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Abstract—Although many valuable visualizations have been
developed to gain insights from large data sets, selecting an
appropriate visualization for a specific data set and goal
remains challenging for non-experts. In this paper, we pro-
pose a novel approach for knowledge-assisted, context-aware
visualization recommendation. Both semantic web data and
visualization components are annotated with formalized visu-
alization knowledge from an ontology. We present a recommen-
dation algorithm that leverages those annotations to provide
visualization components that support the users’ data and task.
We successfully proved the practicability of our approach by
integrating it into two research prototypes.
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I. INTRODUCTION

Visualization is a powerful way of gaining insight into
large data sets. Therefore, a myriad of visualizations have
been developed in recent decades. To bridge the gap between
data and an appropriate visual representation, models like
the visualization pipeline [1] have been developed and
implemented in numerous tools. As one part of this process,
the mapping of data to a graphic representation is critical be-
cause only small subsets of existing visualization techniques
are expressive and effective for the selected data in a specific
context. Generally, domain-specific data can be visualized
either using tools which were developed specifically for that
domain and use case, or using generic visualization systems.
The development of the former requires extensive knowl-
edge by visualization and domain experts, and is usually
costly and time-consuming. Thus, in many cases generic
visualization tools are preferable, because they are quickly
available and reusable in different contexts. Using such tools,
domain experts can directly get the information they need
out of their data. However, these tools typically require them
to select the visualization type and to specify the visual
mappings, which can be difficult because they often lack the
necessary visualization knowledge [2]. Knowledge-assisted
visualization can address this problem by representing and
leveraging formalized visualization knowledge to support the
user [3]. Suggesting automatically generated visualizations
to the user is one promising approach to aid domain experts
in constructing visualizations [2], [4].
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Figure 1. Overview of our goal to recommend mappings of a data source
(1) to a visualization component (2) based on a semantic model utilizing
visualization knowledge (3) and context information (4).

Consider for example a semantic web data set comprising
a list of events hosted at different venues with varying
fees. A business user with less visualization experience
wants to get an overview of how expensive the events
are using his laptop. Thus, he selects a subgraph from a
semantic data set as shown in Fig. 1-1 containing two classes
(EVENT, VENUE) linked by a Property (hasVenue) as well
as two Data Properties (hasName, hasPrice). To map this
data to a compatible visualization component (Fig. 1-2),
a user needs visualization knowledge (Fig. 1-3). Context
information (Fig. 1-4) about the user (knowledge, skills),
his device (hard- /software capabilities) and his task (get
overview) must also be considered to create a successful
mapping. We strive for a generic recommendation approach
utilizing and understanding these different ingredients based
on a common semantic knowledge model to facilitate the
automated visualization process for different tools.

Our goal of creating a knowledge-assisted, context-aware
system which recommends visualization components in-
volves a number of challenges, which are addressed by this
paper. First, a formalized vocabulary for the interdisciplinary
visualization domain is needed. To this end, we have devel-
oped a modular visualization ontology called VISO. Second,
means to semantically describe visualization characteristics
of both data sources and visualization components must be
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provided. Therefore, we propose the linking and annotation
of semantic web data and component descriptors with con-
cepts of VISO. Third, appropriate visualization components
must be discovered for a certain set of data, which includes
the deduction of applicable mappings between data and
graphic representations. We present a discovery algorithm
which takes the aforementioned formalized visualization
knowledge and given user requirements into account to
search for compatible visualization components. Finally,
component candidates need to be ranked with regard to
the user, usage and device context, e. g., to consider user
language, screen real estate, and available plugins on the
device. We have developed a corresponding ranking algo-
rithm for the mappings, i. e., component candidates resulting
from the discovery. It explicitly takes into account the
visualization knowledge, assigned domain concepts, the user
and device context as well as optional criteria from the end
user to achieve a context- and task-aware rating. We show
the feasibility and practicability of our approach with two
prototype implementations: an Eclipse-based visualization
tool for semantic multimedia data and a mashup-based
visualization workbench called VizBoard.

