy-
waiting loop.

Although this software component is a relatively small one,
its importance is beyond debate because it delivers information
about the current height and wrong or no up-to-date data could
lead to an accident. Therefore, it is necessary to estimate the
timing behavior of this software component by evaluating its
worst-case execution time.

uint16_t readSensor(uint16_t size)
{

uint16_t distance;

if(size < 2)
{

uint16_t adc_value;
GetADCValues(&adc_value, 1);
distance = evaluateDistance(adc_value);

}
else
{

uint16_t adc_values[size];
uint16_t temp;
GetADCValues(adc_values, size);
temp = mean(adc_values, size);
distance = evaluateDistance(temp);

}
return distance;

}

Figure 3. Distance measuring source code

The process of analyzing its worst-case timing behavior
start with the binary file of the program, shown in Listing 3,
by identifying and evaluating all loop bounds using the mkffx
tool. In the use case, a mean value from 32 analog-digital
conversions is used for the height estimation. Therefore, the
loop bounds within the GetADCValues and mean function need
to be 32. After the generated flow facts are checked, the OSWA
tool can be executed to estimate the functions WCET.

TABLE III. WCET RESULTS OF THE USE CASE.

Function OTAWA
readSensor 68.58 µs
GetADCValues 62.22 µs
mean 5.20 µs
evaluateDistance 0.425 µs

Table III shows the worst-case execution time evaluation
results of the functions from the use case. All results are
estimated for the Infineon XMC4500 microcontroller operating
with a clock rate of 120 MHz. The distance calculation,
including all sub-routine calls, takes 68.58 µs in the worst-
case. A measurement was performed where an execution time
of 67.37 µs was recorded, giving the information that the
WCET analysis is safe and tight. The results of the sub-
routines are revealing where most of the time is spent. In
this case, recording the ADC values takes the majority and
evaluating the distance the least of the time. This ratio depends
on the number of analog-digital conversions taken into account
for one distance calculation. Finally, the main statement of the
results is emphasizing the necessary time budget of 68.58 µs
for the entire task.

VII. CONCLUSION

This paper elaborates on the implementation of a processor
model for worst-case execution time analysis. The presented
approach integrates with the open-source framework OTAWA
and, hence, can serve as guide for similar efforts.

It starts with the architecture implementation, which is split
into a Sim-nML/nMP model and an OTAWA script, resulting in
a behavioral architecture description with timing information
of operations in order to generate a cycle-accurate instruction
set simulator. In particular, we choose the ARMv7E-M archi-
tecture that is used by ARM Cortex-M4 devices.
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The resulting toolset was evaluated by way of a benchmark
in order to underline its save and tight WCET calculation.

Our lesson learned is that the seamless and correct de-
scription of a processor model is exhaustive; further, the
implementation quality depends on the correctness of the archi-
tectures datasheet. We experienced that the OTAWA framework
is capable of much more than WCET analysis, because the
existing analyses can be adapted to fulfill own requirements
or purposes.

In summary, the presented approach enables static binary
analysis of a program targeting an implemented architecture.
This allows to evaluate information of the application like the
WCET, which can be used for creating a statement regarding
possible violations of deadlines or task scheduling in real-time
systems.
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