The remainder of this paper is structured as follows. First,
we discuss related work in the fields of automated visu-
alization, semantic models for visualization, and semantic-
based component recommendation in Section II. Then, Sec-
tion III introduces our visualization ontology VISO in detail
and clarifies how it is applied to describe visualization
components and data sources. Afterwards, we present the
corresponding recommendation algorithm separated into dis-
covery and ranking in Section IV. Section V gives a brief
overview of the prototype implementations and discusses our
findings. Finally, in Section VI we conclude the paper and
outline future work.

II. RELATED WORK

The recommendation algorithm presented in this paper
builds on previous research in the three different research
areas (1) automated visualization, (2) semantic visualization
models, (3) mechanisms for semantics-based component
discovery and ranking. We will now discuss the state of
the art in those three areas.

A. Automated Visualization

Several automatic visualization systems have been de-
veloped to help users to create visualizations. They pro-
duce visualization specifications based on user-selected data
and implicitly or explicitly represented visualization knowl-
edge. We distinguish between data-driven, task-driven, and
interaction-driven approaches.

Data-driven approaches analyze the meta-model of the
data and potentially instance data to generate visualization
specifications. Mackinlay addressed the problem of how to
automatically generate static 2D visualizations of relational

information in his APT system [5]. It searches the design
space of all possible visualizations using expressiveness cri-
teria and then ranks them using effectiveness criteria. Gilson
et al. developed an algorithm that maps data represented
in a domain ontology to visual representation ontologies
[6]. Their visual representation ontologies describe single
visualization components, e. g., tree maps. A semantic bridg-
ing ontology is used to specify the appropriateness of the
different mappings. Our automated visualization approach is
similar to the one by Gilson et al. in that both data and vi-
sualization components are described using ontologies. The
main limitation of data-driven approaches is that they do not
take other information such as the user’s task, preferences
or device into account. Task-driven and interaction-driven
approaches usually build on the data analysis ideas present
in data-driven approaches, but go beyond them.

The effectiveness of a visualization depends on how well
it supports the user’s task by making it easy to perceive
important information. This is addressed by task-driven ap-
proaches. Casner’s BOZ system analyzes task descriptions
to generate corresponding visualizations [7]. However, BOZ
requires detailed task descriptions formulated in a structured
language and is limited to relational data. The SAGE system
by Roth and Mattis extends APT to consider the user’s
goals [8]. It first selects visual techniques based on their
expressiveness, then ranks them according to their effective-
ness, refines them by adding additional layout constraints
(e.g., sorting), and finally integrates multiple visualization
techniques if necessary. In constrast to SAGE and BOZ, our
algorithm is ontology-based to allow for reasoning and it
leverages device and user preference information.

Visual data analysis is an iterative and interactive process
in which many visualizations are created, modified and an-
alyzed [2]. Interaction-driven approaches consider either
the user interaction history or the current visualization state
to generate visualizations that support this process. Mackin-
lay et al. have developed heuristics that use the current
visualization state and the data attribute selection to update
the current visualization or to show alternative visualizations
[9]. Behavior-driven visualization recommendation monitors
users’ interactions with visualizations, detects patterns in
the interaction sequences, and infers visual tasks based
on repeated patterns [10]. The current visualization state
and the inferred visual task are then used to recommend
more suitable visualizations. Interaction-driven approaches
leverage implicit state information such as the interaction
history, but they consider neither task information that is
explicitly expressed by the user, nor user preferences or
device constraints.

In summary, while our work builds on many ideas from
automated visualization approaches, in particular the work
by Gilson et al. [6], it is extensible in terms of visualization
components, and it considers task, user preferences and
device capabilities. In contrast to generative approaches [5],
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[7]–[9], the strength of using visualization components is
that such components are optimized for the visual metaphor
they represent.

B. Formalizations of Visualization Knowledge

As shown in the previous section, automated visualization
requires one or more models to bridge the gap between data
and suitable graphic representations. In this regard, prevalent
approaches use different concepts, such as rules [8], heuris-
tics [9], and semantic models [6]. We share the view of
Gilson et al. [6] that semantic technologies are the methods
of choice today. They allow for capturing and formalizing
expert knowledge in a readable and understandable manner
for humans as well as machines. Therefore, they provide an
effective solution for automated recommendation. Further,
the current technologies facilitate an easy and dynamic re-
use of existing semantic models in new scenarios.

Actually, only few academic works have explored se-
mantic web technologies as means to capture visualization
knowledge for describing and recommending resources.
Duke et al. [11] were the first proposing the need for a
visualization ontology. Their promising approach captures
an initial set of concepts and relations of the domain
comprising data, visualization techniques, and tasks. Potter
and Wright [12] combine formal taxonomies for hard-
/software capabilities, sensory experience as well as human
actions to characterize a visualization resource. Similarly,
Shu et al. [13] use a visualization ontology to annotate and
query for visualization web services, with regard to their
(1) underlying data model and (2) visualization technique.
While the former is a taxonomy comprising various kinds
of multidimensional data sets, the latter builds on the data
module to classify the graphic representations. For our work,
their data taxonomy is not flexible enough as we need to
support graph-based data structures for example. Gilson et
al. [6] employ three dedicated ontologies to allow for auto-
matic visualization: The first one captures domain semantics
and instance data to visualize; the second one describes a
particular graphic representation; the final ontology contains
expert knowledge to foster the mapping from domain to
visualization concepts. In contrast, we allow for a more
flexible and generic linking of both sides by annotating
each with VISO concepts instead of the explicit, manual
creation of an additional ontology. Rhodes et al. [14] aimed
to categorize, store and query information about software
visualization systems using a visualization ontology as the
underlying model. Their approach facilitates methods for
specifying data, graphic representation, or the skill of users.

In summary, we share the goal of the works presented
above: defining a formalized vocabulary to describe and
recommend visualization resources. However, as we strive
for a context-aware recommendation we need a more com-
prehensive and detailed model that covers not only data and

graphical aspects, but also represent the user, his activity,
and device.

C. Semantics-Based Component Discovery and Ranking

When it comes to finding and binding adequate services
for a desired goal, such as visualizing semantic data as we
are, Semantic Web Services (SWS) tackle a very similar
problem. SWS research provides solutions for finding a
service or service composition that fulfills a goal or user
task based on certain instance data. Therefore, they employ
a formal representation of the services’ functional and non-
function semantics – usually based on description logics –
to facilitate reasoning. Based on this, they strive for the
automation of the service life-cycle including the discovery,
ranking, composition, and execution of services through
proper composition environments.

The discovery of suitable semantic services employs
either complete semantic service models, e. g., in OWL-S
[15] and WSMO [16], or semantic extensions to existing
description formats, as proposed by SAWSDL [17] and
WSMO-Lite [18]. The former top-down approaches are usu-
ally very expressive, but descriptions are complex and time-
consuming to build. The latter bottom-up approaches add
semantic annotations, i. e., references to concepts in external
ontologies, to WSDL. Even though the above-mentioned
solutions cannot be directly applied to our problems, e. g.,
due to their limitation to web services formats and de-
sign principles (stateless), we follow the idea by extending
a mashup component description language with semantic
references. Thereby, visualization components can be de-
scribed regarding their data, functional and non-functional
semantics, including references to formalized visualization
knowledge.

In SWS discovery, suitable services are searched based
on a formalized goal or task definition, which is usually a
template of an SWS description. Thus, the desired data and
functional interface is matched with actual service models.
The corresponding algorithms either use measures like text
and graph similarities, which restricts the applicability to
design-time, or determine the matching degree of services,
operations, etc., using logic relationships between annotated
concepts as in [19]. In contrast to SWS, we follow a
data-driven approach, in which semantically annotated data
forms the input for the discovery of suitable candidates. The
direct generation of SWS goals from a selected data set is
not feasible. Therefore, we individually match data types,
functional interface and hard-/software requirements with
and between data and visualization components based on
shared conceptualizations. Based on this measure, compati-
ble visualization components can be found.

Ranking of service candidates in SWS bears a number of
similarities with ranking visualization components for a cer-
tain data set. It is usually based on non-functional properties,
such as QoS and context information (user profile, device
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Figure 2. Overview of the VISO data module

capabilities). To this end, a number of sophisticated concepts
exist, e. g., for multi-criteria ranking based on semantic
descriptions of non-functional service properties [16] and
for context sensitive ranking [20]. Since these algorithms
are rather generic and work on a semantic, non-functional
level, they likewise apply to our concept space.

In summary, the discovery and ranking of candidate
services for a predefined goal in SWS research follows
a similar principle as our work. Yet, its solutions can
not be directly applied to our problems. For one, there
is a difference in component models, e. g., with regard to
statefulness of visualization components. Furthermore, the
discovery of visualization components can not be based on
predefined, formalized goal descriptions, as it basically de-
pends on semantic data which is annotated with visualization
knowledge. For the annotation of visualization components
with semantic concepts though, we can apply the ideas
of SAWSDL and WSMO-Lite to the component descrip-
tions. To link semantic data with visualization components,
a shared conceptualization of visualization knowledge is
needed. Therefore, the next section presents VISO.

III. VISO: A MODULAR VISUALIZATION ONTOLOGY

The foundation of our visualization recommendation ap-
proach is a formalized, modular visualization ontology
called VISO [21]. It provides a RDF-S/OWL vocabulary
for annotating data sources and visualization components,
contains factual knowledge of the visualization domain, and
serves as a semantic framework for storing contextual infor-
mation. Altogether, it serves as a bridging ontology between
semantic data and visualization components by offering
shared conceptualizations for all four mapping ingredients
shown in Fig. 1. Details of VISO and its development are
described in [21]. The seven VISO modules (data, graphic,
activity, user, system, domain, and facts) represent different
facets of data visualization domain. They refer to each other
and to existing ontologies as needed. VISO modules can be
extended to accommodate new concepts.

1) Data: Fig. 2 shows the data module which contains
concepts for describing data variables and structures for
visualization purposes. While all concepts are employed to
describe visualization components, those with dotted lines
are also used to annotated semantic data. The vocabulary
is especially need at component-side to describe possible
input data in a generic manner as the most of visualiza-

tions allow for representing domain independent data. For
example, a simple table may visualize data about hotels,
cars, or humans. Using this vocabulary, we specify only
the data structure and characteristics. As can be seen, a
DATA SCHEMA consists of ENTITY and RELATION concepts.
The latter represent links between ENTITY concepts like
an OWL Object Property. Both ENTITIES and RELATIONS
can contain DATA VARIABLE concepts, whose equivalent in
OWL space is a Data Property. For example, the semantic
data model of a table visualization component would be
represented as one ENTITY concept with several DATA
VARIABLES for every column. Further semantics, e. g., the
SCALE OF MEASUREMENT and CARDINALITIES – specified
using built-in OWL constraints – can be defined on the DATA
VARIABLE concepts (cf. Fig. 2) to constrain its, e. g., its
scale. By linking the concepts from the data module to the
VISUAL ATTRIBUTE concepts from the graphic module, we
bridge the gap between data attribute and visual elements
and properties.

2) Graphics: The graphics module conceptualizes the se-
mantics of GRAPHICAL REPRESENTATIONS and their parts,
e. g., their VISUAL ATTRIBUTES. Concrete graphical rep-
resentations, e. g., scatter plot and treemaps, and concrete
visual attributes such as hue or shape are contained as
instance data. The concepts from the graphics module are
used to semantically annotate visualization components and
to define visualization knowledge in the facts module.

3) Activity: The activity module models user activity in
a visualization context. It builds on the ontology-based task
model by Tietz et al. [22], which distinguishes betweens
high-level, domain specific TASKS and low-level, generic
ACTIONS, similar to the distinction made by Gotz and Zhou
[23]. We have extended the action taxonomy of Tietz’s task
model by separating data- and UI-driven ACTIONS, and by
formalizing ACTIONS from the visualization literature such
as zoom and filter. This enables the fine-grained annotation
of interaction functionality in visualization components.

4) User: The user module formalizes user PREFERENCES
and KNOWLEDGE. Users can, for example, have PREFER-
ENCES for different GRAPHICAL REPRESENTATIONS, and
their visual literacy can differ. As manifold context models
for users, their characteristics and preferences, already exist
those can be seamlessly integrated and used here.

5) System: The system module facilitates the description
of the device context, e. g., installed PLUG-INS or SCREEN
SIZE. It also allows us to annotate a visualization component
with its system requirements. Again, sophisticated models
for device characteristics and context exist, which were
reused or integrated in this module. As an example, we
borrow concepts from the CroCo ontology [24], which
combines user, usage, system, and situational context from
different existing works developed by academia.

6) Domain: Many visualizations are domain-specific, and
thus it is important to consider the domain context during
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Figure 3. Description of a treemap visualization in VISO.

visualization recommendation. However, it is not feasible
to model all possible visualization domains. Instead, we
support linking to existing domain ontologies. A DOMAIN
ASSIGNMENT links VISO concepts, e. g., a DATA VARIABLE
(cf. Fig. 2), to concepts from specific domain ontologies.
As this assignment is usually created automatically during
data analysis, it can be qualified with a probability value
reflecting its accuracy. Thus, the analysis of a data source
with ambiguous Properties, such as typeOfJaguar and type-
ofApple, will result in multiple domain assignments with
probabilities below 1. In contrast, a Data Property hasPrice
from our motivating example could be annotated with price
and a probability of 1. A visualization component supporting
DATA VARIABLE annotated with the more general concept
value could be inferred as a possible mapping.

7) Facts: The visualization recommendation also de-
pends on factual visualization knowledge to select suitable
visualizations. Thus, we formalized knowledge from the in-
formation visualization community, e. g., verified statements
such as “position is more accurate to visualize quantitative
data than color” [25], to make it machine-processable. These
rankings and constraints are formalized in rules in the Facts
module. These rules use of the vocabulary of the other
VISO modules in their conditions part, e. g., SCALE OF
MEASUREMENT (quantitative) and the VISUAL ATTRIBUTE
(position, color) for the mentioned example. If the condi-
tions are matched, a rating is assigned to the corresponding
visualization component description.

To give a more practical insight, the following example
explains how a treemap visualization is described using
VISO (see Fig. 3). First, the hierarchical data structure of
the treemap is specified. At the top level, a Node ENTITY
represents the whole treemap. It can contain Leaf ENTITIES
and Node ENTITIES. The label and size variables of Leafs
can be configured. They are annotated with visualization
semantics, e. g., the SCALE OF MEASUREMENT for the label
variable is nominal and the ROLE of the size variable is
dependent. Further domain semantics could be added to
the variables, e. g., WordNet (http://wordnet.princeton.edu/)
concepts such as value. In addition to the data structure
and the variables, more general semantics such as the kind
of GRAPHIC REPRESENTATION (treemap), the LEVEL OF
DETAIL (overview) and possible ACTIONS (select, brush) are
defined for the entire visualization component.
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Figure 4. Overview of the recommendation algorithm.

In order to facilitate the construction of visual mappings,
VISO is used to annotate visualization components and
semantic web data. In the latter case, we annotate only
RDF Properties on a schema level. RDF Properties hold
the data that will be visualized, e. g., literals and relations,
whereas RDF classes assemble such properties and do not
provide additional information that would be relevant for
visualization. Similarly, annotations are made on the schema
level, because instance data annotation would be redundant.
Consider our motivating example (see Fig. 1-1), comprising
the Property hasPrice. Because the Property has the RDFS
Range xsd:float, the required DATA TYPE is already defined
and the SCALE OF MEASUREMENT is quantitative. The
number of distinct values (CARDINALITY) and the overall
number of values (QUANTITY) can be extracted from the
instance data. While a DOMAIN ASSIGNMENT is not manda-
tory, it could be applied, e. g., to price from the WordNet
vocabulary.

In summary, VISO models the concepts required for
data visualization. It is used to annotate data, to describe
visualization components, to represent context and factual
knowledge. Together, these different pieces are the founda-
tion of our visualization recommendation algorithm.

IV. VISUALIZATION RECOMMENDATION ALGORITHM

The visualization recommendation algorithm creates an
ordered list of mappings to visualizations components for
the selected data (see Fig. 1-1). It considers contextual
information (e.g., device, user model) as well as knowledge
about the full data source. While the user model and device
are mandatory inputs, visualization specific information like
the required LEVEL OF DETAIL or the requested kind of
GRAPHICAL REPRESENTATION can be provided as optional
constraints.

The algorithm consists of two separate steps: discovery
and ranking (see Fig. 4). Both steps leverage semantic
knowledge formulated as VISO concepts (see Section III).
In the discovery step, potential mappings between data and
widgets are generated based on functional requirements. The
resulting visualization set is then sorted in the ranking step
using the formalized visualization knowledge and domain
concepts, as well as by contextual and visualization specific
information.
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A. Discovery of Mappings

The discovery algorithm generates a set of mappings from
the selected data to visualization components (see Fig. 4).
First, potentially applicable widgets are identified and non-
applicable components are ruled out (pre-selection), since
limiting the set of available visualization components early
improves the overall algorithm performance. To be applica-
ble, a widget has to (1) be compatible with the target device
(e. g., required PLUGINS must be available), (2) support
the number of selected Data Properties, and (3) support
visualization and task specific requirements (e. g., showing
an overview), if specified by the user. As can be seen, these
constraints don’t relate to data structure or semantics of the
data variables, yet. Semantic matching is carried out with
the resulting component candidates in the following step.

Second, semantics, e. g., the SCALE OF MEASUREMENT,
DATA TYPE, and QUANTITY (Fig. 2) of the selected Proper-
ties are fetched (gathering semantics). For example, the
DATA TYPE xsd:float or the SCALE OF MEASUREMENT
quantitative of the property hasPrice (see Fig. 5-3)) would
get retrieved. This semantic information about the Properties
is used in the next steps.

Third, we generate generic data schemas, which are
then used to query for mappings. We distinguish between
tabular and graph-based DATA SCHEMAS. TABULAR DATA
SCHEMAS contain one ENTITY with several DATA VARI-
ABLES (Fig. 5-1). GRAPH-BASED DATA SCHEMAS contain
two or more linked ENTITIES, each containing zero or more
variables (Fig. 5-2).

If a single class has been selected, a TABULAR DATA
SCHEMA is chosen and an ENTITY is created for that class.
For every selected Data Property of this class, a DATA
VARIABLE with the semantic information (that was retrieved
in the previous step) is attached to the ENTITY.

If several classes have been selected, we generate both
a tabular and a graph-based DATA SCHEMA. For the TAB-
ULAR DATA SCHEMA, a single ENTITY gets created. For
any selected Data Property from those classes, a DATA
VARIABLE with the semantic information is attached to the
single ENTITY. This reduces the graph-based data structure
to a tabular structure. For example, consider the data shown
in Fig. 5-3. The algorithm would create one ENTITY with
two DATA VARIABLES. The first DATA VARIABLE would rep-
resent the semantics of hasName, e. g., the nominal SCALE
OF MEASUREMENT, and the second DATA VARIABLE would
represent hasPrice. The GRAPH-BASED DATA SCHEMA gets
generated as follows: Beginning with a class from the input
data, e. g., Event in Fig. 5-3, an ENTITY is created. Similar
to the other cases, DATA VARIABLES and their semantics
are attached to this ENTITY for the selected Data Properties
linked to the class. Next, for each Object Property connected
with the class, a RELATION gets generated. If the target
class for that RELATION has not been processed yet, it is

created and processed in a similar way. This depth-first
processing continues until the current part of the input graph
is completely traversed. If there are multiple unconnected
classes in the input, the algorithm continues with those
until all graph components are processed. For example, the
algorithm would generate the DATA SCHEMA illustrated in
Fig. 5-4 by processing the input data structure shown in
Fig. 5-3.

Fourth, the mappings are generated by querying the se-
mantic representations of the pre-selected components with
the generic DATA SCHEMAS that were computed in the
previous step (query for mappings). The mappings include
permutations of DATA VARIABLES with similar semantics,
and thus the number of mappings may be higher than the
number of existing components. Using the data structure
generated by the algorithm for the example shown in Fig. 5-
4, both the scatter plot (Fig. 5-1) and the treemap (Fig. 5-
2) would fit on the level of data structure. However, only
the treemap is a suitable mapping due to the annotated
semantics which are also employed by querying. The scatter
plot is not suitable because it has two quantitative DATA
VARIABLES where both a nominal and a quantitative DATA
VARIABLE are required. The generated set of mappings from
the selected data to the visualization components is ranked
in the next part of the algorithm.

B. Ranking of Mappings

The ranking step of the algorithm sorts the visual map-
pings that were generated by the previous discovery step.
While the discovery step identifies valid mappings and
visualization components that satisfy functional criteria, it
does not take their effectiveness into account. To sort the
mappings by their effectiveness, the ranking step applies
factual visualization knowledge, domain assignments and
contextual user and device information.

1) Factual Visualization Knowledge: The factual visu-
alization knowledge (see Section III) is defined by a set
of rules which consist of a condition and a rating. The
conditions are specified using the VISO vocabulary for the
visualization components. For each widget, the ratings of
all rules that are met are added to its specification. During
runtime, the arithmetic mean of all ratings rvi is calculated
for the discovered component of each visual mapping. For
example, we formalized rules to rate the appropriateness of
visual encodings for quantitative data [25]. The quantitative
DATA VARIABLE of the treemap (Fig. 5-2) is rated with 0.5
as it employs “only” size and not position.

2) Domain Assignments: Domain concepts from various
ontologies are assigned to both the data input and the
visualization components with a certainty value (see Section
III). For each pair of input Property and DATA VARIABLE
of the visualization component, we calculate a semantic
similarity rating between 0 and 1 (e. g., using [26]), if they
both have a domain concept assigned with a certainty greater

106Copyright (c) IARIA, 2012.     ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management



Figure 5. Comparison of the data structure and the annotation between 1) a scatter plot, 2) a treemap, 3) user’s selected data, and 4) a generic equivalent
of the selected data.

than 0. The final rating rdj is the product of the semantic
similarity and the arithmetic mean of both certainties. In
our example (see Sect. III), we used value and price from
WordNet to annotate the quantitative DATA VARIABLE of the
treemap and the Property hasPrice from our data set, each
with a certainty of 1. Using [26], we get a rating rd=0.9094.

3) User and Device Information: The rules for the
context-based rating rc are part of the knowledge base and
use the VISO vocabulary, similar to the factual visual-
ization knowledge. The rules are executed during runtime
and employ the above mentioned identifiers of users’ and
their device context models. For example, we construct
a SPARQL-based rule that counts the use of different
GRAPHIC REPRESENTATIONS, like treemaps or scatter plots.
This rule assigns a rating rck between 0 and 1 to the visual
mappings.

The three different kinds of rating are combined using an
arithmetic mean. The overall rating has a range between 0
and 1. We weight all three rating types equivalently for two
reasons. First, the assignment of a (quantitative) rating is
often subjective. Second, a profound user study is needed
to evaluate the impact of each knowledge base in users
visualization selection process what will be future work. As
x, y, and z are the number of each kinds of rating, the overall
rating R for each mapping is calculated in terms of

R =
1

3

 1

x

x∑
i=1

rvi +
1

y

y∑
j=1

rdj +
1

z

z∑
k=1

rck


The list is ordered based on the combined ratings R for

each mappings. This ranking could be used to automatically
display the top mapping to the user as a visualization, or, as
in our approach, to let the user pick one of the top n ranked
visualizations. We next discuss our implementation of the

visualization recommendation algorithm in two research
projects.

V. IMPLEMENTATION AND DISCUSSION

To realize the concepts discussed above, we first de-
veloped VISO as an open, modular ontology (available at
http://purl.org/viso/) based on OWL DL. It is comprised of
concepts, properties and instance data from the visualization
domain, as well as factual knowledge modeled using Jena
Rules (http://jena.sf.net/). Details on the design process and
decisions can be found at [21].

We then implemented our generic recommendation ap-
proach and integrated it with two existing research projects:
KIMM [27] and CRUISe [28]. The algorithms build on Jena
to manage all semantic models and employ SPARQL 1.1 to
query the knowledge bases and to create the mappings.

Within the frame of K-IMM, we enhanced the Eclipse
RCP-based application Sim2 which allows for visualizing
RDF-based multimedia data. With a wizard we enable users
to select classes and properties from theirdata set for vi-
sualization. Since all views are semantically annotated with
concepts from VISO, this input can be used for our discovery
algorithm, which recommends suitable visualizations for the
selected data. Since Sim2 neither tracks nor uses any context
information, this integration was limited to the discovery.
The context-aware rating was omitted in this prototype. In
this prototype, the discovery mechanism, which relies only
on functional and objective matching, was able to identify
suitable visualizations.

Our approach is also an integral part of VizBoard, an
information visualization workbench for semantic data based
on the mashup platform CRUISe. CRUISe facilitates the
dynamic, context-aware composition of mashups from dis-
tributed web resources. Hence, it builds on a universal
component model which includes semantic descriptors. We
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encapsulated a number of well-known visualizations, includ-
ing several from the Protovis library [29], and employed the
descriptors to realize the annotation with VISO concepts.
The discovery and ranking algorithms were integrated as
part of a multi-step wizard, which results in the context-
aware recommendation of suitable visualization components
as basis for a mashup UI. Using this implementation, we
could also evaluate our ranking algorithm. Even though it
performs as expected, more work is needed for two reasons.
First, we build on visualization knowledge, e. g., the expres-
siveness of visual attributes for quantitative data, that reflects
the current state of knowledge in the field of information
visualization. However, due to limited empirical evidence
and different expert opinion, some of the current guidelines
are not accepted and could change in the future. Second, user
studies to identify the impact created by the visualization,
domain, and context knowledge in the visualization process
could improve the weighting of these three components.

As with many search mechanisms, defining the goal
of the visualization selection process is challenging. We
argue that the query creation should allow for defining
requirements and options, e. g., “I like to visualize A and
B, and C if possible”, in an uncomplicated way. Hence, a
sophisticated user interface should assist the user during the
goal definition. Furthermore, our discovery algorithm needs
to be extended to support optional input.

A limitation of semantic approaches like ours is the need
of descriptions respectively of annotations. Thus, it is up
to component authors and data providers to augment their
components/data using the VISO concepts correctly. In this
regard, adequate tool support would be beneficial.

VI. CONCLUSION AND FURTHER WORK

Selecting an appropriate visualization for a specific data
set in a specific scenario remains challenging for non-
experts. Therefore, we have presented a context-aware and
knowledge-assisted approach to recommend suitable visual-
izations for semantic web data. Its foundation is the modular
visualization ontology VISO which provides the vocabulary
to annotate both data sources and visualization components.
Based on these shared concepts from the visualization do-
main, our recommendation algorithm covers both discovery
and context-aware ranking of suitable graphic representa-
tions: First, possible mappings from data to visual encodings
are identified using the selected data, its semantics, and other
functional information. Then, quantitative ratings for each
mapping are calculated with respect to visualization knowl-
edge, domain concept relations and context information.

As our implementations shows that the approach can
recommend visualization components based on semantics
from different sources, the discussion shows some directions
for future work. We will investigate a tool for the semi-
automatic annotation of visualization semantics for semantic
web data. We are also planning to conduct a user study

to identify and model the interdependencies between the
knowledge bases employed within the ranking. To enhance
users interactive selection of data, task- and visualization-
specific input for the algorithm, we are working on a faceted
browser which will distinguish between requirements and
weighted optional criteria.
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